CN108570622A - 一种碳酸铒变质增韧高硬度合金及其铸造方法 - Google Patents

一种碳酸铒变质增韧高硬度合金及其铸造方法 Download PDF

Info

Publication number
CN108570622A
CN108570622A CN201810589798.6A CN201810589798A CN108570622A CN 108570622 A CN108570622 A CN 108570622A CN 201810589798 A CN201810589798 A CN 201810589798A CN 108570622 A CN108570622 A CN 108570622A
Authority
CN
China
Prior art keywords
carbonic acid
acid erbium
powder
alloy
casting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
CN201810589798.6A
Other languages
English (en)
Inventor
罗丰华
罗硕
罗弘瑞
吴宁
刘小洁
王哲
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Central South University
Original Assignee
Central South University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Central South University filed Critical Central South University
Priority to CN201810589798.6A priority Critical patent/CN108570622A/zh
Publication of CN108570622A publication Critical patent/CN108570622A/zh
Priority to CN201910407639.4A priority patent/CN110004378A/zh
Withdrawn legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/18Hardening; Quenching with or without subsequent tempering
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/002Heat treatment of ferrous alloys containing Cr
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C33/00Making ferrous alloys
    • C22C33/04Making ferrous alloys by melting
    • C22C33/06Making ferrous alloys by melting using master alloys
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/005Ferrous alloys, e.g. steel alloys containing rare earths, i.e. Sc, Y, Lanthanides
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/24Ferrous alloys, e.g. steel alloys containing chromium with vanadium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/26Ferrous alloys, e.g. steel alloys containing chromium with niobium or tantalum
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/32Ferrous alloys, e.g. steel alloys containing chromium with boron

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Mold Materials And Core Materials (AREA)

Abstract

一种碳酸铒变质增韧高硬度合金及其铸造方法,合金各元素的质量百分含量为Cr:9.0~13.0,B:2.6~2.9,C:0.7~0.9,Nb:0.4~0.8,V:0.4~0.8,Mn的含量小于0.3,Er:0.03~0.7,S、P:≤0.01,余量为Fe。其中C、B总和:3.3~3.6;C/Cr质量比:0.06~0.08;Nb、V的总和为0.5~1.0。首先准备好Fe‑碳酸铒粉末压块,将合金配料、熔炼与变质处理后浇铸合金。本发明铸锭整体硬度HRC66.2~70.0,冲击韧性达到10.7~14.6J/cm2,抗弯强度达到1000~1345MPa。

Description

一种碳酸铒变质增韧高硬度合金及其铸造方法
技术领域
本发明属于高硬度耐磨铸铁领域,涉及一种碳酸铒变质的微细硬质相和过饱和固溶体、马氏体基体相的耐磨耐蚀铸铁的合金的制备方法,可广泛用于电力、冶金、机械、化工等行业中机械耐磨件制造。
技术背景
Fe-Cr-B-C耐磨铸造合金主要以Fe2B或M2B为硬质相,具有良好的韧性和高硬度、高耐蚀性,熔炼-铸造工艺性好,具有十分广阔的应用前景。
变质处理是改善Fe-Cr-B-C合金组织和力学性能有效方法之一。变质剂按照作用可分为强碳、氮、硫化物形成元素,比如Ti、V等元素,和强成分过冷元素,比如表面活性元素稀土(RE)、Mg等。
稀土元素聚集在液固的生长界面上,限制晶粒长大,以提高合金的硬度、强度和耐磨性;并细化组织,使硼化物出现断网状和颗粒状分布,提高冲击韧性。研究表明:在Fe-Cr-B-C合金中添加0.6%的铈(Ce)可使冲击韧性提高86.4%。添加1.0%(Ce+Er)的混合变质剂到Fe-Cr-B合金中,合金的硬度由52HRC增大到70.2HRC,冲击韧性由3.36J/cm2提高到6.38J/cm2
稀土变质可稀土合金或稀土丝的单一变质方法,也可采取复合变质处理,即以N、Ti、V、Mg、Si等元素和稀土的混合物作为变质剂。硅镁混合稀土变质剂最常见的是复合变质方法,有研究表明:Fe-Cr-B-C合金经RE-Si-Mg变质后冲击韧度比未变质前提高了72.2%;经RE-Ti变质并热处理后,冲击韧性提高了1.8倍;经RE-Mg变质冲击韧性提高34.6%;经RE-Ti-N变质后网状组织全部消失,韧性提高了133.3%;经RE-Mg-V-Ti变质处理后,冲击韧性达到15.6J/cm2;经RE-Ti-Si-V变质处理后,冲击韧性达到12J/cm2以上。
这些采用稀土变质的方法都有一个共同难点,即高活性的纯稀土、稀土合金或复合稀土材料。由于稀土的高活性,使得变质剂本身或变质处理后合金的组织、性能难以控制,变质效果难以保证。
文献1:LM阴极研究-发射原理与研究现状[D].北京工业大学,2001:pp44-50。碳化La2O3-Mo合金的化学平衡:
3Mo2C(s)+La2O3(s)=2La(s,l)+3CO(g)+6Mo
由于Mo2C的作用,生成单质La的还原反应自由焓变化小了很多,从而反应产物Er和CO的平衡分压也高了10几个数量级。当温度高于1673K时,即1400℃,CO分压低于E-9atm时,反应式会自动向右进行,即还原生成单质La。
专利文献2:授权公告号CN 105695884B,制备的耐磨合金硬度为HRC66~70,冲击韧性4~9J/cm2。该类合金的硬度较高,但冲击韧性不足,强度指标较低,抗弯强度较低,在346~477MPa范围,限制了该合金应用于一些外部载荷大、需要耐冲击力作用的场合。
发明内容
本发明的目的是提供一种碳酸铒变质增韧高硬度合金及其铸造方法。该方法采用碳酸铒为变质剂,在高温熔化状态Fe-Cr-B-C合金中的碳化物、硼化物具有促使高活性Er元素形成的热力学条件,并于C、B形成含Er化合物,使得铸造合金组织细化,碳硼化物出现断网状和呈现颗粒状分布,从而提高冲击韧性。
碳酸铒粉末直接加入到熔体会随炉渣上浮而造成Er元素流失,从而失去变质效果,因此本发明采用碳酸铒粉末与铁粉混合均匀后,模压成粉末压块,再与Fe-Cr-B-C铸造合金一起熔化。碳酸铒粉与铁粉的重量比大致为1:4~19,即形成Fe-3.25~13.00wt.%Er的混合压块。Er含有量过低则Fe的含量过高,会影响配料计算;而Er含量过高则压坯成形困难。其中碳酸铒为白色无定形粉末,其碳酸铒含量超过99.0%,因此对其纯度和粒度不做严格要求。由于碳酸铒为水合化合物,因此在配料前要做干燥、脱水处理。Fe粉为还原Fe粉或水雾化Fe粉,Fe粉中可以含有变质铸铁中的合金元素或杂质范围内的元素,如Ni、V、Cr等,以不影响压块成形和影响配料计算为准。
本发明选用的专利文献2的高耐磨性、高耐蚀性Fe-Cr-B-C合金为基础合金,再添加0.03~0.7%Er元素变质。形成含Fe、Cr、B、C、Nb、V、Er等元素的多元共晶合金,各元素的质量百分含量为Cr:9.0~13.0,B:2.6~2.9,C:0.7~0.9,Nb:0.4~0.8,V:0.4~0.8,Mn的含量小于0.3,Er:0.03~0.7,S、P:≤0.01,余量为Fe。其中C、B总和:3.3~3.6;C/Cr含量比:0.06~0.08;Nb、V的总和为0.5~1.0。
参照专利文献2,在具体制备合金时,可采用铬铁(高碳、中碳、微碳)、硼铁、铌铁、钒铁、纯铁、等按照成分要求配料。表1中列举了原材料及其成份。
表1可应用于制备发明合金的原料及成份
表1的原料成分并非唯一的,具体成分由实际可获得的原材料来确定。其中铬铁、金属铬、硼铁、铌铁和钒铁提供发明合金的Cr、B、Nb和V的含量,高碳铬铁用来平衡C含量。纯铁可以是电工纯铁、电磁纯铁或工业纯铁。
所述方法具体包括如下步骤:
(1)Fe-碳酸铒粉末压块准备
采用铁粉与碳酸铒粉混合均匀后,模压成粉末压块。碳酸铒粉与铁粉的重量比大致为1:4~19,即形成Fe-3.25~13.00wt.%Er的Fe-碳酸铒混合压块。做为稀土Er变质的载体。
(2)合金配料、熔炼与变质处理
按照Fe-Cr-B-C合金的成分要求配比称量好相应原材料后,再添加0.03~0.7%Er元素变质。首先将Fe-碳酸铒粉末压块放置于炉底,然后放入铬铁、金属铬、硼铁、铌铁、钒铁和纯铁。可采用感应炉、真空感应炉等来熔炼制备合金。熔化温度高于1550~1650℃;然后降低电炉功率,将熔体温度降至1300~1360℃后,用配料总量0.1~0.15%的纯铝脱氧;继续保温静置约5~10分钟。
(3)浇铸
浇铸温度范围为1260~1320℃。所设计的合金具有深度共晶成分,在普通砂模铸造条件下都能形成非平衡基体组织,如非晶、纳米晶或马氏体组织。由于所设计的合金为共晶成分,熔体具有很好的流动性很很好,可通过各种方法铸造成型,如普通砂型模铸造或者熔模铸造、消失模铸造、金属型铸造、陶瓷型铸造、压铸、离心铸造等特殊铸造方法。从凝固温度到600℃之间的冷却速度应不低于60℃/分钟,但由于发生非平衡转变会造成体积变化,制备大型铸件时由于温度不一致而导致应力开裂现象,因此,铸件应在600~800℃之间解除模具的约束。铸锭后续可采用低于600℃的去应力退火工艺和必要的机加工工序。
步骤(1)所述铁粉为纯度≥98.5%,粒度-100目的还原铁粉或者纯度≥99.0%,粒度-100目的水雾化铁粉,或者相当粒度的含有少量不影响铸造合金成分的合金铁粉。也可以选择更小粒度的粉末,以能够压制成具有不影响后续配料和炉料准备的压坯强度为准。
步骤(1)所述均匀混合为混筒式混料、V型混料或者搅拌混料,以实现大体上均匀即可。
步骤(1)所述压坯为模压成形,压制压力为100~600MPa,压坯尺寸不限。也可以采取冷等静压方法。
步骤(2)将Fe-碳酸铒粉末压块放置于炉底的目的在于:铬铁、硼铁等物质具有比纯铁低的熔化温度,因此会优先熔化而浸渗入底部的Fe-碳酸铒粉末压块,使得纯铁粉逐步熔化;同时碳酸铒在受热作用下分解成细小的Er2O3和CO2。其中CO2气体分子的上浮过程有助于溶体除渣;Er2O3的密度略高于熔体,约为8.64g/cm3,分散在熔体中的Er2O3颗粒被Fe3C、Cr3C2等碳化物还原形成活性Er元素,并与C、B反应,形成类似于Er(B、C)6的化合物。反应过程中形成的CO、CO2等气体分子会吸附在Er2O3颗粒周围,带动Er2O3颗粒上浮,使得元素分布均匀,变质效果提高。
通过Er的变质作用,沿晶分布的网状结构和针状硼化物消失,合金由初晶基体相和共晶组织组成,这种共晶组织由细小的基体相与硬质相穿插而成,使得合金的强度和冲击韧性得以提高。碳酸铒热解得到的Er2O3颗粒更加细小,其反应速度加快、反应产物细小分散,变质效果加强。
如果碳酸铒粉不预先制备成压块放置于炉底,则容易迅速上浮到熔体表面,熔体表面氧含量高,热解产生的Er2O3不容易被还原形成活性Er,变质效果减弱。
所述Fe3C、Cr3C2等碳化物由高碳铬铁和熔化时C与Fe元素反应形成,由于Fe3C、Cr3C2等碳化物在高温下的稳定性不如Mo2C,并且熔化的温度超过文献1所述的1400℃反应温度,熔体中CO气体的分压也是极低的,而有Er与La的性质很相似,因此与文献1相似,生成活性Er的还原反应可以进行。EDS能谱分析也表明铸造合金物相中含有Er元素。
步骤(3)所述的浇铸,也可通过水冷、铁模、模具中放置冷铁等手段实现铸造,以进一步促进基体发生非平衡转变,形成高硬度马氏体。
本发明的Er变质方法不限于的Fe-Cr-B-C合金,也可应用于其它铸铁和C含量较高的钢铁冶炼变质、细化处理。
本发明的主要特点是直接用碳酸铒粉与铁粉混,形成粉末压块,做为Er元素变质载体。高温熔化时,碳酸铒热解成Er2O3,利用Fe-Cr-B-C合金高温熔体中Fe3C、Cr3C2等碳化物的还原作用,形成活性Er元素,并与C、B反应,形成类似于Er(B、C)6的化合物,避免出现硼化物网状和针状结构,促进细小共晶组织形成,起到细化组织的变质增韧作用。铸锭组织的基体相为具有高硬度的Cr、B、C强化的非平衡组织;硬质相为高硬度的硼、碳化合物,并与基体相形成细小共晶组织。铸锭整体硬度达到HRC66.2~70.0,冲击韧性达到10.7~14.6J/cm2,抗弯强度达到1000~1345MPa。
附图说明
图1本发明实例1铸造组织图;
图2本发明实例1铸造合金X-射线衍射图谱;
图3本发明实例1铸件基体相的EDS图谱及成分。
具体实施方式
本发明的各种熔炼方法、铸造方法不受下述实例的限制,任何在本发明的权利要求书要求保护的范围内的改进和变化都在本发明的保护范围之内。
选用高碳铬铁、微碳铬铁、金属铬、硼铁、铌铁、钒铁、工业纯铁、纯铁粉、碳酸铒粉、纯铝等为原料,在发明要求的成分范围内配制成合金。
实施例1.采用铁粉与碳酸铒粉混合均匀后,模压成粉末压块。碳酸铒粉与铁粉的重量比大致为1:4,即形成Fe-13.0wt.%Er的Fe-碳酸铒混合压块,做为稀土Er变质的载体。
选用高碳铬铁、微碳铬铁、硼铁、铌铁、钒铁、工业纯铁和上述Fe-碳酸铒混合压块为原料,成分范围如下:Cr:10.0wt.%;B:
2.9wt.%;C:0.7wt.%;Nb:0.4wt.%;V:0.2wt.%;Er:0.7wt.%;杂质元素控制见表2。少量Al、Mn、N等杂质不会导致合金性能根本性变化,因此未列出在表2中。
按照成分要求配比称量好相应原材料后,采用感应熔炼和砂型模铸造。具体步骤为:
将Fe-碳酸铒粉末压块放置于炉底,然后放入铬铁、金属铬、硼铁、铌铁、钒铁和纯铁。熔化温度为1650℃;待完全熔化后,降低电炉功率,将熔体温度降至1360℃后,用配料总量0.15%的纯铝脱氧;继续保温静置约10分钟。
浇铸温度范围为1320℃。浇铸完后约6分钟,打开砂型模,此时铸锭温度低于800℃,从凝固温度到800℃之间的冷却速率约为70℃/分钟。空冷至室温。
图1为铸造合金组织,以Fe初晶相和共晶相为主,其中共晶相为Fe相与硼、碳化合物的共晶组织;图2为铸造合金的X-射线衍射图谱,显示合金基体为α-Fe相,其衍射峰较宽,并在65o附近较宽,因此是有大量Cr固溶的马氏体相,碳、硼化合物为Fe2B、Fe3C和Cr23C6为基础的复合化合物,并且显示有Er(B、C)6化合物存在;图3为铸造合金基体相EDS图谱及分析结果,EDS只能在成分的定性分析,结果显示合金中存在Er元素,说明Er2O3与熔体产生了作用,使Er元素发生合金化,起到熔体变质作用。
所得铸锭整体硬度达到HRC67.3,冲击韧性达到13.6J/cm2,抗弯强度达到1218MPa。
实施例2.采用铁粉与碳酸铒粉混合均匀后,模压成粉末压块。碳酸铒粉与铁粉的重量比大致为1:19,即形成Fe-3.25wt.%Er的Fe-碳酸铒混合压块,做为稀土Er变质的载体。
选用高碳铬铁、金属铬、硼铁、铌铁、工业纯铁和上述Fe-Er2O3混合压块为原料,成分范围如下:Cr:10.0wt.%;B:2.7wt.%;C:
0.7wt.%;Nb:0.5wt.%;Er:0.03wt.%;杂质元素控制见表2。少量Al、Mn、N等杂质不会导致合金性能根本性变化,因此未列出在表2中。
按照成分要求配比称量好相应原材料后,可采用真空感应炉熔炼和水冷铁模铸造。具体步骤为:
将Fe-碳酸铒粉末压块放置于炉底,然后放入铬铁、金属铬、硼铁、铌铁和纯铁。熔化温度为1550℃;待完全熔化后,降低电炉功率,将熔体温度降至1300℃后,用配料总量0.1%的纯铝脱氧;继续保温静置约5分钟。
浇铸温度范围为1260℃。浇铸完后约10分钟,打开水冷铁模,此时铸锭温度低于600℃,从凝固温度到600℃之间的冷却速率约为70℃/分钟。空冷至室温。
所得铸锭整体硬度达到HRC68.0,冲击韧性达到10.7J/cm2,抗弯强度达到1000MPa。
实施例3.采用铁粉与碳酸铒粉混合均匀后,模压成粉末压块。碳酸铒粉与铁粉的重量比大致为1:9,即形成Fe-6.50wt.%Er的Fe-碳酸铒混合压块,做为稀土Er变质的载体。
选用高碳铬铁、微碳铬铁、硼铁、铌铁、工业纯铁和上述Fe-Er2O3混合压块为原料,成分范围如下:Cr:10.0wt.%;B:2.7wt.%;C:0.8wt.%;Nb:0.6wt.%;Er:0.5wt.%;杂质元素控制见表2。少量Al、Mn、N等杂质不会导致合金性能根本性变化,因此未列出在表2中。
按照成分要求配比称量好相应原材料后,采用感应熔炼和熔模铸造,具体步骤为:
将Fe-碳酸铒粉末压块放置于炉底,然后放入铬铁、金属铬、硼铁、铌铁、钒铁和纯铁。熔化温度为1600℃;待完全熔化后,降低电炉功率,将熔体温度降至1320℃后,用配料总量0.12%的纯铝脱氧;继续保温静置约8分钟。
浇铸温度范围为1280℃。浇铸完后约10分钟,打开砂型熔模,此时铸锭温度低于700℃,从凝固温度到700℃之间的冷却速率约为60℃/分钟。空冷至室温。
所得铸锭整体硬度达到HRC68.8,冲击韧性达到11.6J/cm2,抗弯强度达到1214MPa。
实施例4.采用铁粉与碳酸铒粉混合均匀后,模压成粉末压块。碳酸铒粉与铁粉的重量比大致为1:14,即形成Fe-4.23wt.%Er的Fe-碳酸铒混合压块,做为稀土Er变质的载体。
选用高碳铬铁、金属铬、硼铁、铌铁、钒铁、工业纯铁和上述Fe-Er2O3混合压块为原料,成分范围如下:Cr:11.0wt.%;B:2.7wt.%;C:0.7wt.%;Nb:0.2wt.%;V:0.4wt.%;Er:0.2wt.%;杂质元素控制见表2。少量Al、Mn、N等杂质不会导致合金性能根本性变化,因此未列出在表2中。
按照成分要求配比称量好相应原材料后,采用感应熔炼和砂模铸造,具体步骤为:
将Fe-碳酸铒粉末压块放置于炉底,然后放入铬铁、金属铬、硼铁、铌铁、钒铁和纯铁。熔化温度为1620℃;待完全熔化后,降低电炉功率,将熔体温度降至1340℃后,用配料总量0.13%的纯铝脱氧;继续保温静置约9分钟。
浇铸温度范围为1280℃。浇铸完后约7分钟,打开砂型模,此时铸锭温度低于800℃,从凝固温度到800℃之间的冷却速率约为60℃/分钟。空冷至室温。
所得铸锭整体硬度达到HRC66.2,冲击韧性达到14.6J/cm2,抗弯强度达到1325MPa。
实施例5.采用铁粉与碳酸铒粉混合均匀后,模压成粉末压块。碳酸铒粉与铁粉的重量比大致为1:12,即形成Fe-5.0wt.%Er的Fe-碳酸铒混合压块,做为稀土Er变质的载体。
选用高碳铬铁、微碳铬铁、硼铁、铌铁、钒铁、工业纯铁和上述Fe-碳酸铒混合压块为原料,成分范围如下:Cr:10.0wt.%;B:2.6wt.%;C:0.6wt.%;Nb:0.3wt.%;V:0.1wt.%;Er:0.18wt.%;杂质元素控制见表2。少量Al、Mn、N等杂质不会导致合金性能根本性变化,因此未列出在表2中。
按照成分要求配比称量好相应原材料后,采用感应熔炼和消失模铸造,具体步骤如下:
将Fe-碳酸铒粉末压块放置于炉底,然后放入铬铁、金属铬、硼铁、铌铁、钒铁和纯铁。熔化温度为1620℃;待完全熔化后,降低电炉功率,将熔体温度降至1325℃后,用配料总量0.12%的纯铝脱氧;继续保温静置约6分钟。
浇铸温度范围为1285℃。浇铸完后约8分钟,打开消失模砂型,此时铸锭温度低于700℃,从凝固温度到700℃之间的冷却速率约为70℃/分钟。空冷至室温。
所得铸锭整体硬度达到HRC69,冲击韧性达到12.5J/cm2,抗弯强度达到1212MPa。
实施例6.采用铁粉与碳酸铒粉混合均匀后,模压成粉末压块。碳酸铒粉与铁粉的重量比大致为1:8,即形成Fe-7.22wt.%Er的Fe-碳酸铒混合压块,做为稀土Er变质的载体。
选用高碳铬铁、微碳铬铁、硼铁、铌铁、工业纯铁和上述Fe-Er2O3混合压块为原料,成分范围如下:Cr:10.0wt.%;B:2.6wt.%;C:0.8wt.%;Nb:0.8wt.%;Er:0.38wt.%;杂质元素控制见表2。少量Al、Mn、N等杂质不会导致合金性能根本性变化,因此未列出在表2中。
按照成分要求配比称量好相应原材料后,采用真空感应熔炼和铁模铸造,具体步骤如下:
将Fe-碳酸铒粉末压块放置于炉底,然后放入铬铁、金属铬、硼铁、铌铁、钒铁和纯铁。熔化温度为1590℃;待完全熔化后,降低电炉功率,将熔体温度降至1315℃后,用配料总量0.14%的纯铝脱氧;继续保温静置约7分钟。
浇铸温度范围为1290℃。浇铸完后约10分钟,打开铁模,此时铸锭温度低于600℃,从凝固温度到600℃之间的冷却速率约为70℃/分钟。空冷至室温。
所得铸锭整体硬度达到HRC68.5,冲击韧性达到12.6J/cm2,抗弯强度达到1345MPa。
实施例7.采用铁粉与碳酸铒粉混合均匀后,模压成粉末压块。碳酸铒粉与铁粉的重量比大致为1:10,即形成Fe-5.91wt.%Er的Fe-碳酸铒混合压块,做为稀土Er变质的载体。
选用高碳铬铁、微碳铬铁、硼铁、铌铁、钒铁、工业纯铁和上述Fe-碳酸铒混合压块为原料,成分范围如下:Cr:11.0wt.%;B:2.6wt.%;C:0.9wt.%;Nb:0.2wt.%;V:0.2wt.%;Er:0.56wt.%;杂质元素控制见表2。少量Al、Mn、N等杂质不会导致合金性能根本性变化,因此未列出在表2中。
按照成分要求配比称量好相应原材料后,可采用感应熔炼和消失模铸造。具体步骤如下:
将Fe-碳酸铒粉末压块放置于炉底,然后放入铬铁、金属铬、硼铁、铌铁、钒铁和纯铁。熔化温度为1610℃;待完全熔化后,降低电炉功率,将熔体温度降至1340℃后,用配料总量0.13%的纯铝脱氧;继续保温静置约8分钟。
浇铸温度范围为1270℃。浇铸完后约9分钟,打开消失模砂型,此时铸锭温度低于600℃,从凝固温度到600℃之间的冷却速率约为70℃/分钟。空冷至室温。
所得铸锭整体硬度达到HRC67.9,冲击韧性达到12.9J/cm2,抗弯强度达到1320MPa。
实施例8.采用铁粉与碳酸铒粉混合均匀后,模压成粉末压块。碳酸铒粉与铁粉的重量比大致为1:16,即形成Fe-3.82wt.%Er的Fe-碳酸铒混合压块,做为稀土Er变质的载体。
选用高碳铬铁、微碳铬铁、硼铁、铌铁、钒铁、工业纯铁和上述Fe-碳酸铒混合压块为原料,成分范围如下:Cr:13.0wt.%;B:2.6wt.%;C:0.8wt.%;Nb:0.6wt.%;V:0.4wt.%;Er:0.42wt.%;杂质元素控制见表2。少量Al、Mn、N等杂质不会导致合金性能根本性变化,因此未列出在表2中。
按照成分要求配比称量好相应原材料后,采用感应熔炼和消失模铸造,具体步骤如下:
将Fe-碳酸铒粉末压块放置于炉底,然后放入铬铁、金属铬、硼铁、铌铁、钒铁和纯铁。熔化温度为1620℃;待完全熔化后,降低电炉功率,将熔体温度降至1350℃后,用配料总量0.12%的纯铝脱氧;继续保温静置约6分钟。
浇铸温度范围为1300℃。浇铸完后约9分钟,打开消失模砂型,此时铸锭温度低于700℃,从凝固温度到700℃之间的冷却速率约为60℃/分钟。空冷至室温。
所得铸锭整体硬度达到HRC70,冲击韧性达到12.2J/cm2,抗弯强度达到1296MPa。
各实施例所制备铸造合金性能检测如下所述:
1.对实例铸造金属采用HR-150A洛氏硬度机进行硬度测试,载荷为150Kg,打五个点后取平均值,列于表2。
2.对实例铸造金属采用JBS-300B冲击试验机进行冲击韧性测试,量程为150J,打五个样后取平均值,列于表2。
3.对实例铸造金属材料电子万能实验机进行三点抗弯实验,样品尺寸为2×5×50mm的矩形试样,跨距为30mm,取三个相同处理样品的抗弯强度平均值列于表2。
表2实施例的成分与硬度、冲击韧性和抗弯强度

Claims (5)

1.一种碳酸铒变质增韧高硬度合金,其特征在于:各元素的质量百分含量为Cr:9.0~13.0,B:2.6~2.9,C:0.7~0.9,Nb:0.4~0.8,V:0.4~0.8,Mn的含量小于0.3,Er:0.03~0.7,S、P:≤0.01,余量为Fe;其中C、B的总质量百分含量为:3.3~3.6;C/Cr质量比:0.06~0.08;Nb、V的总质量百分含量为:0.5~1.0。
2.如权利要求1所述的碳酸铒变质增韧及高硬度合金的铸造方法,其特征在于包括以下步骤:
(1)Fe-碳酸铒粉末压块的准备
采用铁粉与碳酸铒粉混合均匀后,模压成粉末压块,碳酸铒粉与铁粉的重量比为1:4~19,形成Fe-3.25~13.00wt.%Er的Fe-碳酸铒混合压块,做为稀土Er变质的载体;
(2)合金配料、熔炼与变质处理
按照Fe-Cr-B-C合金的成分要求配比称量好相应原材料后,再添加0.03~0.7%Er元素变质:首先将Fe-碳酸铒粉末压块放置于炉底,然后放入铬铁、金属铬、硼铁、铌铁、钒铁和纯铁,采用感应炉熔炼制备合金,熔化温度为1550~1650℃;然后降低电炉功率,将熔体温度降至1300~1360℃,用配料总量0.1~0.15%的纯铝脱氧;继续保温静置5~10分钟;
(3)浇铸
浇铸温度为1260~1320℃,所设计的合金具有深度共晶成分,在普通砂模铸造条件下都能形成非平衡基体组织,通过各种方法铸造成型,为了避免发生热应力开裂,铸造完后开模温度要低于200℃,自然冷却到环境温度;从凝固温度到600℃之间的冷却速度应不低于60℃/分钟。
3.如权利要求2所述的硝酸铒变质增韧高硬度合金的铸造方法,其特征在于:制备大型铸件时由于温度不一致而导致应力开裂现象,铸件在600~800℃解除模具的约束。
4.如权利要求2所述的碳酸铒变质增韧高硬度合金的铸造方法,其特征在于:步骤(1)所述铁粉为纯度≥98.5%,粒度-100目的还原铁粉或者纯度≥99.0%,粒度-100目的水雾化铁粉,或者粒度-100目的合金铁粉。
5.如权利要求2所述的碳酸铒变质增韧高硬度合金的铸造方法,其特征在于:步骤(1)所述压坯为模压成形,压制压力为100~600MPa,或者采取冷等静压方法。
CN201810589798.6A 2018-06-08 2018-06-08 一种碳酸铒变质增韧高硬度合金及其铸造方法 Withdrawn CN108570622A (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201810589798.6A CN108570622A (zh) 2018-06-08 2018-06-08 一种碳酸铒变质增韧高硬度合金及其铸造方法
CN201910407639.4A CN110004378A (zh) 2018-06-08 2019-05-15 一种饵变质增韧高硬度合金及其铸造方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201810589798.6A CN108570622A (zh) 2018-06-08 2018-06-08 一种碳酸铒变质增韧高硬度合金及其铸造方法

Publications (1)

Publication Number Publication Date
CN108570622A true CN108570622A (zh) 2018-09-25

Family

ID=63573052

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201810589798.6A Withdrawn CN108570622A (zh) 2018-06-08 2018-06-08 一种碳酸铒变质增韧高硬度合金及其铸造方法

Country Status (1)

Country Link
CN (1) CN108570622A (zh)

Similar Documents

Publication Publication Date Title
CN108396249A (zh) 一种碳酸镧增韧高硬合金及其铸造和热处理方法
Halfa et al. Study on the Microstructure of Vanadium‐Modified Tungsten High‐Speed Steel‐Coded SAE‐AISI T1 Steel
CN108425072A (zh) 一种稀土镧增韧高硬合金及其铸造和热处理方法
CN108707835A (zh) 一种稀土钇增韧高硬合金及其铸造和热处理方法
CN108570622A (zh) 一种碳酸铒变质增韧高硬度合金及其铸造方法
CN108660392A (zh) 一种Si强化高硬度耐磨合金及其铸造方法
CN108441776A (zh) 一种硝酸铒变质增韧高硬度合金及其铸造方法
CN108570612A (zh) 一种稀土镧变质增韧高硬度合金及其铸造方法
CN108660391A (zh) 一种硝酸锶变质增韧高硬度合金及其铸造方法
CN108707838A (zh) 一种硝酸镧变质增韧高硬度合金及其铸造方法
CN108677105A (zh) 一种碳酸镧变质增韧高硬度合金及其铸造方法
CN108570611A (zh) 一种硝酸铈变质增韧高硬度合金及其铸造方法
CN108677104A (zh) 一种稀土饵变质增韧高硬度合金及其铸造方法
CN108570609A (zh) 一种硝酸钇变质增韧高硬度合金及其铸造方法
CN108707836A (zh) 一种碳酸钇变质增韧高硬度合金及其铸造方法
CN108570624A (zh) 一种稀土铈变质增韧高硬度合金及其铸造方法
CN108570610A (zh) 一种碳酸铈变质增韧高硬度合金及其铸造方法
CN110004378A (zh) 一种饵变质增韧高硬度合金及其铸造方法
CN108570623A (zh) 一种稀土锶变质增韧高硬度合金及其铸造方法
CN108707837A (zh) 一种稀土钇变质增韧高硬度合金及其铸造方法
CN108411218A (zh) 一种碳酸锶变质增韧高硬度合金及其铸造方法
CN109972057A (zh) 一种锶元素增韧高硬度合金及其铸造方法
CN110016624A (zh) 一种镧变质高硬度合金及其铸造方法
CN109972051B (zh) 一种钇元素变质高硬度合金及其铸造方法
CN108441775A (zh) 一种碳酸铒增韧高硬合金及其铸造和热处理方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
WW01 Invention patent application withdrawn after publication

Application publication date: 20180925

WW01 Invention patent application withdrawn after publication