CN108571309A - 一种圆弧面三组合聚能压裂增加页岩气采收率的装置 - Google Patents
一种圆弧面三组合聚能压裂增加页岩气采收率的装置 Download PDFInfo
- Publication number
- CN108571309A CN108571309A CN201810208978.5A CN201810208978A CN108571309A CN 108571309 A CN108571309 A CN 108571309A CN 201810208978 A CN201810208978 A CN 201810208978A CN 108571309 A CN108571309 A CN 108571309A
- Authority
- CN
- China
- Prior art keywords
- axis
- gathering cap
- energy gathering
- busbar
- coordinate system
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Withdrawn
Links
- 230000001186 cumulative effect Effects 0.000 title claims abstract description 25
- 238000011084 recovery Methods 0.000 title claims abstract description 22
- 239000002360 explosive Substances 0.000 claims abstract description 42
- 238000005474 detonation Methods 0.000 claims abstract description 25
- 230000037452 priming Effects 0.000 claims abstract description 15
- 241000700608 Sagitta Species 0.000 claims description 6
- 239000000843 powder Substances 0.000 claims 1
- 239000003999 initiator Substances 0.000 abstract description 15
- 208000037656 Respiratory Sounds Diseases 0.000 abstract description 11
- 239000007789 gas Substances 0.000 description 37
- 238000000034 method Methods 0.000 description 17
- 238000004880 explosion Methods 0.000 description 7
- 230000000694 effects Effects 0.000 description 6
- 239000006260 foam Substances 0.000 description 5
- 229940079593 drug Drugs 0.000 description 4
- 239000003814 drug Substances 0.000 description 4
- 239000007788 liquid Substances 0.000 description 4
- 239000000243 solution Substances 0.000 description 4
- 238000010586 diagram Methods 0.000 description 3
- 238000005516 engineering process Methods 0.000 description 3
- 239000012530 fluid Substances 0.000 description 3
- 239000011435 rock Substances 0.000 description 3
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 3
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 2
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 description 2
- 230000009172 bursting Effects 0.000 description 2
- 238000004364 calculation method Methods 0.000 description 2
- 238000005553 drilling Methods 0.000 description 2
- 238000002347 injection Methods 0.000 description 2
- 239000007924 injection Substances 0.000 description 2
- 230000035699 permeability Effects 0.000 description 2
- 238000003860 storage Methods 0.000 description 2
- 229910000838 Al alloy Inorganic materials 0.000 description 1
- 229910000851 Alloy steel Inorganic materials 0.000 description 1
- 238000004220 aggregation Methods 0.000 description 1
- 230000002776 aggregation Effects 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 229910002092 carbon dioxide Inorganic materials 0.000 description 1
- 239000001569 carbon dioxide Substances 0.000 description 1
- 239000013043 chemical agent Substances 0.000 description 1
- 239000012141 concentrate Substances 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 238000005336 cracking Methods 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 238000005187 foaming Methods 0.000 description 1
- 238000003306 harvesting Methods 0.000 description 1
- 230000006698 induction Effects 0.000 description 1
- 230000000977 initiatory effect Effects 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 238000005065 mining Methods 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 229910052757 nitrogen Inorganic materials 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 230000000149 penetrating effect Effects 0.000 description 1
- 238000004321 preservation Methods 0.000 description 1
- 239000004576 sand Substances 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 239000010935 stainless steel Substances 0.000 description 1
- 229910001220 stainless steel Inorganic materials 0.000 description 1
Classifications
-
- E—FIXED CONSTRUCTIONS
- E21—EARTH OR ROCK DRILLING; MINING
- E21B—EARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
- E21B43/00—Methods or apparatus for obtaining oil, gas, water, soluble or meltable materials or a slurry of minerals from wells
- E21B43/25—Methods for stimulating production
- E21B43/26—Methods for stimulating production by forming crevices or fractures
- E21B43/263—Methods for stimulating production by forming crevices or fractures using explosives
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F42—AMMUNITION; BLASTING
- F42B—EXPLOSIVE CHARGES, e.g. FOR BLASTING, FIREWORKS, AMMUNITION
- F42B3/00—Blasting cartridges, i.e. case and explosive
- F42B3/22—Elements for controlling or guiding the detonation wave, e.g. tubes
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F42—AMMUNITION; BLASTING
- F42D—BLASTING
- F42D3/00—Particular applications of blasting techniques
- F42D3/04—Particular applications of blasting techniques for rock blasting
Landscapes
- Engineering & Computer Science (AREA)
- General Engineering & Computer Science (AREA)
- Life Sciences & Earth Sciences (AREA)
- Geology (AREA)
- Mining & Mineral Resources (AREA)
- Physics & Mathematics (AREA)
- Environmental & Geological Engineering (AREA)
- Fluid Mechanics (AREA)
- General Life Sciences & Earth Sciences (AREA)
- Geochemistry & Mineralogy (AREA)
- Eyeglasses (AREA)
Abstract
一种圆弧面三组合聚能压裂增加页岩气采收率的装置,包括起爆装置和气体输送装置,起爆装置包括三组合聚能装置、起爆电路和起爆器,三组合聚能装置包括将炸药爆炸能量汇聚向右射出的左聚能罩、将炸药爆炸能量汇聚向左射出的右聚能罩、将炸药爆炸能量汇聚向正中射出的中聚能罩,左聚能罩和右聚能罩均为开口向外的旋转抛物面,中聚能罩为开口向外的旋转圆弧面。与现有技术相比,由于左聚能罩、中聚能罩和右聚能罩的聚能作用,分别从左、中、右三个空间方向同时挤压爆炸压裂区的页岩,裂纹迅速贯通形成“个”字形状的页岩破裂带,增加了页岩的比表面积,从而有效增加了页岩气的解析速率及其采收率。
Description
技术领域
本发明涉及增加页岩气采收率的装置,特别涉及一种圆弧面三组合聚能压裂增加页岩气采收率的装置。
背景技术
页岩气是一种新兴的洁净能源,因其储量大、开采周期长等特点而倍受关注。然而作为储气载体的页岩体因其天然孔隙率小,渗透率低,95%的页岩气井需要通过人工致裂的方式增加页岩体渗透率,方可有工业开采价值。
目前,人工致裂的方法主要包括两类:一是水力压裂方法、二是泡沫压裂方法。水力压裂方法主要通过向钻孔中注入高压液体达到致裂岩层的目的。按照具体的压裂工艺,水力压裂方法包括多级压裂、清水压裂、水力喷射压裂等三种。多级压裂是利用封堵球或限流技术分隔储层不同层位进行分段压裂的技术。清水压裂是利用大量清水注入地层诱导产生导流裂缝的压裂技术。水力喷射压裂是利用高速和高压流体携带砂体进行射孔并打开裂缝的压裂技术。泡沫压裂方法主要通过向钻孔内注入高压的液气混合体达到致裂岩层的目的。根据气体成分的不同,泡沫压裂方法可以分为氮气泡沫压裂及二氧化碳泡沫压裂等两种。水力压裂方法及泡沫压裂方法在页岩层压裂过程中均存在难以克服的缺点:一是压裂液中均配备有大量化学药剂,对地层损害大;二是压裂后期主裂缝贯通后,压裂液的漏失较为严重;三是压裂液的反排较慢。最主要的,页岩气的赋存形式以吸附气为主,只有通过破碎的方法增加页岩体的比表面积,才能增加吸附气体的解析量,而上述两类压裂方法主要通过贯通岩体中的天然裂隙达到增产的目的,这与页岩气自身的赋存特性是不一致的。
中国专利CN102168543B公开了一种通过爆炸方式增加页岩气采收率的方法及装置,所述装置设置在页岩气井裸眼中包括输药起爆装置和气体输送装置,其中输药起爆装置用于将其周围的页岩崩裂,气体输送装置将由被崩裂的页岩中渗出的页岩气输送到地面;该方法和装置存在炸药爆炸能量分散、炸药爆炸能量利用率低的问题。
发明内容
本发明要解决的技术问题是克服现有技术的缺陷,提供克服上述技术问题的一种圆弧面三组合聚能压裂增加页岩气采收率的装置。
为了解决上述技术问题,本发明所述一种圆弧面三组合聚能压裂增加页岩气采收率的装置的技术方案如下:
一种圆弧面三组合聚能压裂增加页岩气采收率的装置,所述装置设置在页岩气井裸眼中,所述装置包括起爆装置和气体输送装置,起爆装置用于将其周围的页岩崩裂,气体输送装置将由被崩裂的页岩中渗出的页岩气输送到地面,所述起爆装置包括起爆电路和起爆器,所述气体输送装置包括右凸缘、隔离装置、油气管、孔状进气管;所述孔状进气管设置在所述隔离装置与所述右凸缘之间,孔状进气管的一端设置在所述右凸缘的通孔中,另一端设置在隔离装置上的通孔中;孔状进气管为带有若干进气孔的管,油气管的一端设置在隔离装置的通孔中,另一端与地面集气装置相连;所述起爆装置还包括三组合聚能装置,所述三组合聚能装置包括将炸药爆炸能量汇聚向右射出的左聚能罩、将炸药爆炸能量汇聚向左射出的右聚能罩、将炸药爆炸能量汇聚向正中射出的中聚能罩、设置在左聚能罩左侧的左凸缘、设置在左聚能罩和中聚能罩之间的左中凸缘、设置在右聚能罩和中聚能罩之间的右中凸缘和套管;
所述左聚能罩包括左凹形外表面和左凹形内表面,所述左凹形外表面和所述左凹形内表面均为开口向外的旋转抛物面,所述左凹形内表面的旋转抛物面形成空腔;所述左聚能罩与左凸缘和左中凸缘组成一个封闭空间,并在该空间内设置炸药;所述左聚能罩的最大外径为Da,所述左聚能罩的长度为La;
所述右聚能罩包括右凹形外表面和右凹形内表面,所述右凹形外表面和所述右凹形内表面均为开口向外的旋转抛物面,所述右凹形内表面的旋转抛物面形成空腔;所述右聚能罩与右凸缘和右中凸缘组成一个封闭空间,并在该空间内设置炸药;所述右聚能罩的最大外径为Db,所述右聚能罩的长度为Lb;
所述中聚能罩包括中凹形外表面和中凹形内表面,所述中凹形外表面和所述中凹形内表面均为开口向外的旋转圆弧面,所述中凹形内表面的旋转圆弧面形成空腔;所述中聚能罩与左中凸缘和右中凸缘组成一个封闭空间,并在该空间内设置炸药;所述中聚能罩的最大外径为Dc,所述中聚能罩的长度为Lc;
所述左中凸缘和右中凸缘均设置有套管孔,所述套管外部为圆柱形且其内部为圆柱孔,所述套管依次穿过所述左凹形内表面的空腔、左中凸缘的套管孔、中凹形内表面的空腔、右中凸缘的套管孔、右凹形内表面的空腔和右凸缘的通孔,所述套管一端固定在左凸缘的右端面,所述套管另一端固定在右凸缘的右端面;
在所述左凸缘的右表面与所述左中凸缘的左表面上间隔设置若干个起爆器,起爆器通过设置在所述套管内的起爆电路与地面控制装置连接,并通过地面控制装置控制起爆器的起爆;
在所述右凸缘的左表面与所述右中凸缘的右表面上间隔设置若干个起爆器,起爆器通过设置在所述套管内的起爆电路与地面控制装置连接,并通过地面控制装置控制起爆器的起爆;
在所述左中凸缘的右表面与所述右中凸缘的左表面上间隔设置若干个起爆器,起爆器通过设置在所述套管内的起爆电路与地面控制装置连接,并通过地面控制装置控制起爆器的起爆。
优选的,所述左凹形外表面的旋转轴为Xa轴,所述左凹形外表面的母线为母线A,所述母线A绕所述Xa轴旋转形成所述左凹形外表面,所述母线A是由以下方程组构成的抛物线:
所述左凹形内表面的旋转轴为Xa轴,所述左凹形内表面的母线为母线B,所述母线B绕所述Xa轴旋转形成所述左凹形内表面,所述母线B是由以下方程组构成的抛物线:
所述右凹形外表面的旋转轴为Xb轴,所述右凹形外表面的母线为母线C,所述母线C绕所述Xb轴旋转形成所述右凹形外表面,所述母线C是由以下方程组构成的抛物线:
所述右凹形内表面的旋转轴为Xb轴,所述右凹形内表面的母线为母线D,所述母线D绕所述Xb轴旋转形成所述右凹形内表面,所述母线D是由以下方程组构成的抛物线:
所述中凹形外表面的旋转轴为Xc轴,所述中凹形外表面的母线为母线E,所述母线E绕所述Xc轴旋转形成所述中凹形外表面,所述母线E是一段圆弧,圆弧圆心在中聚能罩的装药长度Lc的中间位置且与所述Xc轴的距离为Lc1,圆弧半径为Rc1;
所述中凹形内表面的旋转轴为Xc轴,所述凹形内表面的母线为母线F,所述母线F绕所述Xc轴旋转形成所述中凹形内表面,所述母线F是一段圆弧,圆弧圆心在中聚能罩的装药长度Lc的中间位置且与所述Xc轴的距离为Lc2,圆弧半径为Rc2;
Rc1、Rc2、Lc1和Lc2分别按以下公式计算:
Hc1和Hc2均为拱高,Hc1为装药直径Dc的0.1~0.4倍,Hc2为装药直径Dc的0.11~0.41倍且Hc2>Hc1。
上面各式中:
Oa-XaYaZa坐标系的坐标原点在所述左聚能罩的轴线上且在左聚能罩的长度的中点,Xa轴、Ya轴和Za轴构成右手直角坐标系,Xa轴与所述左聚能罩的轴线重合,Xa轴正方向从左聚能罩的左侧指向左聚能罩的右侧;xa、ya和za分别为Xa轴、Ya轴和Za轴的坐标变量;
Oa1-Xa1Ya1Za1坐标系的坐标原点在Oa-XaYaZa坐标系中为(-b1,c1,0),Xa1轴、Ya1轴和Za1轴构成右手直角坐标系,Za1轴与Za轴平行,Xa1轴与Xa轴夹角为θa;xa1、ya1和za1分别为Xa1轴、Ya1轴和Za1轴的坐标变量;
Oa2-Xa2Ya2Za2坐标系的坐标原点在Oa-XaYaZa坐标系中为(-b2,c2,0),Xa2轴、Ya2轴和Za2轴构成右手直角坐标系,Za2轴与Za轴平行,Xa1轴与Xa轴夹角为θa;xa2、ya2和za2分别为Xa2轴、Ya2轴和Za2轴的坐标变量;
Ob-XbYbZb坐标系的坐标原点在所述右聚能罩的轴线上且在右聚能罩的长度的中点,Xb轴、Yb轴和Zb轴构成右手直角坐标系,Xb轴与所述右聚能罩的轴线重合,Xb轴正方向从右聚能罩的左侧指向右聚能罩的右侧;xb、yb和zb分别为Xb轴、Yb轴和Zb轴的坐标变量;
Ob1-Xb1Yb1Zb1坐标系的坐标原点在Ob-XbYbZb坐标系中为(b1,c1,0),Xb1轴、Yb1轴和Zb1轴构成右手直角坐标系,Zb1轴与Zb轴平行,Xb1轴与Xb轴夹角为θb;xb1、yb1和zb1分别为Xb1轴、Yb1轴和Zb1轴的坐标变量;
Ob2-Xb2Yb2Zb2坐标系的坐标原点在Ob-XbYbZb坐标系中为(b2,c2,0),Xb2轴、Yb2轴和Zb2轴构成右手直角坐标系,Zb2轴与Zb轴平行,Xb1轴与Xb轴夹角为θb;xb2、yb2和zb2分别为Xb2轴、Yb2轴和Zb2轴的坐标变量;
Oc-XcYcZc坐标系的坐标原点在所述中聚能罩的轴线上且在中聚能罩的长度的中点,Xc轴、Yc轴和Zc轴构成右手直角坐标系,Xc轴与所述中聚能罩的轴线重合,Xc轴正方向从中聚能罩的左侧指向中聚能罩的右侧;xc、yc和zc分别为Xc轴、Yc轴和Zc轴的坐标变量;
Xa轴、Xb轴和Xc轴共线;
Da和Db相等且均为D,La和Lb相等且均为L,θa=-θ,θb=θ;
D为100mm~800mm,L为200mm~1000mm,θ为0°~60°;
Dc为100mm~800mm,Lc为200mm~1000mm;
H为左聚能罩和右聚能罩的最小壁厚,H为1mm~10mm;
a1、b1、c1、a2、b2、c2为参数,c1为D的0.2~0.90倍,c2为D的0.15~0.85倍且c1>c2;
求解以下方程组得到a1、b1的值且a1>0:
求解以下方程组得到a2、b2的值且a2>0:
优选的,所述参数:D为200mm~500mm,L为300mm~600mm,Dc为200mm~500mm,Lc为300mm~600mm;
优选的,所述参数:θ为30°~50°;
优选的,所述参数c1为D的0.2~0.6倍,c2为D的0.15~0.55倍且c1>c2;
优选的,所述拱高Hc1为装药直径Dc的0.2~0.35倍,Hc2为装药直径Dc的0.21~0.36倍且Hc2>Hc1;
优选的,所述径向最小壁厚H为1mm~5mm。
与现有技术相比,本发明有益效果在于:由于聚能效应、抛物线的光学特性和圆弧反射向圆心聚集的特性,通过左聚能罩、中聚能罩和右聚能罩将炸药爆炸能量汇聚射出,炸药爆炸能量利用率高,同时提高了爆炸压裂区的页岩裂纹的长度和页岩裂纹的数量;特别是由于左聚能罩、中聚能罩和右聚能罩的聚能作用,分别从左、中、右三个空间方向同时挤压爆炸压裂区的页岩,裂纹迅速贯通形成“个”字形状的页岩破裂带,增加了页岩的比表面积,从而有效增加了页岩气的解析速率及其采收率。
附图说明
图1为装置示意图;
图2为左聚能罩结构示意图;
图3为右聚能罩结构示意图;
图4为中聚能罩结构示意图;
上述图1-图4中:1-页岩气井裸眼,2-油气管,3-孔状进气管,4-进气孔,5-右凹形外表面,6-右凹形内表面,7-右聚能罩,8-中凹形外表面,9-中凹形内表面,10-中聚能罩,11-左凹形外表面,12-左凹形内表面,13-左凸缘,14-左聚能罩,15-左中凸缘,16-右中凸缘,17-套管,18-右凸缘,19-隔离装置,20-起爆器,21-起爆电路。
具体实施方式
以下结合说明书附图对本发明的优选实施例进行说明,应当理解,此处所描述的优选实施例仅用于说明和解释本发明,并不用于限定本发明
一种圆弧面三组合聚能压裂增加页岩气采收率的装置,所述装置设置在页岩气井裸眼中1,所述装置包括起爆装置和气体输送装置,起爆装置用于将其周围的页岩崩裂,气体输送装置将由被崩裂的页岩中渗出的页岩气输送到地面,所述起爆装置包括起爆电路21和起爆器20,所述气体输送装置包括右凸缘18、隔离装置19、油气管2、孔状进气管3;所述孔状进气管3设置在所述隔离装置19与所述右凸缘18之间,孔状进气管3的一端设置在所述右凸缘18的通孔中,另一端设置在隔离装置19上的通孔中;孔状进气管3为带有若干进气孔的管,油气管2的一端设置在隔离装置19的通孔中,另一端与地面集气装置相连;所述起爆装置还包括三组合聚能装置,所述三组合聚能装置包括将炸药爆炸能量汇聚向右射出的左聚能罩14、将炸药爆炸能量汇聚向左射出的右聚能罩7、将炸药爆炸能量汇聚向正中射出的中聚能罩10、设置在左聚能罩14左侧的左凸缘13、设置在左聚能罩14和中聚能罩10之间的左中凸缘15、设置在右聚能罩7和中聚能罩10之间的右中凸缘16和套管17;
所述左聚能罩14包括左凹形外表面11和左凹形内表面12,所述左凹形外表面11和所述左凹形内表面12均为开口向外的旋转抛物面,所述左凹形内表面12的旋转抛物面形成空腔;所述左聚能罩14与左凸缘13和左中凸缘15组成一个封闭空间,并在该空间内设置炸药;所述左聚能罩14的最大外径为Da,所述左聚能罩14的长度为La;
所述右聚能罩7包括右凹形外表面5和右凹形内表面6,所述右凹形外表面5和所述右凹形内表面6均为开口向外的旋转抛物面,所述右凹形内表面6的旋转抛物面形成空腔;所述右聚能罩7与右凸缘18和右中凸缘16组成一个封闭空间,并在该空间内设置炸药;所述右聚能罩7的最大外径为Db,所述右聚能罩7的长度为Lb;
所述中聚能罩10包括中凹形外表面8和中凹形内表面9,所述中凹形外表面8和所述中凹形内表面9均为开口向外的旋转圆弧面,所述中凹形内表面9的旋转圆弧面形成空腔;所述中聚能罩10与左中凸缘15和右中凸缘16组成一个封闭空间,并在该空间内设置炸药;所述中聚能罩10的最大外径为Dc,所述中聚能罩10的长度为Lc;
所述左中凸缘15和右中凸缘16均设置有套管17孔,所述套管17外部为圆柱形且其内部为圆柱孔,所述套管17依次穿过所述左凹形内表面12的空腔、左中凸缘15的套管17孔、中凹形内表面9的空腔、右中凸缘16的套管17孔、右凹形内表面6的空腔和右凸缘18的通孔,所述套管17一端固定在左凸缘13的右端面,所述套管17另一端固定在右凸缘18的右端面;
在所述左凸缘13的右表面与所述左中凸缘15的左表面上间隔设置若干个起爆器20,起爆器20通过设置在所述套管17内的起爆电路21与地面控制装置连接,并通过地面控制装置控制起爆器20的起爆;
在所述右凸缘18的左表面与所述右中凸缘16的右表面上间隔设置若干个起爆器20,起爆器20通过设置在所述套管17内的起爆电路21与地面控制装置连接,并通过地面控制装置控制起爆器20的起爆;
在所述左中凸缘15的右表面与所述右中凸缘16的左表面上间隔设置若干个起爆器20,起爆器20通过设置在所述套管17内的起爆电路21与地面控制装置连接,并通过地面控制装置控制起爆器20的起爆。
建立Oa-XaYaZa坐标系、Oa1-Xa1Ya1Za1坐标系、Oa2-Xa2Ya2Za2坐标系、Ob-XbYbZb坐标系、Ob1-Xb1Yb1Zb1坐标系、Ob2-Xb2Yb2Zb2坐标系和Oc-XcYcZc坐标系如下:
Oa-XaYaZa坐标系的坐标原点在所述左聚能罩14的轴线上且在左聚能罩14的长度的中点,Xa轴、Ya轴和Za轴构成右手直角坐标系,Xa轴与所述左聚能罩14的轴线重合,Xa轴正方向从左聚能罩14的左侧指向左聚能罩14的右侧;xa、ya和za分别为Xa轴、Ya轴和Za轴的坐标变量;
Oa1-Xa1Ya1Za1坐标系的坐标原点在Oa-XaYaZa坐标系中为(-b1,c1,0),Xa1轴、Ya1轴和Za1轴构成右手直角坐标系,Za1轴与Za轴平行,Xa1轴与Xa轴夹角为θa;xa1、ya1和za1分别为Xa1轴、Ya1轴和Za1轴的坐标变量;
Oa2-Xa2Ya2Za2坐标系的坐标原点在Oa-XaYaZa坐标系中为(-b2,c2,0),Xa2轴、Ya2轴和Za2轴构成右手直角坐标系,Za2轴与Za轴平行,Xa1轴与Xa轴夹角为θa;xa2、ya2和za2分别为Xa2轴、Ya2轴和Za2轴的坐标变量;
Ob-XbYbZb坐标系的坐标原点在所述右聚能罩7的轴线上且在右聚能罩7的长度的中点,Xb轴、Yb轴和Zb轴构成右手直角坐标系,Xb轴与所述右聚能罩7的轴线重合,Xb轴正方向从右聚能罩7的左侧指向右聚能罩7的右侧;xb、yb和zb分别为Xb轴、Yb轴和Zb轴的坐标变量;
Ob1-Xb1Yb1Zb1坐标系的坐标原点在Ob-XbYbZb坐标系中为(b1,c1,0),Xb1轴、Yb1轴和Zb1轴构成右手直角坐标系,Zb1轴与Zb轴平行,Xb1轴与Xb轴夹角为θb;xb1、yb1和zb1分别为Xb1轴、Yb1轴和Zb1轴的坐标变量;
Ob2-Xb2Yb2Zb2坐标系的坐标原点在Ob-XbYbZb坐标系中为(b2,c2,0),Xb2轴、Yb2轴和Zb2轴构成右手直角坐标系,Zb2轴与Zb轴平行,Xb1轴与Xb轴夹角为θb;xb2、yb2和zb2分别为Xb2轴、Yb2轴和Zb2轴的坐标变量;
Oc-XcYcZc坐标系的坐标原点在所述中聚能罩10的轴线上且在中聚能罩10的长度的中点,Xc轴、Yc轴和Zc轴构成右手直角坐标系,Xc轴与所述中聚能罩10的轴线重合,Xc轴正方向从中聚能罩10的左侧指向中聚能罩10的右侧;xc、yc和zc分别为Xc轴、Yc轴和Zc轴的坐标变量。
Xa轴、Xb轴和Xc轴共线。
所述左凹形外表面11的旋转轴为Xa轴,所述左凹形外表面11的母线为母线A,所述母线A绕所述Xa轴旋转形成所述左凹形外表面11,所述母线A是由以下方程组构成的抛物线:
所述左凹形内表面12的旋转轴为Xa轴,所述左凹形内表面12的母线为母线B,所述母线B绕所述Xa轴旋转形成所述左凹形内表面12,所述母线B是由以下方程组构成的抛物线:
所述右凹形外表面5的旋转轴为Xb轴,所述右凹形外表面5的母线为母线C,所述母线C绕所述Xb轴旋转形成所述右凹形外表面5,所述母线C是由以下方程组构成的抛物线:
所述右凹形内表面6的旋转轴为Xb轴,所述右凹形内表面6的母线为母线D,所述母线D绕所述Xb轴旋转形成所述右凹形内表面6,所述母线D是由以下方程组构成的抛物线:
所述中凹形外表面8的旋转轴为Xc轴,所述中凹形外表面8的母线为母线E,所述母线E绕所述Xc轴旋转形成所述中凹形外表面8,所述母线E是一段圆弧,圆弧圆心在中聚能罩10的装药长度Lc的中间位置且与所述Xc轴的距离为Lc1,圆弧半径为Rc1;
所述中凹形内表面9的旋转轴为Xc轴,所述凹形内表面的母线为母线F,所述母线F绕所述Xc轴旋转形成所述中凹形内表面9,所述母线F是一段圆弧,圆弧圆心在中聚能罩10的装药长度Lc的中间位置且与所述Xc轴的距离为Lc2,圆弧半径为Rc2;
根据已知弦长Lc和拱高Hc1、Hc2求半径Rc1、Rc2的公式,分别得到Rc1、Rc2、Lc1和Lc2的计算公式:
Hc1和Hc2均为拱高,Hc1为装药直径Dc的0.1~0.4倍,Hc2为装药直径Dc的0.11~0.41倍且Hc2>Hc1。
上面各式中:
Da和Db相等且均为D,La和Lb相等且均为L,θa=-θ,θb=θ;
D为100mm~800mm,L为200mm~1000mm,θ为0°~60°;
Dc为100mm~800mm,Lc为200mm~1000mm;
H为左聚能罩14和右聚能罩7的最小壁厚,H为1mm~10mm;
a1、b1、c1、a2、b2、c2为参数,c1为D的0.2~0.90倍,c2为D的0.15~0.85倍且c1>c2;
下面确定右聚能罩7的主要参数。
右聚能罩7的右凹形外表面5的抛物线过和两点,即:当时,当时,带入方程式组(13)整理后得到:
求解以上方程组(17)得到a1、b1的值且a1>0,为保证抛物线开口向外,因此要求a1>0;
右聚能罩7的最小壁厚为H,则右聚能罩7的右凹形内表面6抛物线过 和两点,即:当时,当时,带入方程式组(14)整理后得到:
求解以上方程组(18)得到a2、b2的值且a2>0,为保证抛物线开口向外,因此要求a2>0;
本实施例中,选取θ=45°,则有:θa=-45°,θb=45°;由于sin45°=cos45°,则方程组(17)变换为方程组(19):
方程组(19)中,P1、Q1计算公式为:
P1=D-L-2c1; (20)
Q1=D+L-2c1; (21)
求解方程组(19),舍去b1<0的解以保证抛物线开口向外,可得:
同理,选取θ=45°,则有:θa=-45°,θb=45°;由于sin45°=cos45°,则方程组(18)变换为方程组(23):
方程组(23)中,P2、Q2计算公式为:
P2=D-L-2c2-2H; (24)
Q2=D+L-2c2-2H; (25)
求解方程组(23),舍去b2<0的解以保证抛物线开口向外,可得:
本实施例中,各参数或系数具体选取和求解如下:
选取:D=300mm,L=400mm,La=400mm,Lb=400mm,取c1为D的0.2倍即c1=60mm,取c2为D的0.15倍即c2=45mm,H=2mm,根据(22)和(26)计算得到:
b1=179.0724809mm、a1=0.007938555mm;
b2=184.116701mm、a2=0.008717154mm。
以上确定了右聚能罩7的主要参数。左聚能罩14与右聚能罩7为左右对称关系,因此,左聚能罩14的主要参数也随之确定。
下面确定中聚能罩10的主要参数。
本实施例选取:Dc=D即Dc=300mm,Lc=L即Lc=400mm,取Hc1为Dc的0.2倍即Hc1=60mm,取Hc2为Dc的0.22倍即Hc2=66mm且满足Hc2>Hc1分别带入公式(15)、(15-1)、(16)和(16-1),得到:
由此,本实施例的技术方案及其主要参数确定完毕。
以上实施例综合聚能效应较好。
根据聚能效应,炸药爆炸后,爆炸产物在高温高压下基本是沿炸药表面的法线方向向外飞散的,因此,带凹槽的炸药在引爆后,在凹槽轴线上会出现一股汇聚的、速度和压强都很高的爆炸产物流,在一定的范围内使炸药爆炸释放出来的爆炸能量集中起来。本发明的左聚能罩14、中聚能罩10和右聚能罩7的外表面和内表面均为旋转抛物面,母线A、母线B、母线C和母线D均是抛物线,旋转抛物面的旋转轴与抛物线的对称轴线成一夹角;左聚能罩14的抛物线的对称轴线绕旋转抛物面的旋转轴旋转后形成左圆锥面,右聚能罩7的抛物线的对称轴线绕旋转抛物面的旋转轴旋转后形成右圆锥面;中聚能罩10的外表面和内表面均为旋转圆弧面,中聚能罩10的圆弧的圆心线绕旋转抛物面的旋转轴旋转后形成圆心线;由于抛物线的光线特性,即经焦点的光线经抛物线反射后的光线平行于抛物线的对称轴线,抛物线的这一特性进一步增强了聚能效应;圆弧也具有向圆心聚能的特性,圆弧的这一特性也进一步增强了聚能效应;炸药爆炸后,左聚能罩14的爆炸能量沿左圆锥面汇聚向空间右向射出,右聚能罩7的爆炸能量沿右圆锥面汇聚向空间左向射出,中聚能罩10的爆炸能量向圆心线汇聚空间方向射出,三个方向空间同时挤压爆炸压裂区的页岩,裂纹迅速贯通形成“个”字形状的页岩破裂带,增加了页岩的比表面积,从而有效增加了页岩气的解析速率及其采收率。
为保证左聚能罩14的壁厚以及右聚能罩7的壁厚从中间向两侧逐步减小,要求c1>c2;同理,为保证中聚能罩10的壁厚从中间向两侧逐步减小,要求Hc2>Hc1。
参数c1、c2、Hc2、Hc1的值,应根据页岩的硬度等性能选择,参数c1、c2的值越小及Hc2、Hc1的值越大,爆炸能量汇聚越集中,爆炸压裂区深而窄、页岩裂纹的长度越长;反之,爆炸能量汇聚越发散,爆炸压裂区宽而浅、页岩裂纹的长度越短。c1为D的0.2~0.90倍,c2为D的0.15~0.85倍且c1>c2;Hc1为装药直径Dc的0.1~0.4倍,Hc2为装药直径Dc的0.11~0.41倍且Hc2>Hc1;优选地:c1为D的0.2~0.6倍,c2为D的0.15~0.55倍且c1>c2,Hc1为装药直径Dc的0.2~0.35倍,Hc2为装药直径Dc的0.22~0.36倍且Hc2>Hc1。
根据页岩的硬度等性能选择参数θ的值,θ值越大,爆炸压裂区越窄、页岩越易压碎、页岩裂纹的长度越短和页岩裂纹的数量越多;θ值越小,爆炸压裂区越宽、页岩越不易压碎、页岩裂纹的长度越长和页岩裂纹的数量越少;θ取值为0°~60°,优选地:θ取值为30°~50°。
左聚能罩14、中聚能罩10和右聚能罩7均由7A09型号的铝合金制作而成,性价比最好。
左凸缘13、左中凸缘15、右中凸缘16和右凸缘18均由4350合金钢制作而成,性价比最好。
所述套管17由HP9-4-20型耐高温不锈钢管制作而成,性价比最好。
本发明所公开的一种圆弧面三组合聚能压裂增加页岩气采收率的装置,在制作时,预先将炸药放入到起爆装置中,然后再将整个装置设置在页岩气井裸眼中1;起爆器20包括电雷管、数码雷管等,起爆方式包括电起爆、数码起爆等;所述炸药包括液体炸药、固体炸药等。
以上实施例为本发明的主要结构、形状参数,其余结构细节按照本专业领域普通技术常识和惯用技术手段进行设计和选择。
Claims (9)
1.一种圆弧面三组合聚能压裂增加页岩气采收率的装置,所述装置设置在页岩气井裸眼中,所述装置包括起爆装置和气体输送装置,起爆装置用于将其周围的页岩崩裂,气体输送装置将由被崩裂的页岩中渗出的页岩气输送到地面,所述起爆装置包括起爆电路和起爆器,所述气体输送装置包括右凸缘、隔离装置、油气管、孔状进气管;所述孔状进气管设置在所述隔离装置与所述右凸缘之间,孔状进气管的一端设置在所述右凸缘的通孔中,另一端设置在隔离装置上的通孔中;孔状进气管为带有若干进气孔的管,油气管的一端设置在隔离装置的通孔中,另一端与地面集气装置相连;其特征在于,所述起爆装置还包括三组合聚能装置,所述三组合聚能装置包括将炸药爆炸能量汇聚向右射出的左聚能罩、将炸药爆炸能量汇聚向左射出的右聚能罩、将炸药爆炸能量汇聚向正中射出的中聚能罩、设置在左聚能罩左侧的左凸缘、设置在左聚能罩和中聚能罩之间的左中凸缘、设置在右聚能罩和中聚能罩之间的右中凸缘和套管;
所述左聚能罩包括左凹形外表面和左凹形内表面,所述左凹形外表面和所述左凹形内表面均为开口向外的旋转抛物面,所述左凹形内表面的旋转抛物面形成空腔;所述左聚能罩与左凸缘和左中凸缘组成一个封闭空间,并在该空间内设置炸药;所述左聚能罩的最大外径为Da,所述左聚能罩的长度为La;
所述右聚能罩包括右凹形外表面和右凹形内表面,所述右凹形外表面和所述右凹形内表面均为开口向外的旋转抛物面,所述右凹形内表面的旋转抛物面形成空腔;所述右聚能罩与右凸缘和右中凸缘组成一个封闭空间,并在该空间内设置炸药;所述右聚能罩的最大外径为Db,所述右聚能罩的长度为Lb;
所述中聚能罩包括中凹形外表面和中凹形内表面,所述中凹形外表面和所述中凹形内表面均为开口向外的旋转圆弧面,所述中凹形内表面的旋转圆弧面形成空腔;所述中聚能罩与左中凸缘和右中凸缘组成一个封闭空间,并在该空间内设置炸药;所述中聚能罩的最大外径为Dc,所述中聚能罩的长度为Lc;
所述左中凸缘和右中凸缘均设置有套管孔,所述套管外部为圆柱形且其内部为圆柱孔,所述套管依次穿过所述左凹形内表面的空腔、左中凸缘的套管孔、中凹形内表面的空腔、右中凸缘的套管孔、右凹形内表面的空腔和右凸缘的通孔,所述套管一端固定在左凸缘的右端面,所述套管另一端固定在右凸缘的右端面。
2.根据权利要求1所述的一种圆弧面三组合聚能压裂增加页岩气采收率的装置,其特征在于,
所述左凹形外表面的旋转轴为Xa轴,所述左凹形外表面的母线为母线A,所述母线A绕所述Xa轴旋转形成所述左凹形外表面11,所述母线A是由以下方程组构成的抛物线:
所述左凹形内表面的旋转轴为Xa轴,所述左凹形内表面的母线为母线B,所述母线B绕所述Xa轴旋转形成所述左凹形内表面,所述母线B是由以下方程组构成的抛物线:
所述右凹形外表面的旋转轴为Xb轴,所述右凹形外表面的母线为母线C,所述母线C绕所述Xb轴旋转形成所述右凹形外表面,所述母线C是由以下方程组构成的抛物线:
所述右凹形内表面的旋转轴为Xb轴,所述右凹形内表面的母线为母线D,所述母线D绕所述Xb轴旋转形成所述右凹形内表面,所述母线D是由以下方程组构成的抛物线:
所述中凹形外表面的旋转轴为Xc轴,所述中凹形外表面的母线为母线E,所述母线E绕所述Xc轴旋转形成所述中凹形外表面,所述母线E是一段圆弧,圆弧圆心在中聚能罩的装药长度Lc的中间位置且与所述Xc轴的距离为Lc1,圆弧半径为Rc1;
所述中凹形内表面的旋转轴为Xc轴,所述凹形内表面的母线为母线F,所述母线F绕所述Xc轴旋转形成所述中凹形内表面,所述母线F是一段圆弧,圆弧圆心在中聚能罩的装药长度Lc的中间位置且与所述Xc轴的距离为Lc2,圆弧半径为Rc2;
上面各式中:
Oa-XaYaZa坐标系的坐标原点在所述左聚能罩的轴线上且在左聚能罩的长度的中点,Xa轴、Ya轴和Za轴构成右手直角坐标系,Xa轴与所述左聚能罩的轴线重合,Xa轴正方向从左聚能罩的左侧指向左聚能罩的右侧;xa、ya和za分别为Xa轴、Ya轴和Za轴的坐标变量;
Oa1-Xa1Ya1Za1坐标系的坐标原点在Oa-XaYaZa坐标系中为(-b1,c1,0),Xa1轴、Ya1轴和Za1轴构成右手直角坐标系,Za1轴与Za轴平行,Xa1轴与Xa轴夹角为θa;xa1、ya1和za1分别为Xa1轴、Ya1轴和Za1轴的坐标变量;
Oa2-Xa2Ya2Za2坐标系的坐标原点在Oa-XaYaZa坐标系中为(-b2,c2,0),Xa2轴、Ya2轴和Za2轴构成右手直角坐标系,Za2轴与Za轴平行,Xa1轴与Xa轴夹角为θa;xa2、ya2和za2分别为Xa2轴、Ya2轴和Za2轴的坐标变量;
Ob-XbYbZb坐标系的坐标原点在所述右聚能罩的轴线上且在右聚能罩的长度的中点,Xb轴、Yb轴和Zb轴构成右手直角坐标系,Xb轴与所述右聚能罩的轴线重合,Xb轴正方向从右聚能罩的左侧指向右聚能罩的右侧;xb、yb和zb分别为Xb轴、Yb轴和Zb轴的坐标变量;
Ob1-Xb1Yb1Zb1坐标系的坐标原点在Ob-XbYbZb坐标系中为(b1,c1,0),Xb1轴、Yb1轴和Zb1轴构成右手直角坐标系,Zb1轴与Zb轴平行,Xb1轴与Xb轴夹角为θb;xb1、yb1和zb1分别为Xb1轴、Yb1轴和Zb1轴的坐标变量;
Ob2-Xb2Yb2Zb2坐标系的坐标原点在Ob-XbYbZb坐标系中为(b2,c2,0),Xb2轴、Yb2轴和Zb2轴构成右手直角坐标系,Zb2轴与Zb轴平行,Xb1轴与Xb轴夹角为θb;xb2、yb2和zb2分别为Xb2轴、Yb2轴和Zb2轴的坐标变量;
Oc-XcYcZc坐标系的坐标原点在所述中聚能罩的轴线上且在中聚能罩的长度的中点,Xc轴、Yc轴和Zc轴构成右手直角坐标系,Xc轴与所述中聚能罩的轴线重合,Xc轴正方向从中聚能罩的左侧指向中聚能罩的右侧;xc、yc和zc分别为Xc轴、Yc轴和Zc轴的坐标变量;
Xa轴、Xb轴和Xc轴共线;
Da和Db相等且均为D,La和Lb相等且均为L,θa=-θ,θb=θ;
D为100mm~800mm,L为200mm~1000mm,θ为0°~60°;
Dc为100mm~800mm,Lc为200mm~1000mm;
H为左聚能罩和右聚能罩的最小壁厚,H为1mm~10mm;
a1、b1、c1、a2、b2、c2为参数,c1为D的0.2~0.90倍,c2为D的0.15~0.85倍且c1>c2;
求解以下方程组得到a1、b1的值且a1>0:
求解以下方程组得到a2、b2的值且a2>0:
Rc1、Rc2、Lc1和Lc2分别按以下公式计算:
Hc1和Hc2均为拱高,Hc1为装药直径Dc的0.1~0.4倍,Hc2为装药直径Dc的0.11~0.41倍且Hc2>Hc1。
3.根据权利要求2所述的一种圆弧面三组合聚能压裂增加页岩气采收率的装置,其特征在于,所述参数θ为30°~50°。
4.根据权利要求2所述的一种圆弧面三组合聚能压裂增加页岩气采收率的装置,其特征在于,所述参数θ为45°,参数a1、b1、a2、b2依次通过以下公式计算:
P1=D-L-2c1;
Q1=D+L-2c1;
P2=D-L-2c2-2H;
Q2=D+L-2c2-2H;
5.根据权利要求2所述的一种圆弧面三组合聚能压裂增加页岩气采收率的装置,其特征在于,所述参数c1为D的0.2~0.6倍,c2为D的0.15~0.55倍且c1>c2。
6.根据权利要求2所述的一种圆弧面三组合聚能压裂增加页岩气采收率的装置,其特征在于,所述参数Dc为200mm~500mm,Lc为300mm~600mm,所述拱高Hc1为装药直径Dc的0.2~0.35倍,Hc2为装药直径Dc的0.21~0.36倍且Hc2>Hc1。
7.根据权利要求2所述的一种圆弧面三组合聚能压裂增加页岩气采收率的装置,其特征在于,所述参数D为200mm~500mm,L为300mm~600mm。
8.根据权利要求2或4所述的一种圆弧面三组合聚能压裂增加页岩气采收率的装置,其特征在于,所述径向最小壁厚H为1mm~5mm。
9.根据权利要求2、4、5、6或7所述的一种圆弧面三组合聚能压裂增加页岩气采收率的装置,其特征在于,所述参数D=300mm,L=400mm,La=400mm,Lb=400mm,c1=60mm,c2=45mm,H=2mm,b1=179.0724809mm,a1=0.007938555mm,b2=184.116701mm,a2=0.008717154mm;
Dc=300mm,Lc=400mm,Hc1=60mm,Hc2=66mm,Rc1=363.333mm,Lc1=453.333mm,Rc2=336.030mm,Lc2=420.030mm。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201810208978.5A CN108571309A (zh) | 2018-03-14 | 2018-03-14 | 一种圆弧面三组合聚能压裂增加页岩气采收率的装置 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201810208978.5A CN108571309A (zh) | 2018-03-14 | 2018-03-14 | 一种圆弧面三组合聚能压裂增加页岩气采收率的装置 |
Publications (1)
Publication Number | Publication Date |
---|---|
CN108571309A true CN108571309A (zh) | 2018-09-25 |
Family
ID=63574040
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201810208978.5A Withdrawn CN108571309A (zh) | 2018-03-14 | 2018-03-14 | 一种圆弧面三组合聚能压裂增加页岩气采收率的装置 |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN108571309A (zh) |
-
2018
- 2018-03-14 CN CN201810208978.5A patent/CN108571309A/zh not_active Withdrawn
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN1916357B (zh) | 油气井用多级脉冲增效射孔装置 | |
CN102168543A (zh) | 一种通过爆炸方式增加页岩气采收率的方法及装置 | |
CN108487895A (zh) | 一种圆弧柱面三组合聚能压裂增加页岩气采收率的装置 | |
CN201531256U (zh) | 用于提高复合射孔压裂效果的动态封压装置 | |
CN201007199Y (zh) | 集束射孔器 | |
CN108361012A (zh) | 一种圆弧面三组合聚能压裂增加页岩气采收率的装置 | |
CN108487894A (zh) | 一种旋转曲面三组合聚能压裂增加页岩气采收率的装置 | |
CN108547605A (zh) | 一种旋转曲面三组合聚能压裂增加页岩气采收率的装置 | |
CN108331570A (zh) | 一种旋转抛物面双组合聚能压裂增加页岩气采收率的装置 | |
CN108487889A (zh) | 一种旋转抛物面三组合聚能压裂增加页岩气采收率的装置 | |
CN108590619A (zh) | 一种圆弧柱面三组合聚能压裂增加页岩气采收率的装置 | |
CN108412476A (zh) | 一种旋转抛物面三组合聚能压裂增加页岩气采收率的装置 | |
CN108487891A (zh) | 一种旋转抛物面双组合聚能压裂增加页岩气采收率的装置 | |
CN108590618A (zh) | 一种柱面三组合聚能压裂增加页岩气采收率的装置 | |
CN108487890A (zh) | 一种抛物柱面三组合聚能压裂增加页岩气采收率的装置 | |
CN106225612A (zh) | 一种基于爆轰波拐角效应的爆炸二极管 | |
CN108331567A (zh) | 一种抛物柱面三组合聚能压裂增加页岩气采收率的装置 | |
CN108571309A (zh) | 一种圆弧面三组合聚能压裂增加页岩气采收率的装置 | |
CN108361013A (zh) | 一种柱面三组合聚能压裂增加页岩气采收率的装置 | |
CN108571311A (zh) | 一种抛物柱面聚能压裂增加页岩气采收率的装置 | |
CN108612510A (zh) | 一种旋转斜抛物面聚能压裂增加页岩气采收率的装置 | |
CN108457635A (zh) | 一种旋转斜抛物面聚能压裂增加页岩气采收率的装置 | |
CN108547606A (zh) | 一种旋转曲面聚能压裂增加页岩气采收率的装置 | |
CN108612512A (zh) | 一种旋转抛物面聚能压裂增加页岩气采收率的装置 | |
CN202850957U (zh) | 一种大破片深穿透射孔弹 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
WW01 | Invention patent application withdrawn after publication |
Application publication date: 20180925 |
|
WW01 | Invention patent application withdrawn after publication |