CN108592825A - 一种基于差动补偿的光电自准直装置及方法 - Google Patents

一种基于差动补偿的光电自准直装置及方法 Download PDF

Info

Publication number
CN108592825A
CN108592825A CN201810516238.8A CN201810516238A CN108592825A CN 108592825 A CN108592825 A CN 108592825A CN 201810516238 A CN201810516238 A CN 201810516238A CN 108592825 A CN108592825 A CN 108592825A
Authority
CN
China
Prior art keywords
measured
plane mirror
differential compensation
amici prism
image sensor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201810516238.8A
Other languages
English (en)
Inventor
程灏波
郭延
文永富
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shenzhen Research Institute Beijing Institute Of Technology
Original Assignee
Shenzhen Research Institute Beijing Institute Of Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shenzhen Research Institute Beijing Institute Of Technology filed Critical Shenzhen Research Institute Beijing Institute Of Technology
Priority to CN201810516238.8A priority Critical patent/CN108592825A/zh
Publication of CN108592825A publication Critical patent/CN108592825A/zh
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • G01B11/26Measuring arrangements characterised by the use of optical techniques for measuring angles or tapers; for testing the alignment of axes

Abstract

本发明涉及精密仪器制造和测试计量技术领域,具体公开了一种基于差动补偿的光电自准直装置及方法。该装置包括光源、小孔光阑、第一分光棱镜、准直物镜、差动补偿器、待测平面镜、CCD图像传感器。本装置采用的差动补偿器能克服已有装置和方法中的不足,使得参考光束和测量光束在空间上足够靠近,因此两束光中的漂移是近似相同的,差分后可有效减小示值漂移,具有较高的测量精度和抗干扰能力。

Description

一种基于差动补偿的光电自准直装置及方法
技术领域
本发明涉及精密仪器制造和测试计量技术领域,具体涉及了一种基于差动补偿的光电自准直装置及方法。
背景技术
随着现代工业生产水平的不断提高,对测试计量技术的精度也提出了更高要求。在小角度精密测量方面,自准直仪由于具有较高的精度和分辨力,且结构简单,成本较低,因而得到了广泛应用,例如导轨的直线度测量、台面的平面度测量、转台的不确定度标定、光学系统和机械设备的安装调试等,是机械制造、航空航天、测试计量等科研部门必备的测量仪器。
激光由于单色性好、方向性好、亮度高的优点,常用作自准直仪的光源。但由于激光器谐振腔在工作时的热变形、固定激光器的机械装置的松动、还有光路附近诸如温度、湿度、气流等环境因素都会引起示值漂移,这极大地限制了角度测量精度和稳定性的提高。为此,研究者们提出了单模光纤法、闭环反馈控制法、对称双光束法等方法,但此类方法只能抑制由激光器本身产生的漂移,无法抑制光路中环境因素引起的漂移,因而补偿效果不佳。后来,研究者们又提出一种共光路补偿方法,其基本原理是利用一个特制的靶标反射镜将入射的准直光束分成测量光束和参考光束。测量光束携带有待测角度和漂移量信息,而参考光束只携带有漂移量信息,两束光沿相同的路径传输,因而它们携带的漂移量应相等,通过参考光束的漂移量补偿测量光束的漂移量可以得到待测平面镜准确的偏转角度。现有的靶标反射镜是基于角锥棱镜组合而成的,由于角锥棱镜的逆向反射特性,当偏转角度过大时,参考光束和测量光束在空间上分开一定的距离,并未沿相同的路径传输,参考光束与测量光束的漂移量不一致,且随着测量距离的增大不一致性越严重,所以补偿效果有限,制约了角度测量精度的进一步提高。
发明内容
本发明的目的是为了克服已有装置和方法中的不足,提供了一种基于差动补偿的光电自准直装置及方法,实现高精度自准直角度测量。
本发明的技术方案是:一种基于差动补偿的光电自准直装置,包括光源、小孔光阑、第一分光棱镜、准直物镜、差动补偿器、待测平面镜、CCD图像传感器,差动补偿器由第二分光棱镜和参考平面镜组成。
所述光源为半导体激光二极管。
本发明还提供了一种基于差动补偿的光电自准直方法,该方法包括以下步骤:
步骤一、光源发出的光束经小孔光阑、第一分光棱镜和准直物镜后形成准直光束并出射;
步骤二、所述的准直光束入射至差动补偿器,该差动补偿器的第二分光棱镜将入射的准直光束分为透射光束和反射光束;
步骤三、步骤二获得的透射光束经待测平面镜反射后作为测量光束,所述测量光束携带了待测平面镜的偏转角度信息并沿原光路返回,再次经第二分光棱镜、准直物镜和第一分光棱镜后被CCD图像传感器所接收,形成测量信号;
步骤四、步骤二获得的反射光束经参考平面镜反射后作为参考光束,所述参考光束携带了光束漂移量信息并沿原光路返回,再次经第二分光棱镜、准直物镜和第一分光棱镜后被CCD图像传感器所接收,形成参考信号;
步骤五、将所述待测平面镜旋转,根据自准直原理可计算出待测平面镜的偏转角度:
其中:θ为待测平面镜的偏转角度,Δ为测量光束的光斑在CCD图像传感器上的位移,f为准直物镜的焦距;
步骤六、将所述参考平面镜旋转,直到CCD图像传感器上测量光束的光斑与参考光束的光斑足够靠近且完全分离;
步骤七、根据参考光束计算出漂移量,实时补偿测量光束中的漂移量,依据差动补偿公式计算出待测平面镜的准确偏转角度:
其中:θ’为待测平面镜的准确偏转角度,δΔ为参考光束的光斑在CCD图像传感器上的位置漂移量。
本发明的显著效果在于:一种基于差动补偿的光电自准直装置及方法,能够利用差动补偿器产生一束与测量光束几乎完全共光路传输的参考光束,使得两束光中由环境因素引起的漂移量是相同的。同时,两束光来源于同一个光源,且经历了相同的光学元件,并最终被一个CCD图像传感器所接收,因此两束光中由光源本身、光学及机械元件的形变、电子器件噪声等因素引起的漂移量也是相同的。参考光束能精确表征测量光束的漂移量,补偿后可大幅提高待测平面镜偏转角度的测量精度和稳定性。
附图说明
图1为本发明装置的结构示意图;
图2为参考光束与测量光束未共光路传播时的示意图;
图3为参考光束与测量光束共光路传播时的示意图;
图4为参考光束与测量光束共光路传播时CCD图像传感器上光斑位置示意图;
图中:1-光源;2-小孔光阑;3-第一分光棱镜;4-准直物镜;5-第二分光棱镜;6-待测平面镜;7-参考平面镜;8-CCD图像传感器。
具体实施方式
为使本领域的人员更好地理解本发明的技术方案,下面结合附图及具体实施例对本发明作进一步详细说明。具体实施例如下:
如图1所示,一种基于差动补偿的光电自准直装置,包括光源1、小孔光阑2、第一分光棱镜3、准直物镜4、第二分光棱镜5、待测平面镜6、参考平面镜7、CCD图像传感器8,其光束的传播路径如下:
所述光源1为半导体激光二极管,发出的光束照射到小孔光阑2后形成一个点光源,经第一分光棱镜3和准直物镜4后成为准直光束平行出射至第二分光棱镜5,第二分光棱镜5将该光束分为透射光束和反射光束,透射光束经待测平面镜6反射后成为测量光束,携带有待测平面镜的偏转角度信息,并再次通过第二分光棱镜5后沿原光路返回;反射光束经参考平面镜7反射后成为参考光束,由于参考平面镜暂时不动,故参考光束仅携带光束的漂移量信息,参考光束再次经第二分光棱镜5反射后沿原光路返回;测量光束和参考光束经准直物镜4和第一分光棱镜3后被放置在准直物镜4的焦平面处的CCD图像传感器8所接收,分别形成测量信号和参考信号。
如图2所示,准直光束以α角投射到待测平面镜6,α表示角度漂移量,如果将待测平面镜6相对于光轴旋转θ角,则测量光束经待测平面镜6反射后将旋转2θ角,此时测量光束和参考光束与光轴的夹角分别为2θ+α和α,两束光并未沿共同的光路返回,环境因素引起的两束光中的漂移量不一致,补偿效果有限。
如图3所示,将参考平面镜7旋转角,使得参考光束靠近测量光束,直到CCD图像传感器8上参考光束与测量光束的光斑足够靠近且完全分离。此时,两束光中由环境因素引起的漂移量相同,且该两束光来源于同一个光源1,经过相同的光学元件,最终被同一个CCD图像传感器8所接收,因此两束光中由光源本身、光学及机械元件的形变、电子器件噪声等因素引起的漂移量也相同。参考光束能精确表征测量光束的漂移量,根据自准直原理和差动补偿公式,可计算出待测平面镜6的准确偏转角度:
其中,θ’为待测平面镜6的准确偏转角度,Δ和δΔ分别为测量光束和参考光束的光斑在CCD图像传感器8上的位移和位置漂移量,f为准直物镜4的焦距。
如图4所示,当参考光束与测量光束共光路传播时,CCD图像传感器8上的两光斑非常靠近。
此外,值得说明的是,虽然本说明书按照实施方式加以描述,但并非每个实施方式仅包含一个独立的技术方案,说明书的这种叙述方式仅仅是为清楚起见,本领域技术人员应当将说明书作为一个整体,各实施例中的技术方案也可以经适当组合,形成本领域技术人员可以理解的其他实施方式。

Claims (3)

1.一种基于差动补偿的光电自准直装置,包括光源、小孔光阑、第一分光棱镜、准直物镜、差动补偿器、待测平面镜、CCD图像传感器,其特征在于,差动补偿器由第二分光棱镜和参考平面镜组成。
2.根据权利要求1所述的装置,其特征在于所述光源为半导体激光二极管。
3.根据权利要求1所述的一种基于差动补偿的光电自准直方法,其特征在于,该方法包括以下步骤:
步骤一、光源发出的光束经小孔光阑、第一分光棱镜和准直物镜后形成准直光束并出射;
步骤二、所述的准直光束入射至差动补偿器,该差动补偿器的第二分光棱镜将入射的准直光束分为透射光束和反射光束;
步骤三、步骤二获得的透射光束经待测平面镜反射后作为测量光束,所述测量光束携带了待测平面镜的偏转角度信息并沿原光路返回,再次经第二分光棱镜、准直物镜和第一分光棱镜后被CCD图像传感器所接收,形成测量信号;
步骤四、步骤二获得的反射光束经参考平面镜反射后作为参考光束,所述参考光束携带了光束漂移量信息并沿原光路返回,再次经第二分光棱镜、准直物镜和第一分光棱镜后被CCD图像传感器所接收,形成参考信号;
步骤五、将所述待测平面镜旋转,根据自准直原理可计算出待测平面镜的偏转角度:
其中:θ为待测平面镜的偏转角度,Δ为测量光束的光斑在CCD图像传感器上的位移,f为准直物镜的焦距;
步骤六、将所述参考平面镜旋转,直到CCD图像传感器上测量光束的光斑与参考光束的光斑足够靠近且完全分离;
步骤七、根据参考光束计算出漂移量,实时补偿测量光束中的漂移量,依据差动补偿公式计算出待测平面镜的准确偏转角度:
其中:θ’为待测平面镜的准确偏转角度,δΔ为参考光束的光斑在CCD图像传感器上的位置漂移量。
CN201810516238.8A 2018-05-25 2018-05-25 一种基于差动补偿的光电自准直装置及方法 Pending CN108592825A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201810516238.8A CN108592825A (zh) 2018-05-25 2018-05-25 一种基于差动补偿的光电自准直装置及方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201810516238.8A CN108592825A (zh) 2018-05-25 2018-05-25 一种基于差动补偿的光电自准直装置及方法

Publications (1)

Publication Number Publication Date
CN108592825A true CN108592825A (zh) 2018-09-28

Family

ID=63629535

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201810516238.8A Pending CN108592825A (zh) 2018-05-25 2018-05-25 一种基于差动补偿的光电自准直装置及方法

Country Status (1)

Country Link
CN (1) CN108592825A (zh)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109579778A (zh) * 2019-01-11 2019-04-05 哈尔滨工业大学 一种基于双波长分光自准直三维角度测量装置与方法
CN109870120A (zh) * 2019-03-09 2019-06-11 中国人民解放军国防科技大学 一种基于激光偏振测量的转体微小角位移高灵敏监测系统
CN112083578A (zh) * 2020-08-26 2020-12-15 中国科学院西安光学精密机械研究所 用于光电设备像面对接的目标模拟器、调试系统及方法
CN113639677A (zh) * 2021-07-30 2021-11-12 哈尔滨工业大学 基于波前校正的高频响二维光电自准直方法与装置
CN116300055A (zh) * 2023-05-17 2023-06-23 北京极光星通科技有限公司 一种限位系统及其限位方法
CN116878829A (zh) * 2023-09-08 2023-10-13 中国工程物理研究院流体物理研究所 一种中红外消色差双棱镜偏转角度自准直标定系统及方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1687702A (zh) * 2005-05-27 2005-10-26 哈尔滨工业大学 基于动态差动补偿方法的二维光电自准直装置和测量方法
CN1719192A (zh) * 2005-06-23 2006-01-11 哈尔滨工业大学 基于光程倍增补偿方法的二维光电自准直装置和测量方法
CN102589853A (zh) * 2012-01-16 2012-07-18 北京理工大学 自准直式差动共焦透镜焦距测量方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1687702A (zh) * 2005-05-27 2005-10-26 哈尔滨工业大学 基于动态差动补偿方法的二维光电自准直装置和测量方法
CN1719192A (zh) * 2005-06-23 2006-01-11 哈尔滨工业大学 基于光程倍增补偿方法的二维光电自准直装置和测量方法
CN102589853A (zh) * 2012-01-16 2012-07-18 北京理工大学 自准直式差动共焦透镜焦距测量方法

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109579778A (zh) * 2019-01-11 2019-04-05 哈尔滨工业大学 一种基于双波长分光自准直三维角度测量装置与方法
CN109579778B (zh) * 2019-01-11 2021-05-11 哈尔滨工业大学 一种基于双波长分光自准直三维角度测量装置与方法
CN109870120A (zh) * 2019-03-09 2019-06-11 中国人民解放军国防科技大学 一种基于激光偏振测量的转体微小角位移高灵敏监测系统
CN112083578A (zh) * 2020-08-26 2020-12-15 中国科学院西安光学精密机械研究所 用于光电设备像面对接的目标模拟器、调试系统及方法
CN112083578B (zh) * 2020-08-26 2021-06-22 中国科学院西安光学精密机械研究所 用于光电设备像面对接的目标模拟器、调试系统及方法
CN113639677A (zh) * 2021-07-30 2021-11-12 哈尔滨工业大学 基于波前校正的高频响二维光电自准直方法与装置
CN113639677B (zh) * 2021-07-30 2024-02-09 哈尔滨工业大学 基于波前校正的高频响二维光电自准直方法与装置
CN116300055A (zh) * 2023-05-17 2023-06-23 北京极光星通科技有限公司 一种限位系统及其限位方法
CN116878829A (zh) * 2023-09-08 2023-10-13 中国工程物理研究院流体物理研究所 一种中红外消色差双棱镜偏转角度自准直标定系统及方法

Similar Documents

Publication Publication Date Title
CN108592825A (zh) 一种基于差动补偿的光电自准直装置及方法
CN107228638B (zh) 基于光束漂移补偿的五自由度误差同时测量的方法与装置
CN101718534B (zh) 多光学系统光轴平行性检测仪
CN100451540C (zh) 采用热靶技术对大型光电测控设备三轴平行性检测的装置
CN101231343B (zh) 基于液晶调制的激光测距机瞄准与接收轴平行性测量装置
CN102679912B (zh) 基于差动比较原理的自准直仪
CN102589428B (zh) 基于非对称入射的样品轴向位置跟踪校正的方法和装置
CN105424322A (zh) 自校准光轴平行性检测仪及检测方法
WO2022105532A1 (zh) 外差光纤干涉仪位移测量系统及方法
CN107702644B (zh) 一种基于双psd的多自由度测量装置
CN106767395B (zh) 一种用于直线导轨六项几何误差高分辨力高效测量系统及方法
CN107421470B (zh) 一种双路自准直仪
CN109470176A (zh) 基于双光栅的高精度三维角度测量方法与装置
CN104808254B (zh) 高精度绝对重力仪用光学倍频式激光干涉系统及应用
CN205942120U (zh) 一种带有偏振分束元件的自准光路系统
CN106094234A (zh) 一种带有偏振分束元件的自准光路系统
CN101672726B (zh) 空间光通信终端通信探测器定位测试装置及方法
CN110530257A (zh) 飞秒激光器分布式干涉仪系统
EP4124825A1 (en) Two-dimensional photoelectric autocollimation method and device based on wavefront measurement and correction
CN106323198B (zh) 一种高精度、宽范围和大工作距激光自准直装置与方法
CN108061527A (zh) 一种抗空气扰动的二维激光自准直仪
CN103713383A (zh) 一种光束精确引导和校准的辅助装置
CN203286992U (zh) 一种激光光束垂直度的检测装置
CN201177500Y (zh) 基于多光谱靶板及旋转反射镜的多光轴一致性测试装置
CN209606724U (zh) 一种4f系统精确调节装置

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
WD01 Invention patent application deemed withdrawn after publication
WD01 Invention patent application deemed withdrawn after publication

Application publication date: 20180928