CN108595894B - 一种锻模模腔表面曲面仿形多层覆层结构及其设计方法 - Google Patents

一种锻模模腔表面曲面仿形多层覆层结构及其设计方法 Download PDF

Info

Publication number
CN108595894B
CN108595894B CN201810470699.6A CN201810470699A CN108595894B CN 108595894 B CN108595894 B CN 108595894B CN 201810470699 A CN201810470699 A CN 201810470699A CN 108595894 B CN108595894 B CN 108595894B
Authority
CN
China
Prior art keywords
forging
coating
layer
die cavity
stage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201810470699.6A
Other languages
English (en)
Other versions
CN108595894A (zh
Inventor
张运军
陈天赋
晏洋
邓庆文
郑大定
刘胜春
武建祥
左长兵
严树峰
刘宏扬
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hubei Tri Ring Forging Co Ltd
Original Assignee
Hubei Tri Ring Forging Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hubei Tri Ring Forging Co Ltd filed Critical Hubei Tri Ring Forging Co Ltd
Priority to CN201810470699.6A priority Critical patent/CN108595894B/zh
Publication of CN108595894A publication Critical patent/CN108595894A/zh
Application granted granted Critical
Publication of CN108595894B publication Critical patent/CN108595894B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F30/00Computer-aided design [CAD]
    • G06F30/20Design optimisation, verification or simulation
    • G06F30/23Design optimisation, verification or simulation using finite element methods [FEM] or finite difference methods [FDM]

Abstract

本发明涉及锻造模具技术领域,尤其涉及一种锻模模腔表面曲面仿形多层覆层结构及其设计方法,其在锻模型腔内设置有紧密接合的三层覆层,三层覆层从外至内依次为表层、中层、底层,表层的外表面与锻造型腔相同,三层覆层的内表面为锻造型腔的仿形曲面,三层覆层的硬度和弹性模量从外之内依次降低,通过上述技术方案,覆层(尤其是表层)的硬度更高,从而提高了模腔表面的耐疲劳度;其次,多层覆层的结构使得依靠中层和底层提高模具吸收锻造冲击力的能力,从而提高模具的使用寿命,减小其多次使用后的变形量,设计方法考虑了不同锻造过程对覆层的影响,可以容易地确定每层覆层的厚度,从而得到覆层的具体结构,该结构具有更长的使用寿命。

Description

一种锻模模腔表面曲面仿形多层覆层结构及其设计方法
技术领域
本发明涉及锻造模具技术领域,特别是涉及一种锻模模腔表面曲面仿形多层覆层结构及其设计方法。
背景技术
锻造是机械产品生产的常用技术之一,锻造使用的模具是产品成型的关键,由于锻造时重复对模具的强力锻打,一定时间后,模具型腔会出现不同程度的几何尺寸扩大,甚至在某些部位产生裂纹,需要对其进行修复。为了提高锻模的使用寿命,现有技术中在制作模具和修复模具时,采用增材焊接的方式在模腔内使用特种金属或进行表面处理,从而增加其耐疲劳性。
现有技术中模腔内一般只使用一种材料,主要为了增加耐疲劳度,但是如何吸收锻造时巨大的冲击力,使得锻模在反复多次使用后不易发生变形,从而保证锻造精度,是现有技术不能解决的。
发明内容
本发明的目的在于针对现有技术的不足,而提供一种锻模模腔表面曲面仿形多层覆层结构及其设计方法,其通过多层与模腔仿形的覆层结构,吸收锻造冲击力,提高模具的使用寿命。
本发明解决其技术问题所采用的技术方案是:一种锻模模腔表面曲面仿形多层覆层结构,锻模型腔内设置有紧密接合的三层覆层,三层覆层从外至内依次为表层、中层、底层,表层的外表面与锻造型腔相同,三层覆层的内表面为锻造型腔的仿形曲面,三层覆层的硬度和弹性模量从外之内依次降低。
优选的,所述三层覆层为金属覆层,三种不同的金属分别为通过焊接形成的三个不同厚度的覆层。
优选的,表层采用高硬度焊材,硬度HRC47-52,中层采用中等硬度焊材,硬度HRC42-47,底层采用低硬度焊材,硬度HRC37-42。
优选的,表层的厚度为三层覆层总厚度的20%,中层的厚度为三层覆层总厚度的30%,底层的厚度为三层覆层总厚度的50%。
本发明还提供锻模模腔表面曲面仿形多层覆层结构的设计方法,该方法为:建立空间坐标系,进行有限元分析模拟锻造过程,得到锻造过程中模锻力F(t)随时间变化的曲线,锻造过程中,t1时刻金属开始变形到t2时刻金属基本充满型腔为第一阶段,t2时刻至t3时刻金属完全充满型腔为第二阶段,t3时刻至t4锻造结束为第三阶段,模腔表面曲面为Σ1:z1=f1(x,y),Σ1上任一点M(x,y,z);
第一阶段中,毛坯表面曲面为Σ2:z2(t)=f2(x(t),y(t)),在t0时刻,Σ2、Σ1重合部分的方程式为:f1(x,y)- f2(x(t0),y(t0))=0,其在XOY平面上投影面积为S(t0),M(x,y,z)点受到的Z轴方向的应力为P(x(t0),y(t0),z(t0))= F(t0)/S(t0),对Σ1上任一点M(x,y,z),可以得到该位置在第一阶段开始被挤压的时刻t0 、P(x(t0),y(t0),z(t0));
第二阶段中,t4时刻的模锻力为F(t4),Σ1在XOY平面上投影面积为S(t4),M(x,y,z)点受到的Z轴方向的应力为P(x(t4),y(t4),z(t4))= F(t4)/S(t4);
覆层厚度的计算公式为:
D= a*P(x(t0),y(t0),z(t0))*(t2-t0)+b* P(x(t4),y(t4),z(t4))*( t4- t3)+c
通过该公式依次计算每一覆层的厚度,即得到覆层结构。
本发明的有益效果是:一种锻模模腔表面曲面仿形多层覆层结构及其设计方法,本发明通过上述技术方案,由于模腔内设置的与模腔仿形的覆层结构,覆层(尤其是表层)的硬度更高,从而提高了模腔表面的耐疲劳度;其次,多层覆层的结构使得依靠中层和底层提高模具吸收锻造冲击力的能力,从而提高模具的使用寿命,减小其多次使用后的变形量,该设计方案考虑不同锻造过程对覆层的影响,可以容易地确定每层覆层的厚度,从而得到覆层的具体结构,该结构具有更长的使用寿命。
附图说明
图1是本发明的锻模模腔表面曲面仿形多层覆层结构的示意图。
图2是闭式锻造过程中锻造力的变化曲线图。
附图标记说明:
1——表层 2——中层
3——底层 4——模具
5——毛坯。
具体实施方式
下面结合附图和具体实施例对本发明作进一步详细的说明,并不是把本发明的实施范围限制于此。
一种锻模模腔表面曲面仿形多层覆层结构及其设计方法。
实施例一。
如图1所示,本实施例的一种锻模模腔表面曲面仿形多层覆层结构,锻模型腔内设置有紧密接合的三层覆层,三层覆层从外至内依次为表层、中层、底层,表层的外表面与锻造型腔相同,三层覆层的内表面为锻造型腔的仿形曲面,三层覆层的硬度和弹性模量从外之内依次降低。本发明的模腔内设置的与模腔仿形的覆层结构,从而从覆层到模具形成一个硬度梯度,覆层(尤其是表层)的硬度更高,从而提高了模腔表面的耐疲劳度;其次,多层覆层的结构使得依靠中层和底层提高模具吸收锻造冲击力的能力,从而提高模具的使用寿命,减小其多次使用后的变形量。
进一步的,所述三层覆层为金属覆层,三种不同的金属分别为通过焊接形成的三个不同厚度的覆层,且该覆层焊接时直径焊接形成曲面,而不是按照水平方向逐层堆焊。
进一步的,表层采用高硬度焊材,硬度HRC47-52,中层采用中等硬度焊材,硬度HRC42-47,底层采用低硬度焊材,硬度HRC37-42。
实施例二。
本实施例与实施例一相比,提供一种简化设计的锻模模腔表面曲面仿形多层覆层结构,即三层覆层的结构采用简单的数学比例,表层的厚度为三层覆层总厚度的20%,中层的厚度为三层覆层总厚度的30%,底层的厚度为三层覆层总厚度的50%,该方案是一种简化处理,可以得到比现有技术较好的一种实施方式,但不是最佳的实施方式。
实施例三。
本实施例提供一种锻模模腔表面曲面仿形多层覆层结构的设计方法,该方法为:建立空间坐标系,进行有限元分析模拟锻造过程,得到锻造过程中模锻力F(t)随时间变化的曲线,如图2所示,图中包括制坯阶段和终锻阶段,两个阶段使用的模具不同,本发明的设计方法针对终锻阶段(有预锻阶段的也可以用于预锻阶段)。
锻造过程中,t1时刻金属开始变形到t2时刻金属基本充满型腔为第一阶段,t2时刻至t3时刻金属完全充满型腔为第二阶段,t3时刻至t4锻造结束为第三阶段,模腔表面曲面为Σ1:z1=f1(x,y),Σ1上任一点M(x,y,z);
第一阶段中,毛坯表面曲面为Σ2:z2(t)=f2(x(t),y(t)),在t0时刻,Σ2、Σ1重合部分的方程式为:f1(x,y)- f2(x(t0),y(t0))=0,其在XOY平面上投影面积为S(t0),M(x,y,z)点受到的Z轴方向的应力为P(x(t0),y(t0),z(t0))= F(t0)/S(t0),对Σ1上任一点M(x,y,z),可以得到该位置在第一阶段开始被挤压的时刻t0 、P(x(t0),y(t0),z(t0));
第二阶段中,t4时刻的模锻力为F(t4),Σ1在XOY平面上投影面积为S(t4),M(x,y,z)点受到的Z轴方向的应力为P(x(t4),y(t4),z(t4))= F(t4)/S(t4);
覆层厚度的计算公式为:
D= a*P(x(t0),y(t0),z(t0))*(t2-t0)+b* P(x(t4),y(t4),z(t4))*( t4- t3)+c
在闭式锻造过程中,可以分为上述三个阶段,第一阶段基本成形,金属开始变形到基本充满模腔;第二阶段由第一阶段结束到金属完全充满模腔;第三阶段坯料已基本成为不变形的刚体,在极大的模压力下,端部的金属产生流向形成飞边。上述公式中的三部分分别对应三个阶段对应覆层的作用力影响。
通过该公式依次计算每一覆层的厚度,即得到整个覆层的结构。
通过该设计方法,可以考虑不同锻造过程对覆层的影响,从而容易地确定每层覆层的厚度,从而得到覆层的具体结构,该结构具有更长的使用寿命。
该设计方法不需要反复多次试验,对于同一种覆层金属,可以选用一种规则的型腔,在一定锻造力下进行有限元分析和试验,选择模腔内受力相同的多个点,使用不同的覆层厚度,使用一定次数后检测覆层的变形情况,取变形最小的厚度按上述公式进行拟合曲线得到上述公式中的参数a、b、c,然后代入上述公式中,使用有限元分析,可以得到需要锻造的工件在锻造时各个点处的覆层厚度,避免了对每一个新的工件都需要重复进行试验,节省了大量的试验成本和时间。
最后应当说明的是,以上实施例仅用以说明本发明的技术方案,而非对本发明保护范围的限制,尽管参照较佳实施例对本发明作了详细地说明,本领域的普通技术人员应当理解,可以对本发明的技术方案进行修改或者等同替换,而不脱离本发明技术方案的实质和范围。

Claims (1)

1.一种锻模模腔表面曲面仿形多层覆层结构的设计方法,其特征在于:锻模型腔内设置有紧密接合的三层覆层,三层覆层从外至内依次为表层、中层、底层,表层的外表面与锻造型腔相同,三层覆层的内表面为锻造型腔的仿形曲面,三层覆层的硬度和弹性模量从外之内依次降低,建立空间坐标系,进行有限元分析模拟锻造过程,得到锻造过程中模锻力F(t)随时间变化的曲线,锻造过程中,t1时刻金属开始变形到t2时刻金属充满型腔为第一阶段,t2时刻至t3时刻金属完全充满型腔为第二阶段,t3时刻至t4锻造结束为第三阶段,模腔表面曲面为Σ1:z1=f1(x,y),Σ1上任一点M(x,y,z);
第一阶段中,毛坯表面曲面为Σ2:z2(t)=f2(x(t),y(t)),在t0时刻,Σ2、Σ1重合部分的方程式为:f1(x,y)- f2(x(t0),y(t0))=0,该重复部分在XOY平面上投影面积为S(t0),M(x,y,z)点受到的Z轴方向的应力为P(x(t0),y(t0),z(t0))= F(t0)/S(t0),对Σ1上任一点M(x,y,z),得到该位置在第一阶段开始被挤压的时刻t0 、P(x(t0),y(t0),z(t0));
第二阶段中,t4时刻的模锻力为F(t4),Σ1在XOY平面上投影面积为S(t4),M(x,y,z)点受到的Z轴方向的应力为P(x(t4),y(t4),z(t4))= F(t4)/S(t4);
覆层厚度的计算公式为:
D= a*P(x(t0),y(t0),z(t0))*(t2-t0)+b* P(x(t4),y(t4),z(t4))*( t4- t3)+c
通过该公式依次计算每一覆层的厚度,即得到覆层结构,
其中,a、b、c的取值方式为:对于同一种覆层金属,选用一种规则的型腔,在一定锻造力下进行有限元分析和试验,选择模腔内受力相同的多个点,使用不同的覆层厚度,使用一定次数后检测覆层的变形情况,取变形最小的厚度按上述覆层厚度的计算公式进行拟合曲线得到参数a、b、c,然后代入上述公式中。
CN201810470699.6A 2018-05-17 2018-05-17 一种锻模模腔表面曲面仿形多层覆层结构及其设计方法 Active CN108595894B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201810470699.6A CN108595894B (zh) 2018-05-17 2018-05-17 一种锻模模腔表面曲面仿形多层覆层结构及其设计方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201810470699.6A CN108595894B (zh) 2018-05-17 2018-05-17 一种锻模模腔表面曲面仿形多层覆层结构及其设计方法

Publications (2)

Publication Number Publication Date
CN108595894A CN108595894A (zh) 2018-09-28
CN108595894B true CN108595894B (zh) 2024-02-13

Family

ID=63631455

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201810470699.6A Active CN108595894B (zh) 2018-05-17 2018-05-17 一种锻模模腔表面曲面仿形多层覆层结构及其设计方法

Country Status (1)

Country Link
CN (1) CN108595894B (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108607945B (zh) * 2018-05-17 2023-05-09 湖北三环锻造有限公司 3d焊材打印模具多层覆层结构及覆层厚度确定方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008080352A (ja) * 2006-09-27 2008-04-10 Hitachi Metals Ltd 耐久性に優れた硬質材料被覆塑性加工用金型
CN103182618A (zh) * 2011-12-28 2013-07-03 湖北三环车桥有限公司 辊锻模具堆焊制造修复工艺
CN106964950A (zh) * 2017-04-28 2017-07-21 马鞍山市中冶机械有限责任公司 一种开式型腔锻模工作面的加工工艺
CN208421828U (zh) * 2018-05-17 2019-01-22 湖北三环锻造有限公司 一种锻模模腔表面曲面仿形多层覆层结构

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008080352A (ja) * 2006-09-27 2008-04-10 Hitachi Metals Ltd 耐久性に優れた硬質材料被覆塑性加工用金型
CN103182618A (zh) * 2011-12-28 2013-07-03 湖北三环车桥有限公司 辊锻模具堆焊制造修复工艺
CN106964950A (zh) * 2017-04-28 2017-07-21 马鞍山市中冶机械有限责任公司 一种开式型腔锻模工作面的加工工艺
CN208421828U (zh) * 2018-05-17 2019-01-22 湖北三环锻造有限公司 一种锻模模腔表面曲面仿形多层覆层结构

Also Published As

Publication number Publication date
CN108595894A (zh) 2018-09-28

Similar Documents

Publication Publication Date Title
JP4478200B2 (ja) ハイドロフォーム加工方法及びハイドロフォーム加工部品
Alaswad et al. Tube hydroforming process: A reference guide
Altan et al. Numerical process simulation for tool and process design in bulk metal forming
Ghaei et al. Die design for the radial forging process using 3D FEM
CN108273880B (zh) 一种球形轻量化壁板成形方法
Xu et al. Numerical and experimental study on large deformation of thin-walled tube through hydroforging process
CN108595894B (zh) 一种锻模模腔表面曲面仿形多层覆层结构及其设计方法
CN208421828U (zh) 一种锻模模腔表面曲面仿形多层覆层结构
Mori et al. Improvement of formability by oscillation of internal pressure in pulsating hydroforming of tube
CN111001700A (zh) 一种航空发动机异形封严环3d液压成形方法
Wang et al. Analysis and avoidance of flow-induced defects in meso-forming process: simulation and experiment
Psyk et al. Electromagnetic joining of hybrid tubes for hydroforming
CN103920787B (zh) 一种管件扭力梁的液压成形方法
CN108607945B (zh) 3d焊材打印模具多层覆层结构及覆层厚度确定方法
JP2008149343A (ja) チューブハイドロフォーミング方法
Fang et al. Finite element simulation and experiment verification of rolling forming for the truck wheel rim
Han et al. Thickness improvement in non-homogeneous tube hydroforming of a rectangular component by contact sequence
Hwang et al. Study of large-expansion-ratio tube hydroforming with movable dies
CN208866330U (zh) 3d焊材打印模具多层覆层结构
Milutinovic et al. Theoretical and experimental investigation of cold hobbing processes in cases of cone-like punch manufacturing
CN110756714A (zh) 一种叶片高速挤压成型模具
KR101454791B1 (ko) 다중관을 이용한 중공형 액압 성형품 제조 방법
Delić et al. Stability analysis of steel welded tubes forming process using numerical simulations
CN110695118B (zh) 一种降低高速挤压成形叶片残余应力的方法
Nosrati et al. Feasibility study of cam-shaped tube production using elastomeric tool versus fluid forming method

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant