CN108596780A - A kind of Reservoir type division methods and system based on multiple information - Google Patents

A kind of Reservoir type division methods and system based on multiple information Download PDF

Info

Publication number
CN108596780A
CN108596780A CN201810397193.7A CN201810397193A CN108596780A CN 108596780 A CN108596780 A CN 108596780A CN 201810397193 A CN201810397193 A CN 201810397193A CN 108596780 A CN108596780 A CN 108596780A
Authority
CN
China
Prior art keywords
data
reservoir type
neural network
reservoir
variance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201810397193.7A
Other languages
Chinese (zh)
Other versions
CN108596780B (en
Inventor
曹丹平
安鹏
梁锴
朱兆林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
China University of Petroleum East China
Original Assignee
China University of Petroleum East China
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by China University of Petroleum East China filed Critical China University of Petroleum East China
Priority to CN201810397193.7A priority Critical patent/CN108596780B/en
Publication of CN108596780A publication Critical patent/CN108596780A/en
Application granted granted Critical
Publication of CN108596780B publication Critical patent/CN108596780B/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q50/00Information and communication technology [ICT] specially adapted for implementation of business processes of specific business sectors, e.g. utilities or tourism
    • G06Q50/02Agriculture; Fishing; Forestry; Mining
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06NCOMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N3/00Computing arrangements based on biological models
    • G06N3/02Neural networks
    • G06N3/08Learning methods

Landscapes

  • Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Business, Economics & Management (AREA)
  • Health & Medical Sciences (AREA)
  • Tourism & Hospitality (AREA)
  • Artificial Intelligence (AREA)
  • Human Resources & Organizations (AREA)
  • Marketing (AREA)
  • Primary Health Care (AREA)
  • Strategic Management (AREA)
  • Mining & Mineral Resources (AREA)
  • Marine Sciences & Fisheries (AREA)
  • General Business, Economics & Management (AREA)
  • Animal Husbandry (AREA)
  • Agronomy & Crop Science (AREA)
  • Economics (AREA)
  • Biomedical Technology (AREA)
  • Biophysics (AREA)
  • Computational Linguistics (AREA)
  • Data Mining & Analysis (AREA)
  • Evolutionary Computation (AREA)
  • Molecular Biology (AREA)
  • Computing Systems (AREA)
  • General Engineering & Computer Science (AREA)
  • Mathematical Physics (AREA)
  • Software Systems (AREA)
  • Measurement Of Radiation (AREA)

Abstract

The present invention discloses a kind of Reservoir type division methods and system based on multiple information.This method includes:The data sensitive to Reservoir type are obtained from the log data of multiple sample points;The data sensitive to Reservoir type include neutron data, resistivity, porosity, interval transit time, natural gamma and compensation density;Obtain the actual reservoir type that each sample point that artificial reservoir division obtains is carried out to each sample point;The data sensitive to Reservoir type of each sample point are inputted into deep neural network, adjusting the structural parameters of neural network makes neural network export corresponding Reservoir type, to be trained to deep neural network;Trained deep neural network is used to realize the division to Reservoir type according to the data sensitive to Reservoir type of actual measurement.Method and system disclosed by the invention can improve the precision of reservoir division.

Description

A kind of Reservoir type division methods and system based on multiple information
Technical field
The present invention relates to field of petroleum geophysical exploration, are drawn more particularly to a kind of Reservoir type based on multiple information Divide method and system.
Background technology
Reservoir type division is one of important content of reservoir description, is the key that carry out oil field development Potentials work Make.Generally use shale content, permeability etc. carry out Reservoir type with the closely related parameter of reservoir characteristic in actual production Division, wherein shale content can reflect that reservoir lithology and physical property characteristic, permeability can characterize fluid in rock interior stream Dynamic complexity.But the parameters such as the shale content divided for Reservoir type and permeability can not be directly from the measurement number of well logging It directly acquires in, but is calculated using cross-plot or empirical equation to obtain based on practical logging curve, these methods Accuracy depends on the selection of aspect of model parameter, Regional Geological Characteristics and layered characteristic, is differentiated by expert artificial with experience etc. Factor is affected.Since each log parameter has it to be specifically applicable in stratum, and can be complete without which kind of log parameter It is suitable for all stratum entirely, limited well logging information is often only utilized when carrying out Reservoir type and dividing, leads to reservoir division Precision it is not high.
Invention content
The object of the present invention is to provide a kind of Reservoir type division methods and system based on multiple information improve reservoir and draw The precision divided.
To achieve the above object, the present invention provides following schemes:
A kind of Reservoir type division methods based on multiple information, including:
The data sensitive to Reservoir type are obtained from the log data of multiple sample points;It is described sensitive to Reservoir type Data include neutron data, resistivity, porosity, interval transit time, natural gamma and compensation density;
Obtain the actual reservoir type that each sample point that artificial reservoir division obtains is carried out to each sample point;
The data sensitive to Reservoir type of each sample point are inputted into deep neural network, adjust the structure of neural network Parameter makes neural network export corresponding Reservoir type, to be trained to the deep neural network;It is trained described Deep neural network is used to realize the division to Reservoir type according to the data sensitive to Reservoir type of actual measurement.
Optionally, described that the data sensitive to Reservoir type of each sample point are inputted into deep neural network, adjustment god Structural parameters through network make neural network export corresponding Reservoir type, to be trained to the deep neural network, It specifically includes:
Feature is carried out to data sensitive to Reservoir type described in each respectively using cross-plot and kernel density estimation method Statistics, determines the mean value and variance of each data sensitive to Reservoir type, obtains the sample average and sample of each data This variance;
Using the sample average and sample variance of each data to each data sensitive to Reservoir type into rower Standardization obtains standardized data;
Using the standardized data of each type of each sample point as the input of deep neural network, with linear Activation primitive of the rectification function as the deep neural network makes by adjusting the structural parameters of the deep neural network Difference between the Reservoir type data and corresponding actual reservoir type of deep neural network output preset range it It is interior, to complete the training of deep neural network.
Optionally, the process divided to Reservoir type according to the data sensitive to Reservoir type of actual measurement includes:
The data sensitive to Reservoir type for obtaining actual measurement, obtain measured data;
The mean value and variance for calculating each measured data obtain actual measurement mean value and the actual measurement side of each measured data Difference;
The mean value threshold range and variance threshold values of each data are calculated using the sample average and sample variance of each data Range;
Judge whether the actual measurement mean value of each measured data is located in corresponding mean value threshold range and each surveys number According to actual measurement variance whether be located at corresponding variance threshold values within the scope of, obtain the first judging result;
If first judging result indicates that the actual measurement mean value of any one measured data is located at corresponding mean value threshold value model Except enclosing and/or actual measurement variance is located at outside corresponding variance threshold values range, then resurveys the data of corresponding types;
If first judging result indicates that the actual measurement mean value of each measured data is located in corresponding mean value threshold range And actual measurement variance is located within the scope of corresponding variance threshold values, then is standardized to each measured data, obtains standard actual measurement number According to;
Using the standard measured data of each type as the input of deep neural network, the output of neural network is obtained Actual measurement Reservoir type.
Invention additionally discloses a kind of Reservoir type dividing system based on multiple information, including:
Sample data acquisition module, for obtaining the number sensitive to Reservoir type from the log data of multiple sample points According to;The data sensitive to Reservoir type include neutron data, resistivity, porosity, interval transit time, natural gamma and compensation Density;
Actual reservoir type acquisition module carries out each sample that artificial reservoir division obtains for obtaining to each sample point The actual reservoir type of this point;
Neural metwork training module, for the data sensitive to Reservoir type of each sample point to be inputted depth nerve net Network, adjusting the structural parameters of neural network makes neural network export corresponding Reservoir type, to the deep neural network It is trained;The trained deep neural network is used to be realized to reservoir according to the data sensitive to Reservoir type of actual measurement The division of type.
Optionally, the neural metwork training module, specifically includes:
Sample data mean value and variance computing unit, for utilizing cross-plot and kernel density estimation method respectively to each institute It states the data sensitive to Reservoir type and carries out characteristic statistics, determine mean value and the side of each data sensitive to Reservoir type Difference obtains the sample average and sample variance of each data;
Sample data Standardisation Cell, sample average and sample variance for utilizing each data store up each described pair The data of channel type sensitivity are standardized, and obtain standardized data;
Training unit, for using the standardized data of each type of each sample point as deep neural network Input, using line rectification function as the activation primitive of the deep neural network, by adjusting the deep neural network Structural parameters, make the difference between the Reservoir type data and corresponding actual reservoir type of deep neural network output Within preset range, to complete the training of deep neural network.
Optionally, the Reservoir type dividing system further includes reservoir division module, is used for according to actual measurement to reservoir class The data of type sensitivity divide Reservoir type;The reservoir division module, specifically includes:
Measured data acquiring unit, the data sensitive to Reservoir type for obtaining actual measurement, obtains measured data;
Measured data mean value and variance computing unit, mean value and variance for calculating each measured data, obtain The actual measurement mean value and actual measurement variance of each measured data;
Threshold range computing unit, for calculating the equal of each data using the sample average and sample variance of each data It is worth threshold range and variance threshold values range;
Judging unit, for judge each measured data actual measurement mean value whether be located at corresponding mean value threshold range in And whether the actual measurement variance of each measured data is located within the scope of corresponding variance threshold values, obtains judging result;
Data adopt unit again, are corresponded to if indicating that the actual measurement mean value of any one measured data is located at for the judging result Mean value threshold range except and/or actual measurement variance be located at outside corresponding variance threshold values range, then resurvey corresponding types Data;
Measured data Standardisation Cell, if for the judging result indicate each measured data actual measurement mean value be located at pair In the mean value threshold range answered and actual measurement variance is located within the scope of corresponding variance threshold values, then carries out standard to each measured data Change, obtains standard measured data;
Reservoir division unit, for using the standard measured data of each type as the input of deep neural network, Obtain the actual measurement Reservoir type of the output of neural network.
According to specific embodiment provided by the invention, the invention discloses following technique effects:It is disclosed by the invention to be based on The Reservoir type division methods and system of multiple information, by combining neutron data, resistivity, porosity, interval transit time, nature A variety of data such as gamma and compensation density establish answering between a variety of data and Reservoir type using the study of deep neural network Miscellaneous non-linear relation realizes that the automation and intelligentification of Reservoir type divides.The present invention is divided by automation and intelligentification, is avoided The interference of human factor improves the precision of Reservoir type division, while utilizing a variety of data, realizes melting for multiple information It closes, further improves reservoir division precision.
Description of the drawings
It in order to more clearly explain the embodiment of the invention or the technical proposal in the existing technology, below will be to institute in embodiment Attached drawing to be used is needed to be briefly described, it should be apparent that, the accompanying drawings in the following description is only some implementations of the present invention Example, for those of ordinary skill in the art, without having to pay creative labor, can also be according to these attached drawings Obtain other attached drawings.
Fig. 1 is that the present invention is based on the method flow diagrams of the Reservoir type division methods embodiment of multiple information;
Fig. 2 is effective distribution figure of different log parameters in different type reservoir;
Fig. 3 is the network structure of deep neural network of the present invention;
Fig. 4 is the function curve schematic diagram that object function gradually becomes flat in deep neural network training process;
Fig. 5 is the reservoir division result figure that the Reservoir type division methods using the present invention based on multiple information obtain;
Fig. 6 is that the present invention is based on the system construction drawings of the Reservoir type dividing system embodiment of multiple information.
Specific implementation mode
Following will be combined with the drawings in the embodiments of the present invention, and technical solution in the embodiment of the present invention carries out clear, complete Site preparation describes, it is clear that described embodiments are only a part of the embodiments of the present invention, instead of all the embodiments.It is based on Embodiment in the present invention, it is obtained by those of ordinary skill in the art without making creative efforts every other Embodiment shall fall within the protection scope of the present invention.
The purpose of the present invention is making full use of the polynary well logging informations such as sound electric discharge to carry out the direct division of Reservoir type, use Well logging multiple information in actual production data establishes Reservoir type sample database, and polynary well logging is built using deep learning network Complex nonlinear relationship between information and Reservoir type, the comprehensive utilization of the polynary well logging information such as development sound electric discharge, so as to The direct division of Reservoir type in enough real logging datas, avoid calculating indirectly after the parameters such as shale content, permeability again into Row Reservoir type existing uncertainty when dividing, the influence for avoiding human factor from dividing Reservoir type promote Reservoir type The automation of prediction and intelligent level.
In order to make the foregoing objectives, features and advantages of the present invention clearer and more comprehensible, below in conjunction with the accompanying drawings and specific real Applying mode, the present invention is described in further detail.
Fig. 1 is that the present invention is based on the method flow diagrams of the Reservoir type division methods embodiment of multiple information.
Referring to Fig. 1, the Reservoir type division methods based on multiple information are somebody's turn to do, including:
Step 101:The data sensitive to Reservoir type are obtained from the log data of multiple sample points;It is described to reservoir class The data of type sensitivity include neutron data, resistivity, porosity, interval transit time, natural gamma and compensation density.
By to studying a variety of different types of well loggings such as sound wave, radioactivity, resistivity in the existing well-log information in work area Information is screened, and the logs such as natural gamma, resistivity, natural potential, the neutron sensitive to lithology are sorted out, to infiltration The various related logging curves such as neutron, density, the sound wave of rate sensitivity.The present invention in view of dividing Reservoir type in actual production When Main Basiss shale content and Permeability Parameters, choose neutron data, resistivity, porosity, interval transit time, natural gamma, The multiple information source that 6 kinds of log parameters such as compensation density are divided as Reservoir type.It can also further increase on this basis Other parameter, but on condition that increased parameter has Effective Numerical on each Reservoir type, then rejecting hole collapse is tight The data located again and the abnormal numerical value caused by logger or measurement error, for structure Reservoir type numeralization sample database Basic data basis is provided.
Step 102:Obtain the actual reservoir class that each sample point that artificial reservoir division obtains is carried out to each sample point Type.
To 6 kinds of neutron data of selection, resistivity, porosity, interval transit time, natural gamma, compensation density log parameters It carries out building library, carries out environmental correction for the feature of each well data, and unit is all unified to SI units, it is ensured that no The data that same time, different instruments, different operation personnel's measurement obtain can be efficiently used.On this basis according to existing Shale content, Permeability Parameters and formation testing result at different depth data sample carry out Reservoir type artificial division, By the data of each sample point be respectively divided into non-reservoir, I class reservoir (reservoir of oil and gas of relative ideal, potentiality to be exploited are big) and The three types such as II class reservoir (possible reservoir of oil and gas, have certain potentiality to be exploited), and use respectively digital 0,1,2 as Label, it is established that the Reservoir type numeralization sample database of polynary well logging information at each sample point.The non-reservoir contains for shale Larger reservoir is measured, substantially without potentiality to be exploited;The I class reservoir is the reservoir of oil and gas of relative ideal, and potentiality to be exploited is big;It is described II class reservoir is possible reservoir of oil and gas, has certain potentiality to be exploited.
Step 103:The data sensitive to Reservoir type of each sample point are inputted into deep neural network, adjust nerve net The structural parameters of network make neural network export corresponding Reservoir type, to be trained to the deep neural network;Training The good deep neural network is used to realize the division to Reservoir type according to the data sensitive to Reservoir type of actual measurement.
The step 103 specifically includes:
Feature is carried out to data sensitive to Reservoir type described in each respectively using cross-plot and kernel density estimation method Statistics, determines the mean value and variance of each data sensitive to Reservoir type, obtains the sample average and sample of each data This variance;
Using the sample average and sample variance of each data to each data sensitive to Reservoir type into rower Standardization obtains standardized data;
Using the standardized data of each type of each sample point as the input of deep neural network, with linear Activation primitive of the rectification function as the deep neural network makes by adjusting the structural parameters of the deep neural network Difference between the Reservoir type data and corresponding actual reservoir type of deep neural network output preset range it It is interior, to complete the training of deep neural network.
The step 103 specifically can be used following specific implementation mode and realize:
After setting up Reservoir type sample database, it is necessary to carry out characteristic statistics and standard to the multiple parameters in sample database Change, it is intended to ensure that the distribution of each parameter in sample database is uniformly reasonable, while be the pre- of follow-up real data Reservoir type It surveys and parameter foundation is provided.The present invention carries out the work of sample database characteristic statistics using cross-plot and Density Estimator figure method joint (cross-plot is exactly that each two parameter all does intersection analysis with the distribution characteristics of statistical data respectively, and cuclear density method is in probability theory In be used for estimating the density function of parameter, to obtain following required statistical nature), obtain each parameter in sample database Mean μiAnd variances sigmai(i be data class number, share neutron data, resistivity, porosity, interval transit time, natural gamma, 6 kinds of log parameters of compensation density, therefore i=1,2 ... ..., 6), specify effective point of different log parameters in different type reservoir Cloth range, Fig. 2 are effective distribution figure of different log parameters in different type reservoir.The distribution is used to carry out in fact Judge whether measured data can be used for judging Reservoir type when survey.Then according to the Density Estimator peak of each parameter Value and bandwidth determine each log parameter for discrimination possessed by Reservoir type classification.Especially work as parameter distribution range It then needs to continue additional sample library information when uneven, Reservoir type sample number deficiency, i.e. sample number is unsatisfactory for training condition also It needs to continue to collect more more fully data, the rational relation between structure Reservoir type and multiple information lays the foundation.
In view of the influence due to factors such as construction team, instrumentation and testings in actual production data, need to polynary ginseng Number information is standardized, and optimizes the data structure of Reservoir type sample database.The present invention is using following formula to multiple information library Data are standardized, it is ensured that the data fit mean value after standardizing is 0, the normal distribution that variance is 1, i.e.,:
Wherein μiFor corresponding log data mean value, σ in sample databaseiFor corresponding sample data variance, i is data class It numbers (i=1,2 ... ..., 6), j represents different sample point (j=1,2 ... ..., n (n is sample point sum)), xijRepresent mark Parameter before standardization, ZijRepresent the parameter after standardization.
After standardization is completed, the structure carried out to neural network is needed to be defined.In projected depth neural network When need for Reservoir type sample database feature carry out Precise spraying, specify the number of plies of deep neural network, every layer of nerve The network architecture parameters such as first number and activation primitive.Fig. 3 is the network structure of deep neural network of the present invention.Referring to Fig. 3, the present invention constructs a deep neural network model for including 5 hidden layers, wherein the neuron number of each hidden layer Mesh is respectively 20,40,80,40,20.Line rectification function (Relu functions) is used in network design is used as activation primitive, To which overfitting problem be effectively relieved and accelerate network convergence process, and Softmax layers are added to before output layer.The network Structure matrix form can be expressed as:
g(W(1)a(1)+b(1))=a(2)
g(W(2)a(2)+b(2))=a(3)
...
g(W(n-1)a(n-1)+b(n-1))=y
Wherein, g (x) indicates the operational form of activation primitive, and the activation primitive that the present invention uses is ReLu function, i.e. g (x) =max (0, x), n indicate the number of plies (n=6, i.e. the hidden layer number of plies add the sum of output layer in the present invention) of deep neural network, b(i)Indicate bias term, wherein a(i)(i=1 ..., n-1) be middle layer feature vector (as i=1, a(1)Sample used by representing Polynary well logging information in this library), W(i)Indicate the weight matrix for being mapped to i+1 layer in network structure from i-th layer, y representative samples The Reservoir type marked in this library.
After network structure definition is completed, depth is input to using all data in multiple information Reservoir type sample database It is trained in degree neural network, setting models parameter (the weighted value W of network random first when training(i)With bias term b(i)), model parameter numerical value is adjusted by iterating, after ensuring the multiple information in sample database by being exported after the network Reservoir type y' and sample database in Reservoir type y between minimum, the specific object function expression that reaches object function error Form is as follows:
The present invention uses regularization method to prevent over-fitting, i.e., in each repetitive exercise in the training process A part of neuron is set to be not involved in training at random, to reduce the relation of interdependence between neuron, to improve neural network Generalization ability;The optimization algorithm that declines based on gradient is used to update the model parameter in trained iterative process, i.e. basis Object function calculates the gradient of each parameter in network model, is updated to network parameter using the Grad, and set The maximum iteration of model parameter be 5000 times, when training reach maximum iteration or object function in an iterative process by Grade when becoming flat can deconditioning, Fig. 4 is the letter that object function gradually becomes flat in deep neural network training process Number curve schematic diagram, it can be seen that the slope of object function is gradually lower and represents object function and gradually become flat.When up to It is the network model parameter W that can save training and obtain to this condition(i)And b(i)(i=1 ..., n-1).
After training is completed, so that it may to carry out the division of Reservoir type using training result.
The process divided to Reservoir type according to the data sensitive to Reservoir type of actual measurement includes:
The data sensitive to Reservoir type for obtaining actual measurement, obtain measured data;
The mean value and variance for calculating each measured data obtain actual measurement mean value and the actual measurement side of each measured data Difference;
The mean value threshold range and variance threshold values of each data are calculated using the sample average and sample variance of each data Range;
Judge whether the actual measurement mean value of each measured data is located in corresponding mean value threshold range and each surveys number According to actual measurement variance whether be located at corresponding variance threshold values within the scope of, obtain the first judging result;
If first judging result indicates that the actual measurement mean value of any one measured data is located at corresponding mean value threshold value model Except enclosing and/or actual measurement variance is located at outside corresponding variance threshold values range, then resurveys the data of corresponding types;
If first judging result indicates that the actual measurement mean value of each measured data is located in corresponding mean value threshold range And actual measurement variance is located within the scope of corresponding variance threshold values, then is standardized to each measured data, obtains standard actual measurement number According to;
Using the standard measured data of each type as the input of deep neural network, the output of neural network is obtained Actual measurement Reservoir type.
The division that the mode of being implemented as follows carries out Reservoir type specifically may be used:
Filter out the multiple information of needs from numerous log datas first when carrying out real data Reservoir type and dividing (i.e. 6 kinds of neutron data, resistivity, porosity, interval transit time, natural gamma, compensation density data) and data outliers are rejected, Calculate the average value mu ' and variances sigma ' of each multiple information in real data, and by average value mu ' and variances sigma ' and present invention foundation Sample database in multiple information scope of statistics be compared, in the comparison use following standard:
μ × (1- α) < μ ' < μ × (1+ α)
σ × (1-2 α) < σ ' < σ × (1+2 α)
Wherein, α is the confidence level parameter of prediction data, and the present invention sets α=0.1.When real data feature is unsatisfactory for When formula, the distribution characteristics of the multivariate data and the information in sample database that show Reservoir type to be divided has big difference, and is unsatisfactory for storing up The primary condition that channel type divides, whether reasonable, if unreasonable need to resurvey data if needing to reexamine the data.Work as input When the statistical nature of real data meets above formula, then the data can be divided directly using this method to carry out Reservoir type.So Afterwards, the multiple information treated in prediction data is standardized, and the network model parameter W and b that are obtained using training are to reality The polynary well logging information of input is carried out Reservoir type and is divided, to obtain Reservoir type division result that the data correspond to and defeated Go out into figure.
Fig. 5 is the reservoir division result figure that the Reservoir type division methods using the present invention based on multiple information obtain.
Referring to Fig. 5, the Reservoir type using the present invention based on multiple information divides the precision that can improve reservoir division.
Fig. 6 is that the present invention is based on the system construction drawings of the Reservoir type dividing system embodiment of multiple information.
Referring to Fig. 6, it is somebody's turn to do the Reservoir type dividing system based on multiple information, including:
Sample data acquisition module 601, it is sensitive to Reservoir type for being obtained from the log data of multiple sample points Data;The data sensitive to Reservoir type include neutron data, resistivity, porosity, interval transit time, natural gamma and benefit Repay density;
Actual reservoir type acquisition module 602, for obtain to each sample point carry out artificial reservoir division obtain it is each The actual reservoir type of a sample point;
Neural metwork training module 603, for the data input depth sensitive to Reservoir type of each sample point is refreshing Through network, adjusting the structural parameters of neural network makes neural network export corresponding Reservoir type, to depth nerve Network is trained;The trained deep neural network is used for the data realization pair sensitive to Reservoir type according to actual measurement The division of Reservoir type.
The neural metwork training module 603, specifically includes:
Sample data mean value and variance computing unit, for utilizing cross-plot and kernel density estimation method respectively to each institute It states the data sensitive to Reservoir type and carries out characteristic statistics, determine mean value and the side of each data sensitive to Reservoir type Difference obtains the sample average and sample variance of each data;
Sample data Standardisation Cell, sample average and sample variance for utilizing each data store up each described pair The data of channel type sensitivity are standardized, and obtain standardized data;
Training unit, for using the standardized data of each type of each sample point as deep neural network Input, using line rectification function as the activation primitive of the deep neural network, by adjusting the deep neural network Structural parameters, make the difference between the Reservoir type data and corresponding actual reservoir type of deep neural network output Within preset range, to complete the training of deep neural network.
Reservoir division module 604, for being divided to Reservoir type according to the data sensitive to Reservoir type of actual measurement; The reservoir division module 604, specifically includes:
Measured data acquiring unit, the data sensitive to Reservoir type for obtaining actual measurement, obtains measured data;
Measured data mean value and variance computing unit, mean value and variance for calculating each measured data, obtain The actual measurement mean value and actual measurement variance of each measured data;
Threshold range computing unit, for calculating the equal of each data using the sample average and sample variance of each data It is worth threshold range and variance threshold values range;
Judging unit, for judge each measured data actual measurement mean value whether be located at corresponding mean value threshold range in And whether the actual measurement variance of each measured data is located within the scope of corresponding variance threshold values, obtains judging result;
Data adopt unit again, are corresponded to if indicating that the actual measurement mean value of any one measured data is located at for the judging result Mean value threshold range except and/or actual measurement variance be located at outside corresponding variance threshold values range, then resurvey corresponding types Data;
Measured data Standardisation Cell, if for the judging result indicate each measured data actual measurement mean value be located at pair In the mean value threshold range answered and actual measurement variance is located within the scope of corresponding variance threshold values, then carries out standard to each measured data Change, obtains standard measured data;
Reservoir division unit, for using the standard measured data of each type as the input of deep neural network, Obtain the actual measurement Reservoir type of the output of neural network.
According to specific embodiment provided by the invention, the invention discloses following technique effects:It is disclosed by the invention to be based on The Reservoir type division methods and system of multiple information, by combining neutron data, resistivity, porosity, interval transit time, nature A variety of data such as gamma and compensation density establish answering between a variety of data and Reservoir type using the study of deep neural network Miscellaneous non-linear relation realizes that the automation and intelligentification of Reservoir type divides.The present invention is divided by automation and intelligentification, is avoided The interference of human factor improves the precision of Reservoir type division, while utilizing a variety of data, realizes melting for multiple information It closes, further improves reservoir division precision.
For system disclosed in embodiment, since it is corresponded to the methods disclosed in the examples, so the ratio of description Relatively simple, reference may be made to the description of the method.
Principle and implementation of the present invention are described for specific case used herein, and above example is said The bright method and its core concept for being merely used to help understand the present invention;Meanwhile for those of ordinary skill in the art, foundation The thought of the present invention, there will be changes in the specific implementation manner and application range.In conclusion the content of the present specification is not It is interpreted as limitation of the present invention.

Claims (6)

1. a kind of Reservoir type division methods based on multiple information, which is characterized in that including:
The data sensitive to Reservoir type are obtained from the log data of multiple sample points;The data sensitive to Reservoir type Including neutron data, resistivity, porosity, interval transit time, natural gamma and compensation density;
Obtain the actual reservoir type that each sample point that artificial reservoir division obtains is carried out to each sample point;
The data sensitive to Reservoir type of each sample point are inputted into deep neural network, adjust the structural parameters of neural network Neural network is set to export corresponding Reservoir type, to be trained to the deep neural network;The trained depth Neural network is used to realize the division to Reservoir type according to the data sensitive to Reservoir type of actual measurement.
2. the Reservoir type division methods according to claim 1 based on multiple information, which is characterized in that it is described will be each The data sensitive to Reservoir type of sample point input deep neural network, and adjusting the structural parameters of neural network makes neural network Corresponding Reservoir type is exported, to be trained to the deep neural network, is specifically included:
Characteristic statistics are carried out to data sensitive to Reservoir type described in each respectively using cross-plot and kernel density estimation method, The mean value and variance for determining each data sensitive to Reservoir type, obtain sample average and the sample side of each data Difference;
Each data sensitive to Reservoir type are standardized using the sample average and sample variance of each data, Obtain standardized data;
Using the standardized data of each type of each sample point as the input of deep neural network, with line rectification Activation primitive of the function as the deep neural network makes described by adjusting the structural parameters of the deep neural network Deep neural network output Reservoir type data and corresponding actual reservoir type between difference within preset range, from And complete the training of deep neural network.
3. the Reservoir type division methods according to claim 2 based on multiple information, which is characterized in that according to actual measurement The process that the data sensitive to Reservoir type divide Reservoir type includes:
The data sensitive to Reservoir type for obtaining actual measurement, obtain measured data;
The mean value and variance for calculating each measured data obtain the actual measurement mean value and actual measurement variance of each measured data;
The mean value threshold range and variance threshold values range of each data are calculated using the sample average and sample variance of each data;
Judge whether the actual measurement mean value of each measured data is located in corresponding mean value threshold range and each measured data It surveys whether variance is located within the scope of corresponding variance threshold values, obtains the first judging result;
If first judging result indicate the actual measurement mean value of any one measured data be located at corresponding mean value threshold range it Outer and/or actual measurement variance is located at outside corresponding variance threshold values range, then resurveys the data of corresponding types;
If it is in corresponding mean value threshold range and real that first judging result indicates that the actual measurement mean value of each measured data is located at It surveys variance to be located within the scope of corresponding variance threshold values, then each measured data is standardized, obtains standard measured data;
Using the standard measured data of each type as the input of deep neural network, the reality of the output of neural network is obtained Survey Reservoir type.
4. a kind of Reservoir type dividing system based on multiple information, which is characterized in that including:
Sample data acquisition module, for obtaining the data sensitive to Reservoir type from the log data of multiple sample points;Institute It includes neutron data, resistivity, porosity, interval transit time, natural gamma and compensation density to state the data sensitive to Reservoir type;
Actual reservoir type acquisition module carries out each sample point that artificial reservoir division obtains for obtaining to each sample point Actual reservoir type;
Neural metwork training module, for the data sensitive to Reservoir type of each sample point to be inputted deep neural network, The structural parameters of adjustment neural network make neural network export corresponding Reservoir type, to be carried out to the deep neural network Training;The trained deep neural network is used to be realized to Reservoir type according to the data sensitive to Reservoir type of actual measurement Division.
5. the Reservoir type dividing system according to claim 4 based on multiple information, which is characterized in that the nerve net Network training module, specifically includes:
Sample data mean value and variance computing unit, for utilizing cross-plot and kernel density estimation method respectively to right described in each The data of Reservoir type sensitivity carry out characteristic statistics, determine the mean value and variance of each data sensitive to Reservoir type, Obtain the sample average and sample variance of each data;
Sample data Standardisation Cell, for the sample average and sample variance using each data to each described to reservoir class The data of type sensitivity are standardized, and obtain standardized data;
Training unit, for using the standardized data of each type of each sample point as the defeated of deep neural network Enter, using line rectification function as the activation primitive of the deep neural network, by adjusting the knot of the deep neural network Structure parameter makes the difference between the Reservoir type data and corresponding actual reservoir type of the deep neural network output pre- Within the scope of if, to complete the training of deep neural network.
6. the Reservoir type dividing system according to claim 5 based on multiple information, which is characterized in that further include reservoir Division module, for being divided to Reservoir type according to the data sensitive to Reservoir type of actual measurement;The reservoir division mould Block specifically includes:
Measured data acquiring unit, the data sensitive to Reservoir type for obtaining actual measurement, obtains measured data;
Measured data mean value and variance computing unit, mean value and variance for calculating each measured data, obtain each The actual measurement mean value and actual measurement variance of measured data;
Threshold range computing unit, the mean value threshold for calculating each data using the sample average and sample variance of each data It is worth range and variance threshold values range;
Judging unit, for judging it is in corresponding mean value threshold range and every whether the actual measurement mean value of each measured data is located at Whether the actual measurement variance of kind measured data is located within the scope of corresponding variance threshold values, obtains judging result;
Data adopt unit again, if it is corresponding equal to indicate that the actual measurement mean value of any one measured data is located at for the judging result Except value threshold range and/or actual measurement variance is located at outside corresponding variance threshold values range, then resurveys the data of corresponding types;
Measured data Standardisation Cell, if it is corresponding to indicate that the actual measurement mean value of each measured data is located at for the judging result In mean value threshold range and actual measurement variance is located within the scope of corresponding variance threshold values, then is standardized to each measured data, Obtain standard measured data;
Reservoir division unit, for using the standard measured data of each type as the input of deep neural network, obtaining The actual measurement Reservoir type of the output of neural network.
CN201810397193.7A 2018-04-28 2018-04-28 A kind of Reservoir type division methods and system based on multiple information Active CN108596780B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201810397193.7A CN108596780B (en) 2018-04-28 2018-04-28 A kind of Reservoir type division methods and system based on multiple information

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201810397193.7A CN108596780B (en) 2018-04-28 2018-04-28 A kind of Reservoir type division methods and system based on multiple information

Publications (2)

Publication Number Publication Date
CN108596780A true CN108596780A (en) 2018-09-28
CN108596780B CN108596780B (en) 2019-05-21

Family

ID=63610592

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201810397193.7A Active CN108596780B (en) 2018-04-28 2018-04-28 A kind of Reservoir type division methods and system based on multiple information

Country Status (1)

Country Link
CN (1) CN108596780B (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111474585A (en) * 2020-03-16 2020-07-31 中国石油天然气集团有限公司 Gas layer identification method based on deep learning and rock mechanical parameters
CN111694856A (en) * 2020-06-11 2020-09-22 中国石油大学(北京) Intelligent prediction method and device for reservoir sensitivity
WO2020222064A1 (en) * 2019-05-01 2020-11-05 International Business Machines Corporation Dnn training with asymmetric rpu devices
CN112253087A (en) * 2020-10-20 2021-01-22 河南理工大学 Biological disturbance reservoir physical property calculation method based on multi-source logging data
CN113176608A (en) * 2021-04-27 2021-07-27 中国石油大学(华东) DAS six-component seismic signal decoupling and recovery method for spirally-wound optical fiber
CN114909125A (en) * 2022-06-08 2022-08-16 中国地质大学(北京) Text type rock debris logging data numeralization and stratum automatic comparison method and device
CN116757096A (en) * 2023-08-16 2023-09-15 中国石油天然气集团有限公司 Determination method, device, equipment and medium for deep, thin and compact sandstone gas reservoir development well

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1704770A (en) * 2004-05-25 2005-12-07 张向军 Dual fuzzy neural network reservoir bed oil gas prediction technique
CN1743872A (en) * 2005-09-26 2006-03-08 大庆油田有限责任公司 Multi-parameter dimension-reducing oil-gas-water-layer identifying method
US20120071333A1 (en) * 2010-07-26 2012-03-22 Tampere University Of Technology Uses of systems with degrees of freedom poised between fully quantum and fully classical states
CN103306671A (en) * 2013-05-17 2013-09-18 中国石油天然气股份有限公司 Four-quadrant reservoir type identification method and system
CN103603794A (en) * 2013-11-19 2014-02-26 中国石油天然气集团公司 Method and device for adaptive fault diagnosis of gas storage injection-production compressor unit
CN106290105A (en) * 2016-07-20 2017-01-04 中国石油大学(华东) A kind of carbonate reservoir dissolution porosity volume content Forecasting Methodology

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1704770A (en) * 2004-05-25 2005-12-07 张向军 Dual fuzzy neural network reservoir bed oil gas prediction technique
CN1743872A (en) * 2005-09-26 2006-03-08 大庆油田有限责任公司 Multi-parameter dimension-reducing oil-gas-water-layer identifying method
US20120071333A1 (en) * 2010-07-26 2012-03-22 Tampere University Of Technology Uses of systems with degrees of freedom poised between fully quantum and fully classical states
CN103306671A (en) * 2013-05-17 2013-09-18 中国石油天然气股份有限公司 Four-quadrant reservoir type identification method and system
CN103603794A (en) * 2013-11-19 2014-02-26 中国石油天然气集团公司 Method and device for adaptive fault diagnosis of gas storage injection-production compressor unit
CN106290105A (en) * 2016-07-20 2017-01-04 中国石油大学(华东) A kind of carbonate reservoir dissolution porosity volume content Forecasting Methodology

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
安鹏等: "基于深度学习的储层分类方法研究与应用", 《CPS/SEG北京2018国际地球物理会议暨展览电子论文集》 *
安鹏等: "深度学习方法在泥质含量预测中的应用", 《CPS/SEG北京2018国际地球物理会议暨展览电子论文集》 *

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2598856B (en) * 2019-05-01 2022-12-07 Ibm DNN training with asymmetric RPU devices
WO2020222064A1 (en) * 2019-05-01 2020-11-05 International Business Machines Corporation Dnn training with asymmetric rpu devices
CN113728338A (en) * 2019-05-01 2021-11-30 国际商业机器公司 DNN training with asymmetric RPU devices
GB2598856A (en) * 2019-05-01 2022-03-16 Ibm DNN training with asymmetric RPU devices
US11562249B2 (en) 2019-05-01 2023-01-24 International Business Machines Corporation DNN training with asymmetric RPU devices
CN111474585A (en) * 2020-03-16 2020-07-31 中国石油天然气集团有限公司 Gas layer identification method based on deep learning and rock mechanical parameters
CN111694856A (en) * 2020-06-11 2020-09-22 中国石油大学(北京) Intelligent prediction method and device for reservoir sensitivity
CN111694856B (en) * 2020-06-11 2021-03-12 中国石油大学(北京) Intelligent prediction method and device for reservoir sensitivity
CN112253087A (en) * 2020-10-20 2021-01-22 河南理工大学 Biological disturbance reservoir physical property calculation method based on multi-source logging data
CN113176608A (en) * 2021-04-27 2021-07-27 中国石油大学(华东) DAS six-component seismic signal decoupling and recovery method for spirally-wound optical fiber
CN114909125A (en) * 2022-06-08 2022-08-16 中国地质大学(北京) Text type rock debris logging data numeralization and stratum automatic comparison method and device
CN116757096A (en) * 2023-08-16 2023-09-15 中国石油天然气集团有限公司 Determination method, device, equipment and medium for deep, thin and compact sandstone gas reservoir development well
CN116757096B (en) * 2023-08-16 2024-04-05 中国石油天然气集团有限公司 Determination method, device, equipment and medium for deep, thin and compact sandstone gas reservoir development well

Also Published As

Publication number Publication date
CN108596780B (en) 2019-05-21

Similar Documents

Publication Publication Date Title
CN108596780B (en) A kind of Reservoir type division methods and system based on multiple information
CN110852527B (en) Reservoir physical property parameter prediction method combining deep learning
Coppola Jr et al. Artificial neural network approach for predicting transient water levels in a multilayered groundwater system under variable state, pumping, and climate conditions
US7970593B2 (en) Method for gradually modifying lithologic facies proportions of a geological model
US20030078901A1 (en) Neural network based predication and optimization for groundwater / surface water system
CN108897977A (en) A kind of uncertain attribution method of Runoff Evolution based on the simulation of big Regional Hydrologic
US8818781B2 (en) Method for operating an oil pool based on a reservoir model gradually deformed by means of cosimulations
Wong et al. Multiple permeability predictions using an observational learning algorithm
CN104063626A (en) Predication method of outer-source entrapment fullness degree
Soto et al. Permeability prediction using hydraulic flow units and hybrid soft computing systems
Wang et al. Improved permeability prediction based on the feature engineering of petrophysics and fuzzy logic analysis in low porosity–permeability reservoir
CN114862035A (en) Combined bay water temperature prediction method based on transfer learning
CN104948177B (en) A kind of PRODUCTION FORECASTING METHODS based on rice liquid production index statistical nature rule
CN107290800A (en) Log Forecasting Methodology before practical brill
CN114114414A (en) Artificial intelligence prediction method for 'dessert' information of shale reservoir
NO20200978A1 (en) Optimized methodology for automatic history matching of a petroleum reservoir model with ensemble kalman filter
Soto B et al. Improved Reservoir permeability Models from Flow Units and Soft Computing Techniques: A Case Study, Suria and Reforma-Libertad Fields, Colombia
CN108765562B (en) Oil-gas productivity evaluation method based on three-dimensional geological model
CN109655394B (en) Nuclear magnetic resonance T2 spectrum permeability calculation method under constraint of throat structure parameters
US20220390633A1 (en) Fast, deep learning based, evaluation of physical parameters in the subsurface
Ma et al. Uncertainty Analysis
CN117390970B (en) Oil gas storage quantification method considering multi-element driving prediction
Khodabakhshi et al. Inference of Global Reservoir Connectivity from Static Pressure Data with Fast Coarse-Scale Simulation Models
CN110261906B (en) Multi-parameter lithologic information fusion reservoir prediction method
An et al. Reservoir classification with multi well log parameters based on deep learning technology

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant