CN108594407A - Pick-up lens - Google Patents
Pick-up lens Download PDFInfo
- Publication number
- CN108594407A CN108594407A CN201810667822.3A CN201810667822A CN108594407A CN 108594407 A CN108594407 A CN 108594407A CN 201810667822 A CN201810667822 A CN 201810667822A CN 108594407 A CN108594407 A CN 108594407A
- Authority
- CN
- China
- Prior art keywords
- lens
- pick
- image side
- object side
- optical axis
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Classifications
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B13/00—Optical objectives specially designed for the purposes specified below
- G02B13/001—Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras
- G02B13/0015—Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras characterised by the lens design
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B13/00—Optical objectives specially designed for the purposes specified below
- G02B13/001—Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras
- G02B13/0015—Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras characterised by the lens design
- G02B13/002—Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras characterised by the lens design having at least one aspherical surface
- G02B13/0045—Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras characterised by the lens design having at least one aspherical surface having five or more lenses
Landscapes
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Optics & Photonics (AREA)
- Lenses (AREA)
Abstract
This application discloses a kind of pick-up lens, which includes sequentially by object side to image side along optical axis:First lens, the second lens, the third lens, the 4th lens, the 5th lens, the 6th lens, the 7th lens and the 8th lens.Wherein, it is convex surface that the first lens, which have positive light coke, object side,;It is convex surface that second lens, which have focal power, image side surface,;The third lens have focal power;4th lens have focal power;5th lens have focal power;6th lens have focal power;7th lens have focal power;And the 8th lens have focal power, object side be convex surface, image side surface is concave surface.The half ImgH of the object side of first lens to the electronics light sensitive component effective pixel area diagonal line length of distance TTL and pick-up lens of the imaging surface on optical axis of pick-up lens meets TTL/ImgH < 1.65.
Description
Technical field
This application involves a kind of pick-up lens, more specifically, this application involves it is a kind of include eight lens pick-up lens.
Background technology
With the high speed development of the portable electronic products such as such as smart mobile phone, market is to the shooting effect entrained by mobile phone
Requirement it is higher and higher.The common photosensitive element of optical system, such as charge coupled device (CCD), complementary metal-oxide half
The imaging sensors such as conductor (CMOS) also develop towards big image planes, high pixel orientation.
Currently, conventional optical system can not take into account the requirements such as high pixelation, large aperture and small size simultaneously.To ensure
The shooting effect that handheld camera can obtain the small depth of field, actual situation combines, and clear shooting, configuration can be realized under dark decreased light
Optical system on portable electronic product needs have the characteristics that large aperture, good image quality and high-resolution.
Invention content
This application provides the camera lens that can at least solve or partly solve above-mentioned at least one disadvantage in the prior art
Head.
On the one hand, this application provides such a pick-up lens, which can sequentially be wrapped along optical axis by object side to image side
It includes:First lens, the second lens, the third lens, the 4th lens, the 5th lens, the 6th lens, the 7th lens and the 8th lens.
Wherein, the first lens can have positive light coke, and object side can be convex surface;Second lens have positive light coke or negative power,
Its image side surface can be convex surface;The third lens have positive light coke or negative power;4th lens have positive light coke or negative light focus
Degree;5th lens have positive light coke or negative power;6th lens have positive light coke or negative power;7th lens have
Positive light coke or negative power;It can be convex surface that 8th lens, which have positive light coke or negative power, object side, and image side surface can be
Concave surface.Wherein, the object side of the first lens to distance TTL and pick-up lens of the imaging surface on optical axis of pick-up lens electronics
The half ImgH of light sensitive component effective pixel area diagonal line length can meet TTL/ImgH < 1.65.
In one embodiment, total effective focal length f of pick-up lens and the Entry pupil diameters EPD of pick-up lens can meet f/
EPD < 1.9.
In one embodiment, total effective focal length f of pick-up lens and the effective focal length f1 of the first lens can meet f/
F1 < 0.7.
In one embodiment, the second lens can be with positive light coke and the first lens effective focal length f1 and the
The effective focal length f2 of two lens can meet 1 < f1/f2 < 1.5.
In one embodiment, the third lens can the curvature with the image side surface of positive light coke and the third lens half
The diameter R6 and effective focal length f3 of the third lens can meet -0.6 < R6/f3 < 0.
In one embodiment, the song of the image side surface of the radius of curvature R 15 and the 8th lens of the object side of the 8th lens
Rate radius R16 can meet 1 < R15/R16 < 1.5.
In one embodiment, the effective radius DT11 of object side of the first lens and having for the image side surface of the 8th lens
Effect radius DT82 can meet 0.3 < DT11/DT82 < 0.8.
In one embodiment, the effective radius DT11 of object side of the first lens and having for the image side surface of the 5th lens
Effect radius DT52 can meet 0.9 < DT11/DT52 < 1.3.
In one embodiment, the intersection point of the 4th lens image side surface and optical axis to the 4th lens image side surface effective radius
Distance SAG42 and the 4th lens can meet 0.7 < SAG42/CT4 < in the center thickness CT4 on optical axis on axis between vertex
1.3。
In one embodiment, the object side of the 6th lens can be convex surface, and image side surface can be concave surface.
In one embodiment, the intersection point of the 6th lens image side surface and optical axis to the 6th lens image side surface effective radius
Distance SAG62 and the 6th lens can meet -0.5 < SAG62/CT6 < in the center thickness CT6 on optical axis on axis between vertex
0。
In one embodiment, the critical point of the 6th lens image side surface to optical axis vertical range YC62 and the 6th lens
The effective radius DT62 of image side surface can meet 0.4 < YC62/DT62 < 0.9.
In one embodiment, spacing distance T34 and the 4th lens on optical axis of the third lens and the 4th lens and
Spacing distance T45 of 5th lens on optical axis can meet 0 < T34 × 10/T45 < 0.5.
In one embodiment, the 5th lens on optical axis center thickness CT5, the 6th lens are in the center on optical axis
Thickness CT6, the 7th lens on optical axis center thickness CT7 and the 8th lens can meet 0.5 in the center thickness CT8 on optical axis
< (CT5+CT6)/(CT7+CT8) < 1.
In one embodiment, the first lens to the 8th lens edge thickness on being parallel to optical axis direction respectively
Summation ∑ ET and the first lens to the 8th lens can meet 0.6 < ∑s ET/ respectively at the summation ∑ CT of the center thickness on optical axis
∑CT≤1。
In one embodiment, the song of the image side surface of the radius of curvature R 11 and the 6th lens of the object side of the 6th lens
Rate radius R12 can meet 0 < | (R11-R12)/(R11+R12) | < 0.3.
In one embodiment, the song of the image side surface of the radius of curvature R 11 and the 7th lens of the object side of the 6th lens
Rate radius R14 can meet 0.7 < R11/R14 < 1.2.
On the other hand, present invention also provides such a pick-up lens, the camera lens along optical axis by object side to image side sequentially
It may include:First lens, the second lens, the third lens, the 4th lens, the 5th lens, the 6th lens, the 7th lens and the 8th are thoroughly
Mirror.Wherein, the first lens can have positive light coke, and object side can be convex surface;Second lens can have positive light coke, image side
Face can be convex surface;The third lens have positive light coke or negative power;4th lens have positive light coke or negative power;5th
Lens have positive light coke or negative power;6th lens have positive light coke or negative power;7th lens have positive light focus
Degree or negative power;8th lens, which have positive light coke or negative power, object side, to be convex surface, and image side surface can be concave surface.
Wherein, the effective focal length f1 of the first lens and effective focal length f2 of the second lens can meet 1 < f1/f2 < 1.5.
Another aspect, present invention also provides such a pick-up lens, the camera lens along optical axis by object side to image side sequentially
It may include:First lens, the second lens, the third lens, the 4th lens, the 5th lens, the 6th lens, the 7th lens and the 8th are thoroughly
Mirror.Wherein, the first lens can have positive light coke, and object side can be convex surface;Second lens have positive light coke or negative light focus
Degree, image side surface can be convex surface;The third lens have positive light coke or negative power;4th lens have positive light coke or negative light
Focal power;5th lens have positive light coke or negative power;6th lens have positive light coke or negative power;7th lens have
There are positive light coke or negative power;8th lens, which have positive light coke or negative power, object side, to be convex surface, and image side surface can
For concave surface.Wherein, the object side of the first lens to distance TTL and pick-up lens of the imaging surface on optical axis of pick-up lens electricity
The half ImgH of sub-light sensing unit effective pixel area diagonal line length can meet TTL/ImgH < 1.65.
Another aspect, present invention also provides such a pick-up lens, the camera lens along optical axis by object side to image side sequentially
It may include:First lens, the second lens, the third lens, the 4th lens, the 5th lens, the 6th lens, the 7th lens and the 8th are thoroughly
Mirror.Wherein, the first lens can have positive light coke, and object side can be convex surface;Second lens have positive light coke or negative light focus
Degree, image side surface can be convex surface;The third lens have positive light coke or negative power;4th lens have positive light coke or negative light
Focal power;5th lens have positive light coke or negative power;6th lens have positive light coke or negative power;7th lens have
There are positive light coke or negative power;8th lens, which have positive light coke or negative power, object side, to be convex surface, and image side surface can
For concave surface.Wherein, the third lens can be with the radius of curvature R 6 and the third lens of the image side surface of positive light coke and the third lens
Effective focal length f3 can meet -0.6 < R6/f3 < 0.
Another aspect, present invention also provides such a pick-up lens, the camera lens along optical axis by object side to image side sequentially
It may include:First lens, the second lens, the third lens, the 4th lens, the 5th lens, the 6th lens, the 7th lens and the 8th are thoroughly
Mirror.Wherein, the first lens can have positive light coke, and object side can be convex surface;Second lens have positive light coke or negative light focus
Degree, image side surface can be convex surface;The third lens have positive light coke or negative power;4th lens have positive light coke or negative light
Focal power;5th lens have positive light coke or negative power;6th lens have positive light coke or negative power;7th lens have
There are positive light coke or negative power;8th lens, which have positive light coke or negative power, object side, to be convex surface, and image side surface can
For concave surface.Wherein, the radius of curvature R 15 and the radius of curvature R 16 of the image side surface of the 8th lens of the object side of the 8th lens can expire
1 < R15/R16 < 1.5 of foot.
Another aspect, present invention also provides such a pick-up lens, the camera lens along optical axis by object side to image side sequentially
It may include:First lens, the second lens, the third lens, the 4th lens, the 5th lens, the 6th lens, the 7th lens and the 8th are thoroughly
Mirror.Wherein, the first lens can have positive light coke, and object side can be convex surface;Second lens have positive light coke or negative light focus
Degree, image side surface can be convex surface;The third lens have positive light coke or negative power;4th lens have positive light coke or negative light
Focal power;5th lens have positive light coke or negative power;6th lens have positive light coke or negative power;7th lens have
There are positive light coke or negative power;8th lens, which have positive light coke or negative power, object side, to be convex surface, and image side surface can
For concave surface.Wherein, the effective radius DT52 of the image side surface of the effective radius DT11 and the 5th lens of the object side of the first lens can
Meet 0.9 < DT11/DT52 < 1.3.
Another aspect, present invention also provides such a pick-up lens, the camera lens along optical axis by object side to image side sequentially
It may include:First lens, the second lens, the third lens, the 4th lens, the 5th lens, the 6th lens, the 7th lens and the 8th are thoroughly
Mirror.Wherein, the first lens can have positive light coke, and object side can be convex surface;Second lens have positive light coke or negative light focus
Degree, image side surface can be convex surface;The third lens have positive light coke or negative power;4th lens have positive light coke or negative light
Focal power;5th lens have positive light coke or negative power;6th lens have positive light coke or negative power;7th lens have
There are positive light coke or negative power;8th lens, which have positive light coke or negative power, object side, to be convex surface, and image side surface can
For concave surface.Wherein, the intersection point of the 4th lens image side surface and optical axis is to the axis between the effective radius vertex of the 4th lens image side surface
On distance SAG42 and the 4th lens can meet 0.7 < SAG42/CT4 < 1.3 in the center thickness CT4 on optical axis.
Another aspect, present invention also provides such a pick-up lens, the camera lens along optical axis by object side to image side sequentially
It may include:First lens, the second lens, the third lens, the 4th lens, the 5th lens, the 6th lens, the 7th lens and the 8th are thoroughly
Mirror.Wherein, the first lens can have positive light coke, and object side can be convex surface;Second lens have positive light coke or negative light focus
Degree, image side surface can be convex surface;The third lens have positive light coke or negative power;4th lens have positive light coke or negative light
Focal power;5th lens have positive light coke or negative power;6th lens have positive light coke or negative power;7th lens have
There are positive light coke or negative power;8th lens, which have positive light coke or negative power, object side, to be convex surface, and image side surface can
For concave surface.Wherein, the intersection point of the 6th lens image side surface and optical axis is to the axis between the effective radius vertex of the 6th lens image side surface
On distance SAG62 and the 6th lens can meet -0.5 < SAG62/CT6 < 0 in the center thickness CT6 on optical axis.
Another aspect, present invention also provides such a pick-up lens, the camera lens along optical axis by object side to image side sequentially
It may include:First lens, the second lens, the third lens, the 4th lens, the 5th lens, the 6th lens, the 7th lens and the 8th are thoroughly
Mirror.Wherein, the first lens can have positive light coke, and object side can be convex surface;Second lens have positive light coke or negative light focus
Degree, image side surface can be convex surface;The third lens have positive light coke or negative power;4th lens have positive light coke or negative light
Focal power;5th lens have positive light coke or negative power;6th lens have positive light coke or negative power;7th lens have
There are positive light coke or negative power;8th lens, which have positive light coke or negative power, object side, to be convex surface, and image side surface can
For concave surface.Wherein, the critical point of the 6th lens image side surface to optical axis vertical range YC62 and the 6th lens image side surface it is effective
Radius DT62 can meet 0.4 < YC62/DT62 < 0.9.
Another aspect, present invention also provides such a pick-up lens, the camera lens along optical axis by object side to image side sequentially
It may include:First lens, the second lens, the third lens, the 4th lens, the 5th lens, the 6th lens, the 7th lens and the 8th are thoroughly
Mirror.Wherein, the first lens can have positive light coke, and object side can be convex surface;Second lens have positive light coke or negative light focus
Degree, image side surface can be convex surface;The third lens have positive light coke or negative power;4th lens have positive light coke or negative light
Focal power;5th lens have positive light coke or negative power;6th lens have positive light coke or negative power;7th lens have
There are positive light coke or negative power;8th lens, which have positive light coke or negative power, object side, to be convex surface, and image side surface can
For concave surface.Wherein, the spacing distance T34 and the 4th lens and the 5th lens of the third lens and the 4th lens on optical axis are in optical axis
On spacing distance T45 can meet 0 < T34 × 10/T45 < 0.5.
Another aspect, present invention also provides such a pick-up lens, the camera lens along optical axis by object side to image side sequentially
It may include:First lens, the second lens, the third lens, the 4th lens, the 5th lens, the 6th lens, the 7th lens and the 8th are thoroughly
Mirror.Wherein, the first lens can have positive light coke, and object side can be convex surface;Second lens have positive light coke or negative light focus
Degree, image side surface can be convex surface;The third lens have positive light coke or negative power;4th lens have positive light coke or negative light
Focal power;5th lens have positive light coke or negative power;6th lens have positive light coke or negative power;7th lens have
There are positive light coke or negative power;8th lens, which have positive light coke or negative power, object side, to be convex surface, and image side surface can
For concave surface.Wherein, the first lens to the 8th lens summation ∑ ET of the edge thickness on being parallel to optical axis direction and respectively
One lens to the 8th lens can meet 0.6 < ∑ ET/ ∑s CT≤1 respectively at the summation ∑ CT of the center thickness on optical axis.
Another aspect, present invention also provides such a pick-up lens, the camera lens along optical axis by object side to image side sequentially
It may include:First lens, the second lens, the third lens, the 4th lens, the 5th lens, the 6th lens, the 7th lens and the 8th are thoroughly
Mirror.Wherein, the first lens can have positive light coke, and object side can be convex surface;Second lens have positive light coke or negative light focus
Degree, image side surface can be convex surface;The third lens have positive light coke or negative power;4th lens have positive light coke or negative light
Focal power;5th lens have positive light coke or negative power;6th lens have positive light coke or negative power;7th lens have
There are positive light coke or negative power;8th lens, which have positive light coke or negative power, object side, to be convex surface, and image side surface can
For concave surface.Wherein, the radius of curvature R 11 and the radius of curvature R 14 of the image side surface of the 7th lens of the object side of the 6th lens can expire
0.7 < R11/R14 < 1.2 of foot.
The application uses eight lens, passes through each power of lens of reasonable distribution, the center thickness of face type, each lens
And spacing etc. on the axis between each lens so that above-mentioned pick-up lens has large aperture, high image quality, miniaturization and good
At least one advantageous effects such as good processability.
Description of the drawings
In conjunction with attached drawing, by the detailed description of following non-limiting embodiment, other features of the application, purpose and excellent
Point will be apparent.In the accompanying drawings:
Fig. 1 shows the structural schematic diagram of the pick-up lens according to the embodiment of the present application 1;
Fig. 2A to Fig. 2 E respectively illustrates chromatic curve on the axis of the pick-up lens of embodiment 1, astigmatism curve, distortion song
Line, ratio chromatism, curve and relative illumination curve;
Fig. 3 shows the structural schematic diagram of the pick-up lens according to the embodiment of the present application 2;
Fig. 4 A to Fig. 4 E respectively illustrate chromatic curve on the axis of the pick-up lens of embodiment 2, astigmatism curve, distortion song
Line, ratio chromatism, curve and relative illumination curve;
Fig. 5 shows the structural schematic diagram of the pick-up lens according to the embodiment of the present application 3;
Fig. 6 A to Fig. 6 E respectively illustrate chromatic curve on the axis of the pick-up lens of embodiment 3, astigmatism curve, distortion song
Line, ratio chromatism, curve and relative illumination curve;
Fig. 7 shows the structural schematic diagram of the pick-up lens according to the embodiment of the present application 4;
Fig. 8 A to Fig. 8 E respectively illustrate chromatic curve on the axis of the pick-up lens of embodiment 4, astigmatism curve, distortion song
Line, ratio chromatism, curve and relative illumination curve;
Fig. 9 shows the structural schematic diagram of the pick-up lens according to the embodiment of the present application 5;
Figure 10 A to Figure 10 E respectively illustrate chromatic curve on the axis of the pick-up lens of embodiment 5, astigmatism curve, distortion song
Line, ratio chromatism, curve and relative illumination curve;
Figure 11 shows the structural schematic diagram of the pick-up lens according to the embodiment of the present application 6;
Figure 12 A to Figure 12 E respectively illustrate chromatic curve on the axis of the pick-up lens of embodiment 6, astigmatism curve, distortion song
Line, ratio chromatism, curve and relative illumination curve;
Figure 13 shows the structural schematic diagram of the pick-up lens according to the embodiment of the present application 7;
Figure 14 A to Figure 14 E respectively illustrate chromatic curve on the axis of the pick-up lens of embodiment 7, astigmatism curve, distortion song
Line, ratio chromatism, curve and relative illumination curve.
Figure 15 diagrammatically illustrates the critical point L of the 6th lens image side surface and from critical point L to the vertical range of optical axis
YC62。
Specific implementation mode
Refer to the attached drawing is made more detailed description by the application in order to better understand to the various aspects of the application.It answers
Understand, the description of the only illustrative embodiments to the application is described in detail in these, rather than limits the application in any way
Range.In the specification, the identical element of identical reference numbers.It includes associated institute to state "and/or"
Any and all combinations of one or more of list of items.
It should be noted that in the present specification, first, second, third, etc. statement is only used for a feature and another spy
Sign distinguishes, and does not indicate that any restrictions to feature.Therefore, without departing substantially from teachings of the present application, hereinafter
The first lens discussed are also known as the second lens or the third lens.
In the accompanying drawings, for convenience of description, thickness, the size and shape of lens are slightly exaggerated.Specifically, attached drawing
Shown in spherical surface or aspherical shape be illustrated by way of example.That is, spherical surface or aspherical shape are not limited to attached drawing
Shown in spherical surface or aspherical shape.Attached drawing is merely illustrative and and non-critical drawn to scale.
Herein, near axis area refers to the region near optical axis.If lens surface is convex surface and does not define convex surface position
When setting, then it represents that the lens surface is convex surface near axis area is less than;If lens surface is concave surface and does not define the concave surface position
When, then it represents that the lens surface is concave surface near axis area is less than.In each lens, the surface of closer object side is known as the lens
Object side;In each lens, the surface of closer image side is known as the image side surface of the lens.
It will also be appreciated that term " comprising ", " including ", " having ", "comprising" and/or " including ", when in this theory
It indicates there is stated feature, element and/or component when being used in bright book, but does not preclude the presence or addition of one or more
Other feature, component, assembly unit and/or combination thereof.In addition, ought the statement of such as at least one of " ... " appear in institute
When after the list of row feature, entire listed feature is modified, rather than modifies the individual component in list.In addition, when describing this
When the embodiment of application, " one or more embodiments of the application " are indicated using "available".Also, term " illustrative "
It is intended to refer to example or illustration.
Unless otherwise defined, otherwise all terms (including technical terms and scientific words) used herein all have with
The application one skilled in the art's is generally understood identical meaning.It will also be appreciated that term (such as in everyday words
Term defined in allusion quotation) it should be interpreted as having the meaning consistent with their meanings in the context of the relevant technologies, and
It will not be explained with idealization or excessively formal sense, unless clear herein so limit.
It should be noted that in the absence of conflict, the features in the embodiments and the embodiments of the present application can phase
Mutually combination.The application is described in detail below with reference to the accompanying drawings and in conjunction with the embodiments.
The feature of the application, principle and other aspects are described in detail below.
It may include such as eight lens with focal power according to the pick-up lens of the application illustrative embodiments, that is,
First lens, the second lens, the third lens, the 4th lens, the 5th lens, the 6th lens, the 7th lens and the 8th lens.This eight
Piece lens by object side to image side sequential, can have airspace along optical axis between each adjacent lens.
In the exemplary embodiment, the first lens can have positive light coke, and object side can be convex surface;Second lens have
It can be convex surface to have positive light coke or negative power, image side surface;The third lens have positive light coke or negative power;4th lens
With positive light coke or negative power;5th lens have positive light coke or negative power;6th lens have positive light coke or
Negative power;7th lens have positive light coke or negative power;8th lens have positive light coke or negative power, object side
Face can be convex surface, and image side surface can be concave surface.
In the exemplary embodiment, the second lens can have positive light coke, and object side can be convex surface.
In the exemplary embodiment, the object side of the 4th lens can be convex surface, and image side surface can be concave surface.
In the exemplary embodiment, it can be convex surface that the 6th lens, which can have positive light coke, object side, and image side surface can be
Concave surface.
In the exemplary embodiment, the object side of the 7th lens can be convex surface, and image side surface can be concave surface.
In the exemplary embodiment, the pick-up lens of the application can meet conditional f/EPD < 1.9, wherein f is to take the photograph
As total effective focal length of camera lens, EPD is the Entry pupil diameters of pick-up lens.More specifically, f and EPD can further meet 1.5 < f/
EPD < 1.9, such as 1.55≤f/EPD≤1.83.Meet conditional f/EPD < 1.9, optical system can be made to have large aperture excellent
Gesture, imaging effect of the enhancing system under the weaker environment of light, and shooting effect of the actual situation with frame is obtained, prominent main body;Meanwhile
The aberration of peripheral field can also be reduced.
In the exemplary embodiment, the pick-up lens of the application can meet conditional TTL/ImgH < 1.65, wherein
TTL is the object side of the first lens to distance of the imaging surface on optical axis of pick-up lens, and ImgH is the electronic light of pick-up lens
The half of sensing unit effective pixel area diagonal line length.More specifically, TTL and ImgH can further meet 1.4≤TTL/ImgH
≤ 1.6, such as 1.46≤TTL/ImgH≤1.55.The rationally ratio between control TTL and ImgH can ensure the same of big image planes
When, it is effectively compressed system dimension, to meet camera lens compact dimensioning characteristic.
In the exemplary embodiment, the pick-up lens of the application can meet conditional f/f1 < 0.7, wherein f is camera shooting
Total effective focal length of camera lens, f1 are the effective focal length of the first lens.More specifically, f and f1 can further meet 0.4≤f/f1≤
0.6, such as 0.47≤f/f1≤0.51.The rationally positive light coke of the first lens of control, can effectively adjust ray position;
Meanwhile meeting conditional f/f1 < 0.7, also help the overall length for shortening pick-up lens.
In the exemplary embodiment, the second lens of the pick-up lens of the application can have positive light coke, and can meet
1 < f1/f2 < 1.5 of conditional, wherein f1 is the effective focal length of the first lens, and f2 is the effective focal length of the second lens.More specifically
Ground, f1 and f2 can further meet 1.15≤f1/f2≤1.34.The rationally effective focal length of the first lens of setting and the second lens
The ratio of effective focal length ensures that the second lens also have positive light coke in the case where the first lens strength is just, can be promoted
For optical system to the convergence ability of light, system overall length is shortened in adjustment light focusing position.
In the exemplary embodiment, the third lens of the pick-up lens of the application can have positive light coke, and can meet
- 0.6 < R6/f3 < 0 of conditional, wherein R6 is the radius of curvature of the image side surface of the third lens, and f3 is effective coke of the third lens
Away from.More specifically, R6 and f3 can further meet -0.55≤R6/f3≤- 0.30.Meet -0.6 < R6/f3 < 0 of conditional, it can
The astigmatism of active balance system shortens the back focal length of system, thereby further ensures that the miniaturization of optical system.
In the exemplary embodiment, the pick-up lens of the application can meet 1 < R15/R16 < 1.5 of conditional, wherein
R15 is the radius of curvature of the object side of the 8th lens, and R16 is the radius of curvature of the image side surface of the 8th lens.More specifically, R15
It can further meet 1.12≤R15/R16≤1.33 with R16.The rationally curvature of the 8th lens object side of setting and image side surface half
Diameter may make optical system to be capable of the chief ray angle of preferably matching chip.
In the exemplary embodiment, the pick-up lens of the application can meet 0.3 < DT11/DT82 < 0.8 of conditional,
In, DT11 is the effective radius of the object side of the first lens, and DT82 is the effective radius of the image side surface of the 8th lens.More specifically
Ground, DT11 and DT82 can further meet 0.4≤DT11/DT82≤0.7, such as 0.52≤DT11/DT82≤0.60.Rationally control
The ratio for making the effective radius of the first lens object side and the effective radius of the 8th lens image side surface, can be such that optical system meets small
The architectural characteristic of size.
In the exemplary embodiment, the pick-up lens of the application can meet 0.9 < DT11/DT52 < 1.3 of conditional,
In, DT11 is the effective radius of the object side of the first lens, and DT52 is the effective radius of the image side surface of the 5th lens.More specifically
Ground, DT11 and DT52 can further meet 0.98≤DT11/DT52≤1.21.Rationally effectively the half of the first lens object side of control
The ratio of the effective radius of diameter and the 5th lens image side surface, is conducive to system assembles, and advantageously ensures that the relative illumination of camera lens.
In the exemplary embodiment, the pick-up lens of the application can meet 0.7 < SAG42/CT4 < 1.3 of conditional,
In, SAG42 is on the intersection point to the axis between the effective radius vertex of the 4th lens image side surface of the 4th lens image side surface and optical axis
Distance, CT4 are the 4th lens in the center thickness on optical axis.More specifically, SAG42 and CT4 can further meet 0.77≤
SAG42/CT4≤1.12.Meet 0.7 < SAG42/CT4 < 1.3 of conditional, can adjust the matching journey with chip chief ray angle
Degree, and the variation degree of freedom of lens can be increased, lifting system corrects the ability of astigmatism and the curvature of field.
In the exemplary embodiment, the pick-up lens of the application can meet -0.5 < SAG62/CT6 < 0 of conditional,
In, SAG62 is on the intersection point to the axis between the effective radius vertex of the 6th lens image side surface of the 6th lens image side surface and optical axis
Distance, CT6 are the 6th lens in the center thickness on optical axis.More specifically, SAG62 and CT6 can further meet -0.46≤
SAG62/CT6≤-0.22.Meet -0.5 < SAG62/CT6 < 0 of conditional, can rationally adjust the chief ray angle of system, and can
The matching degree of adjustment and chip chief ray angle;Meanwhile the relative luminance of system can be also effectively improved, it is clear to promote image planes
Degree.
In the exemplary embodiment, the pick-up lens of the application can meet 0.4 < YC62/DT62 < 0.9 of conditional,
In, YC62 be the 6th lens image side surface critical point (critical point of the 6th lens image side surface refers to being removed on the 6th lens image side surface
With outside the intersection point of optical axis, the tangent point in perpendicular section with optical axis, for example, the critical point L schematically shown in Figure 15) to light
The vertical range of axis, DT62 are the effective radius of the 6th lens image side surface.More specifically, YC62 and DT62 can further meet
0.6≤YC62/DT62≤0.7, such as 0.66≤YC62/DT62≤0.68.The rationally ratio of setting YC62 and DT62, can be effective
Ground reduces optical system lens dimension, avoids the volume of pick-up lens excessive, to meet the requirement of compact system.
In the exemplary embodiment, the pick-up lens of the application can meet 0 < T34 × 10/T45 < 0.5 of conditional,
In, T34 is the spacing distance of the third lens and the 4th lens on optical axis, and T45 is the 4th lens and the 5th lens on optical axis
Spacing distance.More specifically, T34 and T45 can further meet 0.3≤T34 × 10/T45≤0.45, such as 0.32≤T34
×10/T45≤0.41.The rationally ratio of setting T34 and T45, it can be ensured that optical system has the characteristics that frivolous compact, makes it
Enough it is widely used in high performance portable electronic product.
In the exemplary embodiment, the pick-up lens of the application can meet 0.5 < of conditional (CT5+CT6)/(CT7+
CT8) 1 <, wherein CT5 is the 5th lens in the center thickness on optical axis, and CT6 is the 6th lens in the center thickness on optical axis,
CT7 is the 7th lens in the center thickness on optical axis, and CT8 is the 8th lens in the center thickness on optical axis.More specifically, CT5,
CT6, CT7 and CT8 can further meet 0.68≤(CT5+CT6)/(CT7+CT8)≤0.92.The 5th lens of reasonable distribution, the 6th
Lens, the 7th lens, the 8th lens can effectively reduce optical system size, avoid camera lens in the center thickness on optical axis
The volume of head is excessive, while can also reduce the assembling difficulty of eyeglass, realizes higher space availability ratio.
In the exemplary embodiment, the pick-up lens of the application can meet 0.6 < ∑ ET/ ∑s CT≤1 of conditional,
In, ∑ ET is the summation of the first lens to the 8th lens edge thickness on being parallel to optical axis direction respectively, and ∑ CT is first
Lens to the 8th lens respectively at the center thickness on optical axis summation.More specifically, ∑ ET and ∑ CT can further meet
0.78≤∑ET/∑CT≤1.00.Meet 0.6 < ∑ ET/ ∑s CT≤1 of conditional, may make each lens edge thickness and eyeglass
Balance and stability between center thickness, room for promotion utilization rate reduce machining eyeglass and assembling difficulty;And it can ensure that camera lens is small-sized
While change, enhance the ability of system compensation aberration.
In the exemplary embodiment, the pick-up lens of the application can meet 0 < of conditional | (R11-R12)/(R11+
R12) | < 0.3, wherein R11 is the radius of curvature of the object side of the 6th lens, and R12 is the curvature half of the image side surface of the 6th lens
Diameter.More specifically, R11 and R12 can further meet 0 < | (R11-R12)/(R11+R12) | < 0.15, such as 0.03≤|
(R11-R12)/(R11+R12)|≤0.12.The radius of curvature of reasonable distribution the 6th lens object side and image side surface, helps to adjust
The focal power of 6th lens both sides of whole optical system, the ability for making optical system have stronger balance astigmatism.
In the exemplary embodiment, the pick-up lens of the application can meet 0.7 < R11/R14 < 1.2 of conditional,
In, R11 is the radius of curvature of the object side of the 6th lens, and R14 is the radius of curvature of the image side surface of the 7th lens.More specifically,
R11 and R14 can further meet 0.85≤R11/R14≤1.03.The radius of curvature of the 6th lens object side of reasonable distribution and
The radius of curvature of seven lens image side surfaces ensures that the object side of the 6th lens is consistent with the concave-convex situation of image side surface of the 7th lens,
And then can effectively balance system distortion.
In the exemplary embodiment, above-mentioned pick-up lens may also include at least one diaphragm, to promote the imaging of camera lens
Quality.Optionally, diaphragm may be provided between the third lens and the 4th lens.
Optionally, above-mentioned pick-up lens may also include the optical filter for correcting color error ratio and/or be located at for protecting
The protective glass of photosensitive element on imaging surface.
Multi-disc eyeglass, such as described above eight can be used according to the pick-up lens of the above embodiment of the application.
By each power of lens of reasonable distribution, face type, each lens center thickness and each lens between axis on spacing etc., can
The volume for effectively reducing camera lens, the machinability for reducing the susceptibility of camera lens and improving camera lens so that pick-up lens is more advantageous
In producing and processing and be applicable to the portable electronic product such as smart mobile phone.Meanwhile passing through the camera shooting of above-mentioned configuration
Camera lens can have the advantageous effects such as large aperture, high image quality, miniaturization, good processability.
In presently filed embodiment, at least one of minute surface of each lens is aspherical mirror.Non-spherical lens
The characteristics of be:From lens centre to lens perimeter, curvature is consecutive variations.It is constant with having from lens centre to lens perimeter
The spherical lens of curvature is different, and non-spherical lens has more preferably radius of curvature characteristic, and there is improvement to distort aberration and improve picture
The advantages of dissipating aberration.After non-spherical lens, the aberration occurred when imaging can be eliminated as much as possible, so as to improve
Image quality.
However, it will be understood by those of skill in the art that without departing from this application claims technical solution the case where
Under, the lens numbers for constituting pick-up lens can be changed, to obtain each result and advantage described in this specification.Though for example,
It is so described by taking eight lens as an example in embodiments, but the pick-up lens is not limited to include eight lens.If
It needs, which may also include the lens of other quantity.
The specific embodiment for the pick-up lens for being applicable to the above embodiment is further described with reference to the accompanying drawings.
Embodiment 1
Referring to Fig. 1 to Fig. 2 E descriptions according to the pick-up lens of the embodiment of the present application 1.Fig. 1 is shown according to the application
The structural schematic diagram of the pick-up lens of embodiment 1.
As shown in Figure 1, sequentially being wrapped by object side to image side along optical axis according to the pick-up lens of the application illustrative embodiments
It includes:First lens L1, the second lens L2, the third lens L3, diaphragm STO, the 4th lens L4, the 5th lens L5, the 6th lens L6,
7th lens L7, the 8th lens L8, optical filter L9 and imaging surface S19.
It is convex surface that first lens L1, which has positive light coke, object side S1, and image side surface S2 is concave surface.Second lens L2 has
Positive light coke, object side S3 are convex surface, and image side surface S4 is convex surface.The third lens L3 has positive light coke, and object side S5 is
Concave surface, image side surface S6 are convex surface.It is convex surface that 4th lens L4, which has negative power, object side S7, and image side surface S8 is concave surface.The
It is concave surface that five lens L5, which have positive light coke, object side S9, and image side surface S10 is convex surface.6th lens L6 has positive light coke,
Its object side S11 is convex surface, and image side surface S12 is concave surface.It is convex surface that 7th lens L7, which has negative power, object side S13, as
Side S14 is concave surface.It is convex surface that 8th lens L8, which has negative power, object side S15, and image side surface S16 is concave surface.Optical filter
L9 has object side S17 and image side surface S18.Light from object sequentially passes through each surface S1 to S18 and is ultimately imaged and is being imaged
On the S19 of face.
Table 1 shows surface type, radius of curvature, thickness, material and the circular cone of each lens of the pick-up lens of embodiment 1
Coefficient, wherein radius of curvature and the unit of thickness are millimeter (mm).
Table 1
As shown in Table 1, the object side of any one lens in the first lens L1 to the 8th lens L8 and image side surface are
It is aspherical.In the present embodiment, the face type x of each non-spherical lens is available but is not limited to following aspherical formula and is defined:
Wherein, x be it is aspherical along optical axis direction when being highly the position of h, away from aspheric vertex of surface apart from rise;C is
Aspherical paraxial curvature, c=1/R (that is, paraxial curvature c is the inverse of 1 mean curvature radius R of upper table);K be circular cone coefficient (
It has been provided in table 1);Ai is the correction factor of aspherical i-th-th ranks.The following table 2 give can be used for it is each aspherical in embodiment 1
The high-order coefficient A of minute surface S1-S164、A6、A8、A10、A12、A14、A16、A18And A20。
Face number | A4 | A6 | A8 | A10 | A12 | A14 | A16 | A18 | A20 |
S1 | 2.8443E-02 | 1.3417E-01 | -5.8304E-01 | 1.0874E+00 | -1.2225E+00 | 8.4746E-01 | -3.5262E-01 | 8.0849E-02 | -7.8658E-03 |
S2 | -1.5704E-02 | -5.7637E-02 | -1.8760E-01 | 6.4095E-01 | -8.7566E-01 | 6.9431E-01 | -3.3020E-01 | 8.7239E-02 | -9.8362E-03 |
S3 | -3.0419E-02 | 7.5150E-02 | -6.4272E-01 | 1.6500E+00 | -2.1961E+00 | 1.7637E+00 | -8.6092E-01 | 2.3462E-01 | -2.7307E-02 |
S4 | 1.3419E-02 | -1.8463E-02 | -9.7519E-02 | 4.0147E-01 | -7.0012E-01 | 6.9304E-01 | -4.0160E-01 | 1.2670E-01 | -1.6763E-02 |
S5 | -1.2228E-02 | 5.4042E-02 | -3.9273E-02 | -1.7391E-01 | 4.5225E-01 | -4.9556E-01 | 2.9413E-01 | -9.2506E-02 | 1.2101E-02 |
S6 | -1.3278E-01 | 7.6758E-01 | -2.5392E+00 | 4.8470E+00 | -5.7566E+00 | 4.3228E+00 | -1.9941E+00 | 5.1512E-01 | -5.6993E-02 |
S7 | -1.7843E-01 | 9.2051E-01 | -3.4534E+00 | 7.7551E+00 | -1.0932E+01 | 9.8377E+00 | -5.4943E+00 | 1.7368E+00 | -2.3759E-01 |
S8 | -7.4856E-02 | 1.0810E-01 | -3.1892E-01 | 7.0729E-01 | -1.0700E+00 | 1.1723E+00 | -8.8089E-01 | 3.9201E-01 | -7.5483E-02 |
S9 | -3.7457E-02 | 2.2812E-01 | -9.8023E-01 | 2.1942E+00 | -3.0007E+00 | 2.5726E+00 | -1.3561E+00 | 4.0340E-01 | -5.1936E-02 |
S10 | -5.0299E-02 | 1.5177E-01 | -5.7617E-01 | 1.0471E+00 | -1.1470E+00 | 7.9607E-01 | -3.4567E-01 | 8.6322E-02 | -9.4456E-03 |
S11 | 1.0162E-01 | -5.7223E-02 | -1.4563E-01 | 3.1074E-01 | -3.1646E-01 | 1.8983E-01 | -6.8196E-02 | 1.3524E-02 | -1.1293E-03 |
S12 | -5.8966E-02 | 1.1933E-01 | -1.7065E-01 | 1.3793E-01 | -7.3067E-02 | 2.5216E-02 | -5.3962E-03 | 6.4720E-04 | -3.3153E-05 |
S13 | -1.2443E-02 | -1.2753E-01 | 1.8007E-01 | -1.6753E-01 | 9.2634E-02 | -3.0370E-02 | 5.8802E-03 | -6.2534E-04 | 2.8247E-05 |
S14 | -1.5540E-01 | 8.8377E-02 | -4.5964E-02 | 1.0973E-02 | 1.6228E-04 | -6.7227E-04 | 1.4945E-04 | -1.4105E-05 | 5.0508E-07 |
S15 | -4.8396E-01 | 2.7635E-01 | -9.6443E-02 | 2.1298E-02 | -2.9820E-03 | 2.6396E-04 | -1.5182E-05 | 6.1435E-07 | -1.5454E-08 |
S16 | -3.3601E-01 | 2.1775E-01 | -1.0397E-01 | 3.5616E-02 | -8.3294E-03 | 1.2683E-03 | -1.1892E-04 | 6.2027E-06 | -1.3742E-07 |
Table 2
Table 3 provide pick-up lens in embodiment 1 optics total length TTL (that is, from the object side S1 of the first lens L1 at
Distances of the image planes S19 on optical axis), the half ImgH of the electronics light sensitive component effective pixel area diagonal line length of pick-up lens,
Total effective focal length f of the pick-up lens and effective focal length f1 to f8 of each lens.
TTL(mm) | 5.38 | f4(mm) | -7.90 |
ImgH(mm) | 3.50 | f5(mm) | 243.82 |
f(mm) | 4.20 | f6(mm) | 28.32 |
f1(mm) | 8.42 | f7(mm) | -14.54 |
f2(mm) | 6.41 | f8(mm) | -60.86 |
f3(mm) | 27.13 |
Table 3
Pick-up lens in embodiment 1 meets following relationship:
F/EPD=1.55, wherein f is total effective focal length of pick-up lens, and EPD is the Entry pupil diameters of pick-up lens;
TTL/ImgH=1.54, wherein TTL is that the imaging surface S19 of object side S1 to the pick-up lens of the first lens L1 exists
Distance on optical axis, ImgH are the half of the electronics light sensitive component effective pixel area diagonal line length of pick-up lens;
F/f1=0.50, wherein f is total effective focal length of pick-up lens, and f1 is the effective focal length of the first lens L1;
F1/f2=1.31, wherein f1 is the effective focal length of the first lens L1, and f2 is the effective focal length of the second lens L2;
R6/f3=-0.35, wherein R6 is the radius of curvature of the image side surface S6 of the third lens L3, and f3 is the third lens L3's
Effective focal length;
R15/R16=1.18, wherein R15 is the radius of curvature of the object side S15 of the 8th lens L8, and R16 is the 8th lens
The radius of curvature of the image side surface S16 of L8;
DT11/DT82=0.60, wherein DT11 is the effective radius of the object side S1 of the first lens L1, and DT82 is the 8th
The effective radius of the image side surface S16 of lens L8;
DT11/DT52=1.09, wherein DT11 is the effective radius of the object side S1 of the first lens L1, and DT52 is the 5th
The effective radius of the image side surface S10 of lens L5;
SAG42/CT4=1.05, wherein SAG42 is the intersection point of the 4th lens L4 image side surfaces S8 and optical axis to the 4th lens
Distance on axis between the effective radius vertex of L4 image side surfaces S8, CT4 are the 4th lens L4 in the center thickness on optical axis;
SAG62/CT6=-0.31, wherein SAG62 be the 6th lens L6 image side surfaces S12 and optical axis intersection point to the 6th thoroughly
Distance on axis between the effective radius vertex of mirror L6 image side surfaces S12, CT6 are the 6th lens L6 in the center thickness on optical axis;
YC62/DT62=0.67, wherein YC62 be the 6th lens L6 image side surfaces S12 critical point to optical axis it is vertical away from
From DT62 is the effective radius of the image side surface S12 of the 6th lens L6;
T34 × 10/T45=0.40, wherein T34 is the spacing distance of the third lens L3 and the 4th lens L4 on optical axis,
T45 is spacing distances of the 4th lens L4 and the 5th lens L5 on optical axis;
(CT5+CT6)/(CT7+CT8)=0.68, wherein CT5 is the 5th lens L5 in the center thickness on optical axis, CT6
It is the 6th lens L6 in the center thickness on optical axis, CT7 is the 7th lens L7 in the center thickness on optical axis, and CT8 is the 8th thoroughly
Mirror L8 is in the center thickness on optical axis;
∑ ET/ ∑s CT=0.84, wherein ∑ ET is that the first lens L1 to the 8th lens L8 is being parallel to optical axis direction respectively
On edge thickness summation, ∑ CT be the first lens L1 to the 8th lens L8 respectively at the center thickness on optical axis summation;
| (R11-R12)/(R11+R12) |=0.07, wherein the curvature half that R11 is the object side S11 of the 6th lens L6
Diameter, R12 are the radius of curvature of the image side surface S12 of the 6th lens L6;
R11/R14=0.93, wherein R11 is the radius of curvature of the object side S11 of the 6th lens L6, and R14 is the 7th lens
The radius of curvature of the image side surface S14 of L7.
Fig. 2A shows chromatic curve on the axis of the pick-up lens of embodiment 1, indicates the light of different wave length via mirror
Converging focal point after head deviates.Fig. 2 B show the astigmatism curve of the pick-up lens of embodiment 1, indicate meridianal image surface bending and
Sagittal image surface is bent.Fig. 2 C show the distortion curve of the pick-up lens of embodiment 1, indicate that different image heights are corresponding and distort greatly
Small value.Fig. 2 D show the ratio chromatism, curve of the pick-up lens of embodiment 1, indicate light via after camera lens on imaging surface
Different image heights deviation.Fig. 2 E show the relative illumination curve of the pick-up lens of embodiment 1, indicate on imaging surface not
The corresponding relative illumination with image height.According to fig. 2 A to Fig. 2 E it is found that the pick-up lens given by embodiment 1 can realize it is good
Image quality.
Embodiment 2
Referring to Fig. 3 to Fig. 4 E descriptions according to the pick-up lens of the embodiment of the present application 2.In the present embodiment and following implementation
In example, for brevity, by clipped description similar to Example 1.Fig. 3 shows taking the photograph according to the embodiment of the present application 2
As the structural schematic diagram of camera lens.
As shown in figure 3, sequentially being wrapped by object side to image side along optical axis according to the pick-up lens of the application illustrative embodiments
It includes:First lens L1, the second lens L2, the third lens L3, diaphragm STO, the 4th lens L4, the 5th lens L5, the 6th lens L6,
7th lens L7, the 8th lens L8, optical filter L9 and imaging surface S19.
It is convex surface that first lens L1, which has positive light coke, object side S1, and image side surface S2 is concave surface.Second lens L2 has
Positive light coke, object side S3 are convex surface, and image side surface S4 is convex surface.The third lens L3 has negative power, and object side S5 is
Concave surface, image side surface S6 are concave surface.It is convex surface that 4th lens L4, which has positive light coke, object side S7, and image side surface S8 is concave surface.The
It is concave surface that five lens L5, which have negative power, object side S9, and image side surface S10 is convex surface.6th lens L6 has positive light coke,
Its object side S11 is convex surface, and image side surface S12 is concave surface.It is convex surface that 7th lens L7, which has negative power, object side S13, as
Side S14 is concave surface.It is convex surface that 8th lens L8, which has negative power, object side S15, and image side surface S16 is concave surface.Optical filter
L9 has object side S17 and image side surface S18.Light from object sequentially passes through each surface S1 to S18 and is ultimately imaged and is being imaged
On the S19 of face.
Table 4 shows surface type, radius of curvature, thickness, material and the circular cone of each lens of the pick-up lens of embodiment 2
Coefficient, wherein radius of curvature and the unit of thickness are millimeter (mm).
Table 4
As shown in Table 4, in example 2, the object side of any one lens in the first lens L1 to the 8th lens L8
It is aspherical with image side surface.Table 5 shows the high-order coefficient that can be used for each aspherical mirror in embodiment 2, wherein each non-
Spherical surface type can be limited by the formula (1) provided in above-described embodiment 1.
Face number | A4 | A6 | A8 | A10 | A12 | A14 | A16 | A18 | A20 |
S1 | 1.8401E-02 | 1.9961E-01 | -7.8604E-01 | 1.4566E+00 | -1.6361E+00 | 1.1367E+00 | -4.7584E-01 | 1.1012E-01 | -1.0840E-02 |
S2 | -7.3500E-03 | -8.7970E-02 | -8.7580E-02 | 3.4661E-01 | -3.6316E-01 | 1.8765E-01 | -4.6210E-02 | 2.7890E-03 | 5.3300E-04 |
S3 | -9.1230E-02 | 5.6202E-01 | -2.4765E+00 | 5.5936E+00 | -7.3554E+00 | 5.9529E+00 | -2.9261E+00 | 8.0156E-01 | -9.3870E-02 |
S4 | 3.5200E-02 | -2.6496E-01 | 8.6460E-01 | -1.6134E+00 | 1.8554E+00 | -1.3380E+00 | 5.8576E-01 | -1.4050E-01 | 1.3879E-02 |
S5 | -2.6500E-02 | 2.6665E-01 | -1.0741E+00 | 2.5316E+00 | -3.7858E+00 | 3.5940E+00 | -2.0839E+00 | 6.7118E-01 | -9.1910E-02 |
S6 | -1.5052E-01 | 6.8083E-01 | -1.6282E+00 | 1.6754E+00 | 5.1766E-02 | -1.8310E+00 | 1.8048E+00 | -7.5683E-01 | 1.2189E-01 |
S7 | -2.2572E-01 | 1.2524E+00 | -4.5058E+00 | 9.8413E+00 | -1.3848E+01 | 1.2727E+01 | -7.3925E+00 | 2.4617E+00 | -3.5754E-01 |
S8 | -1.6970E-02 | -3.5718E-01 | 2.0912E+00 | -6.5087E+00 | 1.1874E+01 | -1.3115E+01 | 8.6527E+00 | -3.1400E+00 | 4.8265E-01 |
S9 | -3.1500E-02 | 1.9952E-01 | -9.8735E-01 | 2.4262E+00 | -3.5963E+00 | 3.3134E+00 | -1.8627E+00 | 5.8675E-01 | -7.9520E-02 |
S10 | -3.4800E-02 | 8.8086E-02 | -4.1005E-01 | 7.5573E-01 | -8.0628E-01 | 5.3662E-01 | -2.2091E-01 | 5.1838E-02 | -5.3000E-03 |
S11 | 7.7659E-02 | 2.0260E-02 | -2.6749E-01 | 4.2047E-01 | -3.7626E-01 | 2.0928E-01 | -7.1440E-02 | 1.3637E-02 | -1.1000E-03 |
S12 | -7.2510E-02 | 1.6346E-01 | -2.1655E-01 | 1.5842E-01 | -7.4230E-02 | 2.2556E-02 | -4.2900E-03 | 4.6500E-04 | -2.2000E-05 |
S13 | -2.6580E-02 | -1.5695E-01 | 2.4619E-01 | -2.3125E-01 | 1.2786E-01 | -4.2140E-02 | 8.2420E-03 | -8.9000E-04 | 4.0800E-05 |
S14 | -1.2756E-01 | 2.8757E-02 | 1.4040E-02 | -2.3080E-02 | 1.1798E-02 | -3.1000E-03 | 4.5300E-04 | -3.5000E-05 | 1.1200E-06 |
S15 | -4.8173E-01 | 2.7129E-01 | -9.0670E-02 | 1.7687E-02 | -1.6800E-03 | -1.4000E-05 | 1.9600E-05 | -1.7000E-06 | 5.1600E-08 |
S16 | -3.8187E-01 | 2.6673E-01 | -1.3583E-01 | 4.8680E-02 | -1.1700E-02 | 1.8120E-03 | -1.7000E-04 | 9.1000E-06 | -2.0000E-07 |
Table 5
Table 6 provides the effective picture of electronics light sensitive component of the optics total length TTL of pick-up lens in embodiment 2, pick-up lens
Half ImgH, total effective focal length f of pick-up lens and the effective focal length f1 to f8 of each lens of plain region diagonal line length.
TTL(mm) | 5.43 | f4(mm) | 499.90 |
ImgH(mm) | 3.50 | f5(mm) | -69.40 |
f(mm) | 4.04 | f6(mm) | 22.68 |
f1(mm) | 8.67 | f7(mm) | -14.13 |
f2(mm) | 7.54 | f8(mm) | -19.53 |
f3(mm) | -44.29 |
Table 6
Fig. 4 A show chromatic curve on the axis of the pick-up lens of embodiment 2, indicate the light of different wave length via mirror
Converging focal point after head deviates.Fig. 4 B show the astigmatism curve of the pick-up lens of embodiment 2, indicate meridianal image surface bending and
Sagittal image surface is bent.Fig. 4 C show the distortion curve of the pick-up lens of embodiment 2, indicate that different image heights are corresponding and distort greatly
Small value.Fig. 4 D show the ratio chromatism, curve of the pick-up lens of embodiment 2, indicate light via after camera lens on imaging surface
Different image heights deviation.Fig. 4 E show the relative illumination curve of the pick-up lens of embodiment 2, indicate on imaging surface not
The corresponding relative illumination with image height.According to Fig. 4 A to Fig. 4 E it is found that the pick-up lens given by embodiment 2 can realize it is good
Image quality.
Embodiment 3
The pick-up lens according to the embodiment of the present application 3 is described referring to Fig. 5 to Fig. 6 E.Fig. 5 is shown according to this Shen
Please embodiment 3 pick-up lens structural schematic diagram.
As shown in figure 5, sequentially being wrapped by object side to image side along optical axis according to the pick-up lens of the application illustrative embodiments
It includes:First lens L1, the second lens L2, the third lens L3, diaphragm STO, the 4th lens L4, the 5th lens L5, the 6th lens L6,
7th lens L7, the 8th lens L8, optical filter L9 and imaging surface S19.
It is convex surface that first lens L1, which has positive light coke, object side S1, and image side surface S2 is concave surface.Second lens L2 has
Positive light coke, object side S3 are convex surface, and image side surface S4 is convex surface.The third lens L3 has positive light coke, and object side S5 is
Convex surface, image side surface S6 are convex surface.It is convex surface that 4th lens L4, which has negative power, object side S7, and image side surface S8 is concave surface.The
It is concave surface that five lens L5, which have positive light coke, object side S9, and image side surface S10 is convex surface.6th lens L6 has positive light coke,
Its object side S11 is convex surface, and image side surface S12 is concave surface.It is convex surface that 7th lens L7, which has negative power, object side S13, as
Side S14 is concave surface.It is convex surface that 8th lens L8, which has negative power, object side S15, and image side surface S16 is concave surface.Optical filter
L9 has object side S17 and image side surface S18.Light from object sequentially passes through each surface S1 to S18 and is ultimately imaged and is being imaged
On the S19 of face.
Table 7 shows surface type, radius of curvature, thickness, material and the circular cone of each lens of the pick-up lens of embodiment 3
Coefficient, wherein radius of curvature and the unit of thickness are millimeter (mm).
Table 7
As shown in Table 7, in embodiment 3, the object side of any one lens in the first lens L1 to the 8th lens L8
It is aspherical with image side surface.Table 8 shows the high-order coefficient that can be used for each aspherical mirror in embodiment 3, wherein each non-
Spherical surface type can be limited by the formula (1) provided in above-described embodiment 1.
Face number | A4 | A6 | A8 | A10 | A12 | A14 | A16 | A18 | A20 |
S1 | 2.8572E-02 | 1.3440E-01 | -5.8395E-01 | 1.0854E+00 | -1.2149E+00 | 8.3872E-01 | -3.4772E-01 | 7.9476E-02 | -7.7117E-03 |
S2 | -1.5497E-02 | -5.4624E-02 | -1.9917E-01 | 6.6277E-01 | -8.9965E-01 | 7.0995E-01 | -3.3604E-01 | 8.8340E-02 | -9.9096E-03 |
S3 | -3.6357E-02 | 1.1573E-01 | -7.7052E-01 | 1.8760E+00 | -2.4382E+00 | 1.9241E+00 | -9.2520E-01 | 2.4893E-01 | -2.8665E-02 |
S4 | 1.4198E-02 | -2.7460E-02 | -5.7126E-02 | 3.1017E-01 | -5.8431E-01 | 6.0910E-01 | -3.6889E-01 | 1.2120E-01 | -1.6671E-02 |
S5 | -1.3018E-02 | 6.2701E-02 | -8.4126E-02 | -4.9824E-02 | 2.4544E-01 | -2.8220E-01 | 1.6088E-01 | -4.6278E-02 | 5.2484E-03 |
S6 | -1.3330E-01 | 7.8273E-01 | -2.6056E+00 | 4.9928E+00 | -5.9516E+00 | 4.4893E+00 | -2.0830E+00 | 5.4247E-01 | -6.0744E-02 |
S7 | -2.0437E-01 | 1.1916E+00 | -4.7650E+00 | 1.1381E+01 | -1.7063E+01 | 1.6284E+01 | -9.6063E+00 | 3.1944E+00 | -4.5796E-01 |
S8 | -6.7900E-02 | 1.6709E-02 | 1.7130E-01 | -7.8254E-01 | 1.7149E+00 | -2.0971E+00 | 1.4664E+00 | -5.4779E-01 | 8.4913E-02 |
S9 | -3.7403E-02 | 2.4340E-01 | -1.0917E+00 | 2.5536E+00 | -3.6510E+00 | 3.2727E+00 | -1.7999E+00 | 5.5628E-01 | -7.4005E-02 |
S10 | -4.6485E-02 | 1.2702E-01 | -5.0121E-01 | 9.2081E-01 | -1.0219E+00 | 7.2206E-01 | -3.1985E-01 | 8.1322E-02 | -9.0167E-03 |
S11 | 9.8508E-02 | -5.0609E-02 | -1.4611E-01 | 3.0050E-01 | -3.0329E-01 | 1.8180E-01 | -6.5436E-02 | 1.3004E-02 | -1.0875E-03 |
S12 | -5.7322E-02 | 1.1014E-01 | -1.4946E-01 | 1.1329E-01 | -5.6828E-02 | 1.8845E-02 | -3.9247E-03 | 4.6275E-04 | -2.3486E-05 |
S13 | -1.4005E-02 | -1.1884E-01 | 1.6365E-01 | -1.5136E-01 | 8.3371E-02 | -2.7153E-02 | 5.2102E-03 | -5.4822E-04 | 2.4478E-05 |
S14 | -1.5840E-01 | 9.7860E-02 | -5.7930E-02 | 1.9380E-02 | -3.4224E-03 | 2.6871E-04 | 1.6784E-06 | -1.4196E-06 | 4.8679E-08 |
S15 | -4.8143E-01 | 2.7157E-01 | -9.1473E-02 | 1.8297E-02 | -1.9094E-03 | 3.3810E-05 | 1.3916E-05 | -1.3829E-06 | 4.1943E-08 |
S16 | -3.2956E-01 | 2.0834E-01 | -9.7506E-02 | 3.3089E-02 | -7.7312E-03 | 1.1820E-03 | -1.1162E-04 | 5.8775E-06 | -1.3171E-07 |
Table 8
Table 9 provides the effective picture of electronics light sensitive component of the optics total length TTL of pick-up lens in embodiment 3, pick-up lens
Half ImgH, total effective focal length f of pick-up lens and the effective focal length f1 to f8 of each lens of plain region diagonal line length.
TTL(mm) | 5.40 | f4(mm) | -7.87 |
ImgH(mm) | 3.50 | f5(mm) | 321.42 |
f(mm) | 4.17 | f6(mm) | 28.47 |
f1(mm) | 8.42 | f7(mm) | -14.65 |
f2(mm) | 6.70 | f8(mm) | -65.91 |
f3(mm) | 22.43 |
Table 9
Fig. 6 A show chromatic curve on the axis of the pick-up lens of embodiment 3, indicate the light of different wave length via mirror
Converging focal point after head deviates.Fig. 6 B show the astigmatism curve of the pick-up lens of embodiment 3, indicate meridianal image surface bending and
Sagittal image surface is bent.Fig. 6 C show the distortion curve of the pick-up lens of embodiment 3, indicate that different image heights are corresponding and distort greatly
Small value.Fig. 6 D show the ratio chromatism, curve of the pick-up lens of embodiment 3, indicate light via after camera lens on imaging surface
Different image heights deviation.Fig. 6 E show the relative illumination curve of the pick-up lens of embodiment 3, indicate on imaging surface not
The corresponding relative illumination with image height.According to Fig. 6 A to Fig. 6 E it is found that the pick-up lens given by embodiment 3 can realize it is good
Image quality.
Embodiment 4
The pick-up lens according to the embodiment of the present application 4 is described referring to Fig. 7 to Fig. 8 E.Fig. 7 is shown according to this Shen
Please embodiment 4 pick-up lens structural schematic diagram.
As shown in fig. 7, sequentially being wrapped by object side to image side along optical axis according to the pick-up lens of the application illustrative embodiments
It includes:First lens L1, the second lens L2, the third lens L3, diaphragm STO, the 4th lens L4, the 5th lens L5, the 6th lens L6,
7th lens L7, the 8th lens L8, optical filter L9 and imaging surface S19.
It is convex surface that first lens L1, which has positive light coke, object side S1, and image side surface S2 is concave surface.Second lens L2 has
Positive light coke, object side S3 are convex surface, and image side surface S4 is convex surface.The third lens L3 has positive light coke, and object side S5 is
Concave surface, image side surface S6 are convex surface.It is convex surface that 4th lens L4, which has negative power, object side S7, and image side surface S8 is concave surface.The
It is concave surface that five lens L5, which have negative power, object side S9, and image side surface S10 is convex surface.6th lens L6 has positive light coke,
Its object side S11 is convex surface, and image side surface S12 is concave surface.It is convex surface that 7th lens L7, which has positive light coke, object side S13, as
Side S14 is concave surface.It is convex surface that 8th lens L8, which has negative power, object side S15, and image side surface S16 is concave surface.Optical filter
L9 has object side S17 and image side surface S18.Light from object sequentially passes through each surface S1 to S18 and is ultimately imaged and is being imaged
On the S19 of face.
Table 10 shows surface type, radius of curvature, thickness, material and the circle of each lens of the pick-up lens of embodiment 4
Bore coefficient, wherein radius of curvature and the unit of thickness are millimeter (mm).
Table 10
As shown in Table 10, in example 4, the object side of any one lens in the first lens L1 to the 8th lens L8
It is aspherical with image side surface.Table 11 shows the high-order coefficient that can be used for each aspherical mirror in embodiment 4, wherein each
Aspherical face type can be limited by the formula (1) provided in above-described embodiment 1.
Table 11
Table 12 provides the effective picture of electronics light sensitive component of the optics total length TTL of pick-up lens in embodiment 4, pick-up lens
Half ImgH, total effective focal length f of pick-up lens and the effective focal length f1 to f8 of each lens of plain region diagonal line length.
TTL(mm) | 5.40 | f4(mm) | -7.79 |
ImgH(mm) | 3.70 | f5(mm) | -3057.68 |
f(mm) | 4.26 | f6(mm) | 55.46 |
f1(mm) | 8.46 | f7(mm) | 1276.36 |
f2(mm) | 6.39 | f8(mm) | -14.84 |
f3(mm) | 26.36 |
Table 12
Fig. 8 A show chromatic curve on the axis of the pick-up lens of embodiment 4, indicate the light of different wave length via mirror
Converging focal point after head deviates.Fig. 8 B show the astigmatism curve of the pick-up lens of embodiment 4, indicate meridianal image surface bending and
Sagittal image surface is bent.Fig. 8 C show the distortion curve of the pick-up lens of embodiment 4, indicate that different image heights are corresponding and distort greatly
Small value.Fig. 8 D show the ratio chromatism, curve of the pick-up lens of embodiment 4, indicate light via after camera lens on imaging surface
Different image heights deviation.Fig. 8 E show the relative illumination curve of the pick-up lens of embodiment 4, indicate on imaging surface not
The corresponding relative illumination with image height.According to Fig. 8 A to Fig. 8 E it is found that the pick-up lens given by embodiment 4 can realize it is good
Image quality.
Embodiment 5
The pick-up lens according to the embodiment of the present application 5 is described referring to Fig. 9 to Figure 10 E.Fig. 9 is shown according to this Shen
Please embodiment 5 pick-up lens structural schematic diagram.
As shown in figure 9, sequentially being wrapped by object side to image side along optical axis according to the pick-up lens of the application illustrative embodiments
It includes:First lens L1, the second lens L2, the third lens L3, diaphragm STO, the 4th lens L4, the 5th lens L5, the 6th lens L6,
7th lens L7, the 8th lens L8, optical filter L9 and imaging surface S19.
It is convex surface that first lens L1, which has positive light coke, object side S1, and image side surface S2 is concave surface.Second lens L2 has
Positive light coke, object side S3 are convex surface, and image side surface S4 is convex surface.The third lens L3 has positive light coke, and object side S5 is
Concave surface, image side surface S6 are convex surface.It is convex surface that 4th lens L4, which has negative power, object side S7, and image side surface S8 is concave surface.The
It is concave surface that five lens L5, which have positive light coke, object side S9, and image side surface S10 is convex surface.6th lens L6 has positive light coke,
Its object side S11 is convex surface, and image side surface S12 is concave surface.It is convex surface that 7th lens L7, which has negative power, object side S13, as
Side S14 is concave surface.It is convex surface that 8th lens L8, which has positive light coke, object side S15, and image side surface S16 is concave surface.Optical filter
L9 has object side S17 and image side surface S18.Light from object sequentially passes through each surface S1 to S18 and is ultimately imaged and is being imaged
On the S19 of face.
Table 13 shows surface type, radius of curvature, thickness, material and the circle of each lens of the pick-up lens of embodiment 5
Bore coefficient, wherein radius of curvature and the unit of thickness are millimeter (mm).
Table 13
As shown in Table 13, in embodiment 5, the object side of any one lens in the first lens L1 to the 8th lens L8
It is aspherical with image side surface.Table 14 shows the high-order coefficient that can be used for each aspherical mirror in embodiment 5, wherein each
Aspherical face type can be limited by the formula (1) provided in above-described embodiment 1.
Face number | A4 | A6 | A8 | A10 | A12 | A14 | A16 | A18 | A20 |
S1 | 3.0132E-02 | 1.1697E-01 | -5.2335E-01 | 9.7477E-01 | -1.0920E+00 | 7.5272E-01 | -3.1070E-01 | 7.0531E-02 | -6.7848E-03 |
S2 | -1.5913E-02 | -5.8419E-02 | -1.7539E-01 | 6.0654E-01 | -8.2658E-01 | 6.5145E-01 | -3.0681E-01 | 7.9964E-02 | -8.8670E-03 |
S3 | -2.8327E-02 | 5.4631E-02 | -5.4823E-01 | 1.4216E+00 | -1.8739E+00 | 1.4847E+00 | -7.1385E-01 | 1.9128E-01 | -2.1836E-02 |
S4 | 1.5931E-02 | -3.5842E-02 | -3.0188E-02 | 2.4573E-01 | -4.8074E-01 | 5.0121E-01 | -2.9934E-01 | 9.6190E-02 | -1.2856E-02 |
S5 | -1.2950E-02 | 6.0660E-02 | -6.8628E-02 | -9.5543E-02 | 3.2202E-01 | -3.6189E-01 | 2.1186E-01 | -6.4668E-02 | 8.1255E-03 |
S6 | -1.3678E-01 | 7.8991E-01 | -2.5898E+00 | 4.9009E+00 | -5.7651E+00 | 4.2837E+00 | -1.9544E+00 | 4.9956E-01 | -5.4769E-02 |
S7 | -1.6879E-01 | 7.7881E-01 | -2.6168E+00 | 5.1690E+00 | -6.2718E+00 | 4.7635E+00 | -2.2052E+00 | 5.6820E-01 | -6.2300E-02 |
S8 | -7.8321E-02 | 1.5230E-01 | -5.5230E-01 | 1.3759E+00 | -2.2272E+00 | 2.4108E+00 | -1.6797E+00 | 6.7547E-01 | -1.1780E-01 |
S9 | -5.1780E-02 | 3.9304E-01 | -1.7421E+00 | 4.0539E+00 | -5.6713E+00 | 4.9079E+00 | -2.5785E+00 | 7.5509E-01 | -9.4622E-02 |
S10 | -5.4434E-02 | 1.8177E-01 | -6.8864E-01 | 1.2866E+00 | -1.4511E+00 | 1.0305E+00 | -4.5287E-01 | 1.1296E-01 | -1.2203E-02 |
S11 | 1.0174E-01 | -6.7171E-02 | -1.0874E-01 | 2.4996E-01 | -2.6029E-01 | 1.5875E-01 | -5.7882E-02 | 1.1622E-02 | -9.7938E-04 |
S12 | -5.4327E-02 | 1.0412E-01 | -1.4540E-01 | 1.1366E-01 | -5.9030E-02 | 2.0253E-02 | -4.3471E-03 | 5.2552E-04 | -2.7200E-05 |
S13 | -1.3244E-02 | -1.1536E-01 | 1.5714E-01 | -1.4543E-01 | 8.0407E-02 | -2.6320E-02 | 5.0794E-03 | -5.3757E-04 | 2.4127E-05 |
S14 | -1.4977E-01 | 7.6681E-02 | -3.4525E-02 | 4.3979E-03 | 2.5729E-03 | -1.2410E-03 | 2.3246E-04 | -2.0890E-05 | 7.4203E-07 |
S15 | -4.7162E-01 | 2.6447E-01 | -8.9760E-02 | 1.8919E-02 | -2.4312E-03 | 1.7975E-04 | -6.8262E-06 | 1.2170E-07 | -2.3616E-09 |
S16 | -3.1516E-01 | 1.9314E-01 | -8.7811E-02 | 2.9148E-02 | -6.7042E-03 | 1.0114E-03 | -9.4208E-05 | 4.8857E-06 | -1.0764E-07 |
Table 14
Table 15 provides the effective picture of electronics light sensitive component of the optics total length TTL of pick-up lens in embodiment 5, pick-up lens
Half ImgH, total effective focal length f of pick-up lens and the effective focal length f1 to f8 of each lens of plain region diagonal line length.
Table 15
Figure 10 A show chromatic curve on the axis of the pick-up lens of embodiment 5, indicate the light of different wave length via mirror
Converging focal point after head deviates.Figure 10 B show the astigmatism curve of the pick-up lens of embodiment 5, indicate meridianal image surface bending
It is bent with sagittal image surface.Figure 10 C show the distortion curve of the pick-up lens of embodiment 5, indicate that different image heights are corresponding abnormal
Become sizes values.Figure 10 D show the ratio chromatism, curve of the pick-up lens of embodiment 5, indicate light via after camera lens at
The deviation of different image heights in image planes.Figure 10 E show the relative illumination curve of the pick-up lens of embodiment 5, are expressed as
The corresponding relative illumination of difference image height in image planes.According to Figure 10 A to Figure 10 E it is found that the pick-up lens given by embodiment 5 can
Realize good image quality.
Embodiment 6
The pick-up lens according to the embodiment of the present application 6 is described referring to Figure 11 to Figure 12 E.Figure 11 is shown according to this
Apply for the structural schematic diagram of the pick-up lens of embodiment 6.
As shown in figure 11, it is sequentially wrapped by object side to image side along optical axis according to the pick-up lens of the application illustrative embodiments
It includes:First lens L1, the second lens L2, the third lens L3, diaphragm STO, the 4th lens L4, the 5th lens L5, the 6th lens L6,
7th lens L7, the 8th lens L8, optical filter L9 and imaging surface S19.
It is convex surface that first lens L1, which has positive light coke, object side S1, and image side surface S2 is concave surface.Second lens L2 has
Positive light coke, object side S3 are convex surface, and image side surface S4 is convex surface.The third lens L3 has positive light coke, and object side S5 is
Concave surface, image side surface S6 are convex surface.It is convex surface that 4th lens L4, which has negative power, object side S7, and image side surface S8 is concave surface.The
It is convex surface that five lens L5, which have positive light coke, object side S9, and image side surface S10 is convex surface.6th lens L6 has positive light coke,
Its object side S11 is convex surface, and image side surface S12 is concave surface.It is convex surface that 7th lens L7, which has negative power, object side S13, as
Side S14 is concave surface.It is convex surface that 8th lens L8, which has negative power, object side S15, and image side surface S16 is concave surface.Optical filter
L9 has object side S17 and image side surface S18.Light from object sequentially passes through each surface S1 to S18 and is ultimately imaged and is being imaged
On the S19 of face.
Table 16 shows surface type, radius of curvature, thickness, material and the circle of each lens of the pick-up lens of embodiment 6
Bore coefficient, wherein radius of curvature and the unit of thickness are millimeter (mm).
Table 16
As shown in Table 16, in embodiment 6, the object side of any one lens in the first lens L1 to the 8th lens L8
It is aspherical with image side surface.Table 17 shows the high-order coefficient that can be used for each aspherical mirror in embodiment 6, wherein each
Aspherical face type can be limited by the formula (1) provided in above-described embodiment 1.
Table 17
Table 18 provides the effective picture of electronics light sensitive component of the optics total length TTL of pick-up lens in embodiment 6, pick-up lens
Half ImgH, total effective focal length f of pick-up lens and the effective focal length f1 to f8 of each lens of plain region diagonal line length.
TTL(mm) | 5.40 | f4(mm) | -7.94 |
ImgH(mm) | 3.70 | f5(mm) | 427.81 |
f(mm) | 4.30 | f6(mm) | 28.03 |
f1(mm) | 8.52 | f7(mm) | -16.19 |
f2(mm) | 6.36 | f8(mm) | -31.60 |
f3(mm) | 28.23 |
Table 18
Figure 12 A show chromatic curve on the axis of the pick-up lens of embodiment 6, indicate the light of different wave length via mirror
Converging focal point after head deviates.Figure 12 B show the astigmatism curve of the pick-up lens of embodiment 6, indicate meridianal image surface bending
It is bent with sagittal image surface.Figure 12 C show the distortion curve of the pick-up lens of embodiment 6, indicate that different image heights are corresponding abnormal
Become sizes values.Figure 12 D show the ratio chromatism, curve of the pick-up lens of embodiment 6, indicate light via after camera lens at
The deviation of different image heights in image planes.Figure 12 E show the relative illumination curve of the pick-up lens of embodiment 6, are expressed as
The corresponding relative illumination of difference image height in image planes.According to Figure 12 A to Figure 12 E it is found that the pick-up lens given by embodiment 6 can
Realize good image quality.
Embodiment 7
The pick-up lens according to the embodiment of the present application 7 is described referring to Figure 13 to Figure 14 E.Figure 13 is shown according to this
Apply for the structural schematic diagram of the pick-up lens of embodiment 7.
As shown in figure 13, it is sequentially wrapped by object side to image side along optical axis according to the pick-up lens of the application illustrative embodiments
It includes:First lens L1, the second lens L2, the third lens L3, diaphragm STO, the 4th lens L4, the 5th lens L5, the 6th lens L6,
7th lens L7, the 8th lens L8, optical filter L9 and imaging surface S19.
It is convex surface that first lens L1, which has positive light coke, object side S1, and image side surface S2 is concave surface.Second lens L2 has
Positive light coke, object side S3 are convex surface, and image side surface S4 is convex surface.The third lens L3 has positive light coke, and object side S5 is
Concave surface, image side surface S6 are convex surface.It is convex surface that 4th lens L4, which has negative power, object side S7, and image side surface S8 is concave surface.The
It is concave surface that five lens L5, which have negative power, object side S9, and image side surface S10 is concave surface.6th lens L6 has positive light coke,
Its object side S11 is convex surface, and image side surface S12 is concave surface.It is convex surface that 7th lens L7, which has negative power, object side S13, as
Side S14 is concave surface.It is convex surface that 8th lens L8, which has negative power, object side S15, and image side surface S16 is concave surface.Optical filter
L9 has object side S17 and image side surface S18.Light from object sequentially passes through each surface S1 to S18 and is ultimately imaged and is being imaged
On the S19 of face.
Table 19 shows surface type, radius of curvature, thickness, material and the circle of each lens of the pick-up lens of embodiment 7
Bore coefficient, wherein radius of curvature and the unit of thickness are millimeter (mm).
Table 19
As shown in Table 19, in embodiment 7, the object side of any one lens in the first lens L1 to the 8th lens L8
It is aspherical with image side surface.Table 20 shows the high-order coefficient that can be used for each aspherical mirror in embodiment 7, wherein each
Aspherical face type can be limited by the formula (1) provided in above-described embodiment 1.
Face number | A4 | A6 | A8 | A10 | A12 | A14 | A16 | A18 | A20 |
S1 | 4.8972E-02 | 1.3476E-03 | -1.7102E-01 | 3.3127E-01 | -3.5961E-01 | 2.3254E-01 | -8.7177E-02 | 1.7433E-02 | -1.4354E-03 |
S2 | -6.8501E-03 | -9.7884E-02 | -1.6260E-01 | 7.6402E-01 | -1.1500E+00 | 9.4557E-01 | -4.5022E-01 | 1.1667E-01 | -1.2765E-02 |
S3 | -1.3965E-02 | 1.5232E-02 | -6.6079E-01 | 2.0937E+00 | -3.1358E+00 | 2.7061E+00 | -1.3756E+00 | 3.8303E-01 | -4.5122E-02 |
S4 | 4.4401E-02 | -2.5900E-01 | 6.7007E-01 | -8.0077E-01 | 2.2655E-01 | 4.2843E-01 | -4.6358E-01 | 1.7771E-01 | -2.4073E-02 |
S5 | -2.1115E-03 | -6.5747E-02 | 4.0861E-01 | -8.5934E-01 | 7.6475E-01 | -1.9960E-01 | -1.1120E-01 | 7.4246E-02 | -1.0780E-02 |
S6 | -1.9032E-01 | 1.2482E+00 | -4.4081E+00 | 9.1514E+00 | -1.2045E+01 | 1.0204E+01 | -5.3919E+00 | 1.6149E+00 | -2.0883E-01 |
S7 | -2.1102E-01 | 1.1912E+00 | -4.4339E+00 | 9.7341E+00 | -1.3296E+01 | 1.1509E+01 | -6.1518E+00 | 1.8582E+00 | -2.4357E-01 |
S8 | -6.4582E-02 | -8.3919E-02 | 9.9668E-01 | -4.1852E+00 | 9.6611E+00 | -1.3072E+01 | 1.0349E+01 | -4.4425E+00 | 7.9930E-01 |
S9 | -2.2826E-02 | 9.8577E-02 | -5.0936E-01 | 1.2007E+00 | -1.6849E+00 | 1.4594E+00 | -7.6981E-01 | 2.2772E-01 | -2.8988E-02 |
S10 | -4.7581E-02 | 8.9371E-02 | -3.5280E-01 | 6.4386E-01 | -7.0246E-01 | 4.8303E-01 | -2.0741E-01 | 5.1338E-02 | -5.5833E-03 |
S11 | 1.1865E-01 | -1.4372E-01 | 5.0855E-02 | 5.8343E-02 | -1.1771E-01 | 9.1838E-02 | -3.8655E-02 | 8.5410E-03 | -7.6894E-04 |
S12 | -5.7954E-02 | 9.7736E-02 | -1.2094E-01 | 8.4492E-02 | -4.0320E-02 | 1.3217E-02 | -2.8008E-03 | 3.4176E-04 | -1.8081E-05 |
S13 | -1.3696E-02 | -1.2510E-01 | 1.7314E-01 | -1.5616E-01 | 8.4179E-02 | -2.7064E-02 | 5.1593E-03 | -5.4144E-04 | 2.4161E-05 |
S14 | -1.3727E-01 | 5.6237E-02 | -1.5150E-02 | -6.6821E-03 | 6.6187E-03 | -2.1911E-03 | 3.7082E-04 | -3.2207E-05 | 1.1383E-06 |
S15 | -4.6156E-01 | 2.4562E-01 | -7.3786E-02 | 1.1157E-02 | -7.7746E-05 | -2.7058E-04 | 4.5678E-05 | -3.2669E-06 | 9.0148E-08 |
S16 | -3.3574E-01 | 2.1718E-01 | -1.0344E-01 | 3.5457E-02 | -8.3373E-03 | 1.2820E-03 | -1.2190E-04 | 6.4739E-06 | -1.4655E-07 |
Table 20
Table 21 provides the effective picture of electronics light sensitive component of the optics total length TTL of pick-up lens in embodiment 7, pick-up lens
Half ImgH, total effective focal length f of pick-up lens and the effective focal length f1 to f8 of each lens of plain region diagonal line length.
TTL(mm) | 5.41 | f4(mm) | -8.09 |
ImgH(mm) | 3.70 | f5(mm) | -306.28 |
f(mm) | 4.30 | f6(mm) | 25.69 |
f1(mm) | 8.51 | f7(mm) | -16.70 |
f2(mm) | 6.38 | f8(mm) | -34.17 |
f3(mm) | 29.56 |
Table 21
Figure 14 A show chromatic curve on the axis of the pick-up lens of embodiment 7, indicate the light of different wave length via mirror
Converging focal point after head deviates.Figure 14 B show the astigmatism curve of the pick-up lens of embodiment 7, indicate meridianal image surface bending
It is bent with sagittal image surface.Figure 14 C show the distortion curve of the pick-up lens of embodiment 7, indicate that different image heights are corresponding abnormal
Become sizes values.Figure 14 D show the ratio chromatism, curve of the pick-up lens of embodiment 7, indicate light via after camera lens at
The deviation of different image heights in image planes.Figure 14 E show the relative illumination curve of the pick-up lens of embodiment 7, are expressed as
The corresponding relative illumination of difference image height in image planes.According to Figure 14 A to Figure 14 E it is found that the pick-up lens given by embodiment 7 can
Realize good image quality.
To sum up, embodiment 1 to embodiment 7 meets relationship shown in table 22 respectively.
Table 22
The application also provides a kind of photographic device, and electronics photosensitive element can be photosensitive coupling element (CCD) or complementation
Property matal-oxide semiconductor element (CMOS).Photographic device can be the independent picture pick-up device of such as digital camera, can also be
The photographing module being integrated on the mobile electronic devices such as mobile phone.The imaging device is equipped with pick-up lens described above.
Above description is only the preferred embodiment of the application and the explanation to institute's application technology principle.People in the art
Member should be appreciated that invention scope involved in the application, however it is not limited to technology made of the specific combination of above-mentioned technical characteristic
Scheme, while should also cover in the case where not departing from the inventive concept, it is carried out by above-mentioned technical characteristic or its equivalent feature
Other technical solutions of arbitrary combination and formation.Such as features described above has similar work(with (but not limited to) disclosed herein
Can technical characteristic replaced mutually and the technical solution that is formed.
Claims (18)
1. pick-up lens includes sequentially by object side to image side along optical axis:First lens, the second lens, the third lens, the 4th are thoroughly
Mirror, the 5th lens, the 6th lens, the 7th lens and the 8th lens, which is characterized in that
It is convex surface that first lens, which have positive light coke, object side,;
It is convex surface that second lens, which have focal power, image side surface,;
The third lens have focal power;
4th lens have focal power;
5th lens have focal power;
6th lens have focal power;
7th lens have focal power;
It is convex surface that 8th lens, which have focal power, object side, and image side surface is concave surface;And
Imaging surface distance TTL on the optical axis and the camera shooting of the object side of first lens to the pick-up lens
The half ImgH of the electronics light sensitive component effective pixel area diagonal line length of camera lens meets TTL/ImgH < 1.65.
2. pick-up lens according to claim 1, which is characterized in that total effective focal length f of the pick-up lens with it is described
The Entry pupil diameters EPD of pick-up lens meets f/EPD < 1.9.
3. pick-up lens according to claim 1, which is characterized in that total effective focal length f of the pick-up lens with it is described
The effective focal length f1 of first lens meets f/f1 < 0.7.
4. pick-up lens according to claim 3, which is characterized in that
Second lens have positive light coke, and
The effective focal length f1 of first lens and the effective focal length f2 of second lens meet 1 < f1/f2 < 1.5.
5. pick-up lens according to claim 1, which is characterized in that
The third lens have positive light coke, and
The radius of curvature R 6 of the image side surface of the third lens and the effective focal length f3 of the third lens meet -0.6 < R6/f3
< 0.
6. pick-up lens according to claim 1, which is characterized in that the radius of curvature of the object side of the 8th lens
The radius of curvature R 16 of R15 and the image side surface of the 8th lens meet 1 < R15/R16 < 1.5.
7. pick-up lens according to claim 1, which is characterized in that the effective radius of the object side of first lens
The effective radius DT82 of DT11 and the image side surface of the 8th lens meet 0.3 < DT11/DT82 < 0.8.
8. pick-up lens according to claim 1, which is characterized in that the effective radius of the object side of first lens
The effective radius DT52 of DT11 and the image side surface of the 5th lens meet 0.9 < DT11/DT52 < 1.3.
9. pick-up lens according to claim 1, which is characterized in that the friendship of the 4th the lens image side surface and the optical axis
Point is to distance SAG42 on the axis between the effective radius vertex of the 4th lens image side surface and the 4th lens in the light
Center thickness CT4 on axis meets 0.7 < SAG42/CT4 < 1.3.
10. pick-up lens according to claim 1, which is characterized in that the object side of the 6th lens is convex surface, image side
Face is concave surface.
11. pick-up lens according to claim 10, which is characterized in that the 6th lens image side surface and the optical axis
On intersection point to the axis between the effective radius vertex of the 6th lens image side surface distance SAG62 with the 6th lens in described
Center thickness CT6 on optical axis meets -0.5 < SAG62/CT6 < 0.
12. pick-up lens according to claim 11, which is characterized in that the critical point of the 6th lens image side surface to institute
The effective radius DT62 of the vertical range YC62 and the 6th lens image side surface that state optical axis meet 0.4 < YC62/DT62 <
0.9。
13. pick-up lens according to claim 1, which is characterized in that the radius of curvature of the object side of the 6th lens
The radius of curvature R 12 of R11 and the image side surface of the 6th lens meet 0 < | (R11-R12)/(R11+R12) | < 0.3.
14. pick-up lens according to claim 1, which is characterized in that the radius of curvature of the object side of the 6th lens
The radius of curvature R 14 of R11 and the image side surface of the 7th lens meet 0.7 < R11/R14 < 1.2.
15. the pick-up lens according to any one of claim 1 to 14, which is characterized in that the third lens and described
Between spacing distance T34 and the 4th lens of 4th lens on the optical axis and the 5th lens are on the optical axis
Gauge meets 0 < T34 × 10/T45 < 0.5 from T45.
16. the pick-up lens according to any one of claim 1 to 14, which is characterized in that the 5th lens are in described
Center thickness CT5, the 6th lens on optical axis on the optical axis center thickness CT6, the 7th lens are in described
Center thickness CT7 on optical axis and the 8th lens in the center thickness CT8 on the optical axis meet 0.5 < (CT5+CT6)/
(CT7+CT8) 1 <.
17. the pick-up lens according to any one of claim 1 to 14, which is characterized in that first lens are to described
8th lens respectively the summation ∑ ET of the edge thickness on being parallel to the optical axis direction and first lens to described the
Eight lens meet 0.6 < ∑ ET/ ∑s CT≤1 respectively at the summation ∑ CT of the center thickness on the optical axis.
18. pick-up lens includes sequentially by object side to image side along optical axis:First lens, the second lens, the third lens, the 4th are thoroughly
Mirror, the 5th lens, the 6th lens, the 7th lens and the 8th lens, which is characterized in that
It is convex surface that first lens, which have positive light coke, object side,;
It is convex surface that second lens, which have positive light coke, image side surface,;
The third lens have focal power;
4th lens have focal power;
5th lens have focal power;
6th lens have focal power;
7th lens have focal power;
It is convex surface that 8th lens, which have focal power, object side, and image side surface is concave surface;And
The effective focal length f1 of first lens and the effective focal length f2 of second lens meet 1 < f1/f2 < 1.5.
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202111373324.6A CN113917667B (en) | 2018-06-26 | 2018-06-26 | Image pickup lens |
CN201810667822.3A CN108594407B (en) | 2018-06-26 | 2018-06-26 | Image pickup lens |
PCT/CN2019/077463 WO2020001066A1 (en) | 2018-06-26 | 2019-03-08 | Camera lens |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201810667822.3A CN108594407B (en) | 2018-06-26 | 2018-06-26 | Image pickup lens |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202111373324.6A Division CN113917667B (en) | 2018-06-26 | 2018-06-26 | Image pickup lens |
Publications (2)
Publication Number | Publication Date |
---|---|
CN108594407A true CN108594407A (en) | 2018-09-28 |
CN108594407B CN108594407B (en) | 2023-06-06 |
Family
ID=63634302
Family Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202111373324.6A Active CN113917667B (en) | 2018-06-26 | 2018-06-26 | Image pickup lens |
CN201810667822.3A Active CN108594407B (en) | 2018-06-26 | 2018-06-26 | Image pickup lens |
Family Applications Before (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202111373324.6A Active CN113917667B (en) | 2018-06-26 | 2018-06-26 | Image pickup lens |
Country Status (2)
Country | Link |
---|---|
CN (2) | CN113917667B (en) |
WO (1) | WO2020001066A1 (en) |
Cited By (23)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN109375349A (en) * | 2018-12-25 | 2019-02-22 | 浙江舜宇光学有限公司 | Imaging lens |
WO2020001066A1 (en) * | 2018-06-26 | 2020-01-02 | 浙江舜宇光学有限公司 | Camera lens |
CN110908089A (en) * | 2019-12-28 | 2020-03-24 | 瑞声通讯科技(常州)有限公司 | Image pickup optical lens |
CN111007654A (en) * | 2019-12-28 | 2020-04-14 | 瑞声通讯科技(常州)有限公司 | Image pickup optical lens |
CN111025591A (en) * | 2019-12-28 | 2020-04-17 | 瑞声通讯科技(常州)有限公司 | Image pickup optical lens |
CN111142229A (en) * | 2019-12-28 | 2020-05-12 | 瑞声通讯科技(常州)有限公司 | Image pickup optical lens |
CN111624737A (en) * | 2020-06-10 | 2020-09-04 | 南昌欧菲精密光学制品有限公司 | Optical lens assembly, lens module and electronic equipment |
CN111929807A (en) * | 2019-05-13 | 2020-11-13 | 三星电机株式会社 | Optical imaging system |
CN112099200A (en) * | 2020-11-02 | 2020-12-18 | 瑞泰光学(常州)有限公司 | Image pickup optical lens |
CN112099201A (en) * | 2020-11-02 | 2020-12-18 | 瑞泰光学(常州)有限公司 | Image pickup optical lens |
WO2021114242A1 (en) * | 2019-12-13 | 2021-06-17 | 诚瑞光学(常州)股份有限公司 | Camera optical lens |
WO2021114243A1 (en) * | 2019-12-13 | 2021-06-17 | 诚瑞光学(常州)股份有限公司 | Image pickup optical camera |
WO2021127815A1 (en) * | 2019-12-23 | 2021-07-01 | 诚瑞光学(常州)股份有限公司 | Camera optical lens |
WO2021128387A1 (en) * | 2019-12-28 | 2021-07-01 | 诚瑞光学(常州)股份有限公司 | Camera optical lens |
WO2021128399A1 (en) * | 2019-12-28 | 2021-07-01 | 诚瑞光学(常州)股份有限公司 | Optical camera lens |
WO2021128386A1 (en) * | 2019-12-28 | 2021-07-01 | 诚瑞光学(常州)股份有限公司 | Camera optical lens |
WO2021128396A1 (en) * | 2019-12-28 | 2021-07-01 | 诚瑞光学(常州)股份有限公司 | Camera optical lens |
US11226473B2 (en) * | 2018-12-28 | 2022-01-18 | Samsung Electro-Mechanics Co., Ltd. | Optical imaging system including eight lenses of +++−+−+−, −++−+++− or +−+−++−− refractive powers |
US11237364B2 (en) * | 2018-12-27 | 2022-02-01 | Aac Optics Solutions Pte. Ltd. | Camera optical lens including six lenses of +++-+- refractive powers |
WO2022088358A1 (en) * | 2020-11-02 | 2022-05-05 | 诚瑞光学(深圳)有限公司 | Optical camera lens |
WO2022088357A1 (en) * | 2020-11-02 | 2022-05-05 | 诚瑞光学(深圳)有限公司 | Photography optical lens |
TWI785869B (en) * | 2020-06-22 | 2022-12-01 | 大陸商玉晶光電(廈門)有限公司 | Optical imaging lens |
US11531191B2 (en) | 2020-01-20 | 2022-12-20 | Largan Precision Co., Ltd. | Photographing optical lens assembly including eight lenses of +−+−−++−, +−++−++−, ++++−++−or +−+−+−+− refractive powers, imaging apparatus and electronic device |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN113163075B (en) * | 2020-01-22 | 2023-11-03 | 华为技术有限公司 | Lens, camera module and terminal equipment |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20020048092A1 (en) * | 2000-08-23 | 2002-04-25 | Asahi Kogaku Kogyo Kabushiki Kaisha | Intermediate telephoto lens system |
CN105319683A (en) * | 2013-07-31 | 2016-02-10 | 玉晶光电(厦门)有限公司 | Optical imaging lens |
CN106443987A (en) * | 2015-08-11 | 2017-02-22 | 大立光电股份有限公司 | Optical system for image pickup, image capturing device and electronic device |
CN107678140A (en) * | 2017-10-24 | 2018-02-09 | 浙江舜宇光学有限公司 | Optical imaging lens |
CN107703608A (en) * | 2017-11-22 | 2018-02-16 | 浙江舜宇光学有限公司 | Optical imaging lens |
Family Cites Families (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
TWI351530B (en) * | 2007-07-05 | 2011-11-01 | Largan Precision Co Ltd | Inverse telephoto with correction lenses |
TWI388878B (en) * | 2008-12-01 | 2013-03-11 | Largan Precision Co Ltd | Optical lens system for taking image |
TWI553341B (en) * | 2015-08-11 | 2016-10-11 | 大立光電股份有限公司 | Photographing optical lens assembly, image capturing unit and electronic device |
JP2017173807A (en) * | 2016-03-16 | 2017-09-28 | Hoya株式会社 | Image capturing optical system |
CN107085285B (en) * | 2017-07-05 | 2022-09-30 | 浙江舜宇光学有限公司 | Optical imaging lens |
CN208521055U (en) * | 2018-06-26 | 2019-02-19 | 浙江舜宇光学有限公司 | Pick-up lens |
CN113917667B (en) * | 2018-06-26 | 2024-08-27 | 浙江舜宇光学有限公司 | Image pickup lens |
-
2018
- 2018-06-26 CN CN202111373324.6A patent/CN113917667B/en active Active
- 2018-06-26 CN CN201810667822.3A patent/CN108594407B/en active Active
-
2019
- 2019-03-08 WO PCT/CN2019/077463 patent/WO2020001066A1/en active Application Filing
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20020048092A1 (en) * | 2000-08-23 | 2002-04-25 | Asahi Kogaku Kogyo Kabushiki Kaisha | Intermediate telephoto lens system |
CN105319683A (en) * | 2013-07-31 | 2016-02-10 | 玉晶光电(厦门)有限公司 | Optical imaging lens |
CN106443987A (en) * | 2015-08-11 | 2017-02-22 | 大立光电股份有限公司 | Optical system for image pickup, image capturing device and electronic device |
CN107678140A (en) * | 2017-10-24 | 2018-02-09 | 浙江舜宇光学有限公司 | Optical imaging lens |
CN107703608A (en) * | 2017-11-22 | 2018-02-16 | 浙江舜宇光学有限公司 | Optical imaging lens |
Cited By (33)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2020001066A1 (en) * | 2018-06-26 | 2020-01-02 | 浙江舜宇光学有限公司 | Camera lens |
CN109375349B (en) * | 2018-12-25 | 2024-05-14 | 浙江舜宇光学有限公司 | Imaging lens |
CN109375349A (en) * | 2018-12-25 | 2019-02-22 | 浙江舜宇光学有限公司 | Imaging lens |
US11237364B2 (en) * | 2018-12-27 | 2022-02-01 | Aac Optics Solutions Pte. Ltd. | Camera optical lens including six lenses of +++-+- refractive powers |
US11226473B2 (en) * | 2018-12-28 | 2022-01-18 | Samsung Electro-Mechanics Co., Ltd. | Optical imaging system including eight lenses of +++−+−+−, −++−+++− or +−+−++−− refractive powers |
CN114624861A (en) * | 2018-12-28 | 2022-06-14 | 三星电机株式会社 | Optical imaging system |
CN114609757A (en) * | 2019-05-13 | 2022-06-10 | 三星电机株式会社 | Optical imaging system |
CN111929807A (en) * | 2019-05-13 | 2020-11-13 | 三星电机株式会社 | Optical imaging system |
US12013592B2 (en) | 2019-05-13 | 2024-06-18 | Samsung Electro-Mechanics Co., Ltd. | Optical imaging system including eight lenses of ++−+−+−− or ++−+−++− refractive powers |
WO2021114242A1 (en) * | 2019-12-13 | 2021-06-17 | 诚瑞光学(常州)股份有限公司 | Camera optical lens |
WO2021114243A1 (en) * | 2019-12-13 | 2021-06-17 | 诚瑞光学(常州)股份有限公司 | Image pickup optical camera |
WO2021127815A1 (en) * | 2019-12-23 | 2021-07-01 | 诚瑞光学(常州)股份有限公司 | Camera optical lens |
CN111007654B (en) * | 2019-12-28 | 2021-09-24 | 诚瑞光学(常州)股份有限公司 | Image pickup optical lens |
CN111142229B (en) * | 2019-12-28 | 2021-09-24 | 诚瑞光学(常州)股份有限公司 | Image pickup optical lens |
WO2021128399A1 (en) * | 2019-12-28 | 2021-07-01 | 诚瑞光学(常州)股份有限公司 | Optical camera lens |
WO2021128386A1 (en) * | 2019-12-28 | 2021-07-01 | 诚瑞光学(常州)股份有限公司 | Camera optical lens |
WO2021128396A1 (en) * | 2019-12-28 | 2021-07-01 | 诚瑞光学(常州)股份有限公司 | Camera optical lens |
CN110908089B (en) * | 2019-12-28 | 2021-09-24 | 诚瑞光学(常州)股份有限公司 | Image pickup optical lens |
CN110908089A (en) * | 2019-12-28 | 2020-03-24 | 瑞声通讯科技(常州)有限公司 | Image pickup optical lens |
WO2021128387A1 (en) * | 2019-12-28 | 2021-07-01 | 诚瑞光学(常州)股份有限公司 | Camera optical lens |
CN111142229A (en) * | 2019-12-28 | 2020-05-12 | 瑞声通讯科技(常州)有限公司 | Image pickup optical lens |
CN111025591A (en) * | 2019-12-28 | 2020-04-17 | 瑞声通讯科技(常州)有限公司 | Image pickup optical lens |
CN111007654A (en) * | 2019-12-28 | 2020-04-14 | 瑞声通讯科技(常州)有限公司 | Image pickup optical lens |
US11953657B2 (en) | 2020-01-20 | 2024-04-09 | Largan Precision Co., Ltd. | Photographing optical lens assembly including eight lenses of +−+−−++−, +−++−++−, ++++−++− or +−+−+−+− refractive powers, imaging apparatus and electronic device |
US11531191B2 (en) | 2020-01-20 | 2022-12-20 | Largan Precision Co., Ltd. | Photographing optical lens assembly including eight lenses of +−+−−++−, +−++−++−, ++++−++−or +−+−+−+− refractive powers, imaging apparatus and electronic device |
CN111624737A (en) * | 2020-06-10 | 2020-09-04 | 南昌欧菲精密光学制品有限公司 | Optical lens assembly, lens module and electronic equipment |
TWI785869B (en) * | 2020-06-22 | 2022-12-01 | 大陸商玉晶光電(廈門)有限公司 | Optical imaging lens |
CN112099200A (en) * | 2020-11-02 | 2020-12-18 | 瑞泰光学(常州)有限公司 | Image pickup optical lens |
WO2022088357A1 (en) * | 2020-11-02 | 2022-05-05 | 诚瑞光学(深圳)有限公司 | Photography optical lens |
WO2022088356A1 (en) * | 2020-11-02 | 2022-05-05 | 诚瑞光学(深圳)有限公司 | Camera optical lens |
WO2022088358A1 (en) * | 2020-11-02 | 2022-05-05 | 诚瑞光学(深圳)有限公司 | Optical camera lens |
WO2022088359A1 (en) * | 2020-11-02 | 2022-05-05 | 诚瑞光学(深圳)有限公司 | Photographing optical lens |
CN112099201A (en) * | 2020-11-02 | 2020-12-18 | 瑞泰光学(常州)有限公司 | Image pickup optical lens |
Also Published As
Publication number | Publication date |
---|---|
CN113917667A (en) | 2022-01-11 |
WO2020001066A1 (en) | 2020-01-02 |
CN108594407B (en) | 2023-06-06 |
CN113917667B (en) | 2024-08-27 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN108594407A (en) | Pick-up lens | |
CN108181701B (en) | Optical imagery eyeglass group | |
CN107315236B (en) | Imaging lens system group | |
CN108445610A (en) | Optical imagery eyeglass group | |
CN108873253A (en) | Pick-up lens | |
CN208521055U (en) | Pick-up lens | |
CN110412749A (en) | Optical imaging lens | |
CN108681040A (en) | Optical imagery eyeglass group | |
CN110068915A (en) | Optical imaging system | |
CN108535843A (en) | Optical imaging system | |
CN108469668A (en) | Imaging lens | |
CN108535848A (en) | Optical imagery eyeglass group | |
CN207473174U (en) | Imaging lens system group | |
CN108469669A (en) | Pick-up lens | |
CN109491047A (en) | Optical imaging lens | |
CN108761730A (en) | Pick-up lens | |
CN208506350U (en) | Pick-up lens | |
CN109541785A (en) | Optical lens group | |
CN209102995U (en) | Optical imaging lens group | |
CN109239891A (en) | optical imaging lens group | |
CN109298511A (en) | Optical imaging system | |
CN109358410A (en) | Optical imagery eyeglass group | |
CN208076814U (en) | Optical imagery eyeglass group | |
CN108761737A (en) | Optical imaging system | |
CN207336905U (en) | Pick-up lens |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |