CN108564026A - Network establishing method and system for Thyroid Neoplasms smear image classification - Google Patents

Network establishing method and system for Thyroid Neoplasms smear image classification Download PDF

Info

Publication number
CN108564026A
CN108564026A CN201810318298.9A CN201810318298A CN108564026A CN 108564026 A CN108564026 A CN 108564026A CN 201810318298 A CN201810318298 A CN 201810318298A CN 108564026 A CN108564026 A CN 108564026A
Authority
CN
China
Prior art keywords
convolutional neural
neural networks
data
thyroid
thyroid neoplasms
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201810318298.9A
Other languages
Chinese (zh)
Other versions
CN108564026B (en
Inventor
向俊
卢宏涛
官青
王蕴珺
平波
万晓春
李端树
杜佳俊
秦宇
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shanghai Jiaotong University
Fudan University Shanghai Cancer Center
Original Assignee
Shanghai Jiaotong University
Fudan University Shanghai Cancer Center
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shanghai Jiaotong University, Fudan University Shanghai Cancer Center filed Critical Shanghai Jiaotong University
Priority to CN201810318298.9A priority Critical patent/CN108564026B/en
Publication of CN108564026A publication Critical patent/CN108564026A/en
Application granted granted Critical
Publication of CN108564026B publication Critical patent/CN108564026B/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06VIMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
    • G06V20/00Scenes; Scene-specific elements
    • G06V20/60Type of objects
    • G06V20/69Microscopic objects, e.g. biological cells or cellular parts
    • G06V20/693Acquisition
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06VIMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
    • G06V20/00Scenes; Scene-specific elements
    • G06V20/60Type of objects
    • G06V20/69Microscopic objects, e.g. biological cells or cellular parts
    • G06V20/695Preprocessing, e.g. image segmentation
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06VIMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
    • G06V20/00Scenes; Scene-specific elements
    • G06V20/60Type of objects
    • G06V20/69Microscopic objects, e.g. biological cells or cellular parts
    • G06V20/698Matching; Classification
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06NCOMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N3/00Computing arrangements based on biological models
    • G06N3/02Neural networks
    • G06N3/04Architecture, e.g. interconnection topology
    • G06N3/044Recurrent networks, e.g. Hopfield networks
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06NCOMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N3/00Computing arrangements based on biological models
    • G06N3/02Neural networks
    • G06N3/08Learning methods
    • G06N3/082Learning methods modifying the architecture, e.g. adding, deleting or silencing nodes or connections

Landscapes

  • Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Biomedical Technology (AREA)
  • General Health & Medical Sciences (AREA)
  • Molecular Biology (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Multimedia (AREA)
  • Theoretical Computer Science (AREA)
  • Image Analysis (AREA)
  • Image Processing (AREA)

Abstract

The invention discloses a kind of network establishing methods and system for Thyroid Neoplasms smear image classification, the system finds the existing convolutional neural networks for being most suitable for Thyroid Neoplasms smear image classification using intensified learning method, and the detailed process of the intensified learning method is:First, a convolutional neural networks are generated with Recognition with Recurrent Neural Network;Then, the convolutional neural networks are trained with Thyroid Neoplasms smear training set of images;Then, with Thyroid Neoplasms smear image authentication collection verify it is trained after the convolutional neural networks accuracy rate, set an accuracy rate threshold value, judge its accuracy rate whether be higher than threshold value;Retraining finally is carried out using the highest convolutional neural networks of accuracy rate as preliminary convolutional neural networks, to reach structure high-accuracy convolutional neural networks for assisting doctor to diagnose thyroid tumors, improves the purpose of accuracy rate of diagnosis.

Description

Network establishing method and system for Thyroid Neoplasms smear image classification
Technical field
It is the present invention relates to field of image recognition, more particularly to a kind of that first shape is suitable for based on deep learning and intensified learning The convolutional neural networks and its construction method and system of adenoncus tumor Fine-needle Aspiration Tissuess smear image classification.
Background technology
Thyroid cancer is the most common malignant tumour of internal system.Thyroid nodule refers to the tumour in thyroid gland, In view of the high incidence of thyroid nodule, and thyroid malignancy only accounts for wherein small part, as can passing through No operation first Mode identifies thyroid malignancy as much as possible, then unnecessary diagnostic operation quantity can be greatly reduced, both may be used The damage that operation is brought to patient is reduced, and can more reasonably apply limited medical resource.Thyroid tumors fine needle puncture is thin Born of the same parents learn the most accurate and cost-effective preoperative planning method that smear is current evaluation thyroid nodule.However, due to correlation Cell pathology professional lacks and diagnostic experiences shortcoming, many hospitals can not make thyroid cell smear accurately Good pernicious analysis.Therefore, thyroid cell smear is handled and is studied using depth learning technology, can be provided for doctor Useful reference information, auxiliary doctor make accurate diagnosis to thyroid nodule patient in time.
In recent years, deep learning, especially convolutional neural networks produce huge breakthrough in field of image recognition.By After being trained with the picture of magnanimity, accuracy rate of the convolutional neural networks in picture classification task has been more than the mankind.Hospital gathers around Have a large amount of thyroid cell smear picture, possess a large amount of specialist to its it is good it is pernicious accurately marked, to first Shape gland cell smear carries out diagnosis of thyroid cancer using deep learning method can obtain good effect.
Invention content
The purpose of the present invention is to propose to a kind of, and the thyroid tumors Fine-needle Aspiration Tissuess based on deep learning apply picture Sorting technique improves the accuracy rate of diagnosis for assisting doctor to diagnose thyroid tumors.
To achieve the above object, present invention firstly provides a kind of Thyroid Neoplasms smear image classification method, This method is to carry out good pernicious point using the convolutional neural networks of trained maturation to apply picture to Thyroid Neoplasms Class, including:
The Thyroid Neoplasms through good pernicious mark for obtaining several certain sizes apply picture;
Training set is formed with the image of acquisition, and data amplification is carried out to training set;
Generate preliminary convolutional neural networks;
Preliminary convolutional neural networks are trained with the training set after amplification, optimizes its parameter, it is made to can determine whether thyroid tumors Cell is good pernicious in cytologic slide image, to form ripe convolutional neural networks;
It obtains Thyroid Neoplasms to be sorted and applies picture, with ripe convolutional neural networks to thin in the image Born of the same parents carry out good pernicious judgement:All cells are judged as benign in image, export good results, have in image at least one thin Born of the same parents are pernicious, export pernicious result.
Further, the Thyroid Neoplasms through good pernicious mark for obtaining several certain sizes apply in picture, institute The Thyroid Neoplasms painting picture through good pernicious mark for stating certain size obtains as follows:From thyroid gland The image of several certain sizes is intercepted in the microphoto of oncocytology smear in discerning region, and by manually carrying out Good pernicious mark.Cell in the region of interception is good pernicious with very strong discrimination for thyroid tumors, can make system pair Good pernicious make of tumour accurately judges.Preferably, the certain size is 224 × 224 pixels or 299 × 299 pixels.
" good pernicious mark " of the present invention, which can both refer to, to be labeled as entire image benign or malignant, and can also refer to will scheme The area marking sketched out as in is benign or malignant.
Preferably, the Thyroid Neoplasms smear is thyroid tumors Puncture cytology smear.
Preferably, described to form training set with the image obtained, and training set is carried out in data amplification, the data expand The method of increasing is:Data amplification is carried out by the way of to image progress flip horizontal and/or rotation;Preferably counted automatically According to amplification, i.e., by after the Thyroid Neoplasms of mark smear image input system, expanded automatically by system;It is more excellent Be selected as carry out online data amplification, i.e., in the preliminary convolutional neural networks of training, an amplification edges on one side training (to a collection of image into It is trained immediately after random amplification operation of row, then carries out the amplification and training of another batch/time), traditional data expand Increasing method data are trained after all expand, this method can occupy prodigious disk space, what strong influence was handled Speed, and the method for online data amplification can greatly reduce the memory space of occupancy.
It is further preferred that any one of the number of degrees of the rotation in 0 degree, 90 degree, 180 degree, 270 degree.
In the preferred embodiment of the present invention, data amplification include 0 degree, 90 degree, 180 degree, 270 degree rotate And 0 degree after flip horizontal, 90 degree, 180 degree, 270 degree of rotations, i.e., be eight width images, amplification times by piece image amplification It is 8 times.
In another preferred embodiment of the present invention, the method for the data amplification expands for online data, is instructing (batch) handles the image in training set in batches when practicing preliminary convolutional neural networks, at random all to every piece image in a batch Carry out flip horizontal and/or rotation transformation, when trained iterations are enough, every piece image in eight kinds of mapping modes It will be trained.
Further, described to generate in preliminary convolutional neural networks, the preliminary convolutional neural networks are in existing convolution god Through being generated on the basis of network (such as VGG-16 or Inception V3);By the output channel number of the last one full articulamentum from 1000 Be changed to 2, respectively represent the image be classified as it is benign, pernicious;When using VGG-16 networks, preferred picture size is 224 × 224 pixels, when using Inception V3 networks, preferred picture size is 299 × 299 pixels.
Further, the preliminary convolutional neural networks of generation further include pre-training:Using pre-training model to existing volume The parameter of the convolutional layer of product neural network is initialized, and pre-training is preferably carried out on ImageNet data sets.VGG-16 It can be all trained on ImageNet data sets with the pre-training of Inception V3, use the side of transfer learning in the process Method, ImageNet data sets have a large amount of picture, can be initialized well to convolutional layer using the pre-training model.This Outside, pre-training can also greatly speed up the convergence rate of network.
Preferably, described to generate in preliminary convolutional neural networks, the preliminary convolutional neural networks are by intensified learning method It finds and is most suitable for based on the existing convolutional neural networks of Thyroid Neoplasms smear image classification, for example, by using cycle Various convolutional neural networks are searched for and generated to neural network as intensified learning neural network forecast device, and initial training is carried out simultaneously to it An accuracy rate threshold value (such as 90%) is set, the convolutional neural networks using accuracy rate higher than threshold value are as preliminary convolutional Neural net Network.The each iteration of Recognition with Recurrent Neural Network can all add one layer, including convolutional layer, pond layer and full connection to convolutional neural networks Layer, or terminate the generating process of convolutional neural networks.For convolutional layer, Recognition with Recurrent Neural Network predicts its number of channels and kernel Size;For pond layer, Recognition with Recurrent Neural Network predicts its kernel size;For full articulamentum, Recognition with Recurrent Neural Network predicts that it is logical Road quantity.These prediction processes are realized by the grader of Recognition with Recurrent Neural Network output layer.First grader prediction It adds convolutional layer, pond layer, full articulamentum or terminates generating process;Other grader predicts convolutional layer, pond layer respectively With the number of channels or kernel size of full articulamentum.Number of channels is preferably 128,256,512 or 1024, and kernel size is preferred It is 1 × 1,2 × 2 or 3 × 3.
Further, the detailed process of above-mentioned intensified learning method is:
First, a convolutional neural networks are generated with Recognition with Recurrent Neural Network;
Then, the convolutional neural networks are trained with Thyroid Neoplasms smear training set of images;
Then, with Thyroid Neoplasms smear image authentication collection verify it is trained after the convolutional neural networks standard True rate sets an accuracy rate threshold value, judges whether its accuracy rate is higher than threshold value;Wherein, the verification collection refers to wherein each Open the Thyroid Neoplasms smear figure through good pernicious classification that image is all different from any one image in training set Image set.Aforementioned " good pernicious classification " refer to entire image is classified as it is benign or malignant, skilled person will appreciate that " through good evil Property mark " image also belong to the image " through good pernicious classification ".
If accuracy rate is less than threshold value, using the accuracy rate information, Recognition with Recurrent Neural Network is updated using Policy-Gradient algorithm Parameter, regenerate a convolutional neural networks, retraining is simultaneously verified, and the accuracy rate of the newly-generated convolutional neural networks is answered This is higher than the convolutional neural networks being previously generated, and so recycles, until the accuracy rate of the newest convolutional neural networks generated is higher than Threshold value, the network for terminating convolutional Neural net finds process, using the highest convolutional neural networks of the accuracy rate as the preliminary volume Product neural network.
Verification collection is applied to during carrying out intensified learning method with Recognition with Recurrent Neural Network, the verification collection can be Training set is formed with the image obtained described, and generation synchronous with training set in data amplification is carried out to training set, specially: Thyroid Neoplasms of the acquisition through good pernicious mark apply to picture is divided into training set and verification collects, and to training set into Row data expand.Preferably, the image data from the same cytologic slide is all in same collection.
Preferably, it is 4~8: 1 that training set concentrates Thyroid Neoplasms to apply the quantitative proportion of picture with verification.
Preferably, the training set during above-mentioned intensified learning is merged into new training set with verification collection, weight after amplification Newly train the preliminary convolutional neural networks.
In other words, the circulation step in the above process is as follows:
1) the n-th convolutional neural networks are generated;
2) the n-th convolutional neural networks are trained with Thyroid Neoplasms smear image data training set;
3) with Thyroid Neoplasms smear image data verification collection verify it is trained after the n-th convolutional neural networks Accuracy rate, the verification collection are that wherein each image is all different from training set one of any one image through good pernicious point The Thyroid Neoplasms smear image set of class;
Wherein, n is natural number, increases by 1 per circulation primary n;When the accuracy rate of the n-th convolutional neural networks is less than threshold value, Step 1) is returned to after updating the parameter of Recognition with Recurrent Neural Network using Policy-Gradient algorithm;When the accuracy rate of the n-th convolutional neural networks When higher than threshold value, end loop step, using n-th convolutional neural networks as the preliminary convolutional neural networks for following Training in.
Preferably, the image data that preliminary convolutional neural networks are inputted in training process passes through normalized;Such as:Instruction When practicing, the mean value of its pixel RGB values is calculated separately for each image, then each pixel on image subtracts the mean value. Further, the image data that existing convolutional neural networks are inputted when pre-training also passes through normalized.
Preferably, preliminary convolutional neural networks are trained using the stochastic gradient descent method with mini-batch;Often The part sample of one wheel training all selection fixed quantities, rather than all samples, these samples are called a mini-batch, right Sample in this mini-batch calculates separately gradient, finds out average value, is then carried out more to convolutional neural networks parameter Newly.Further, the stochastic gradient descent method with mini-batch is also used when pre-training.It is further preferred that full articulamentum it Between the dropout rates of Dropout layers be set as 0.5.
Further, described to obtain in Thyroid Neoplasms painting picture to be sorted, the thyroid gland to be sorted The acquisition that oncocytology applies picture can be divided into manually and automatically two kinds.
In the preferred embodiment of the present invention, by manually from the microphoto of Thyroid Neoplasms smear Intercept the image of several certain sizes (such as 224 × 224 pixels) comprising certain amount cell.
In another preferred embodiment of the present invention, the interception of image is adopted in an automated fashion, by computer system Intercepted automatically from the microphoto of Thyroid Neoplasms smear by slip window sampling several certain sizes (such as 224 × 224 pixels) image.Preferably, truncated picture quantity is many in the microphoto of every Thyroid Neoplasms smear In 50.
The basis that thyroid tumors apply the good pernicious judgement of picture is the tumour cell form in image, and pernicious swollen Tumor is not that tumour cell is all pernicious in image, as long as there are malignant cell, to be judged as (classification) be pernicious in image Tumour, it is benign tumour to be otherwise judged as (classification).Therefore, the present invention is in the microphoto of Thyroid Neoplasms smear The image of interception certain size carries out benign from malignant tumors judgement as much as possible, to avoid malignant cell is omitted.
Full-automatic method does not need Manual interception image, it is possible to reduce labor workload.Meanwhile it may also manually leak to cut and dislike Property tumour cell image, full-automatic method can to avoid omit malignant cell, to reduce misdiagnosis rate.
Based on above-mentioned sorting technique, the present invention provides a kind of Thyroid Neoplasms smear image classification device, Including following module:
Image data acquisition module:Picture is applied for obtaining Thyroid Neoplasms to be sorted;
Analysis of image data module:Including housebroken ripe convolutional neural networks, for analyzing thyroid gland to be sorted Oncocytology applies picture;
Classification results output module:For output category result, all cells are judged as benign in image, export good Property as a result, have in image at least one cell be it is pernicious, export pernicious result.
Preferably, described image data acquisition module is additionally operable to obtain the painting of the Thyroid Neoplasms through good pernicious mark Picture.
It is further preferred that the Thyroid Neoplasms smear image classification device further includes image data amplification mould Block:Picture, which is applied, for the Thyroid Neoplasms through good pernicious mark to acquisition carries out data amplification.
Further, described image data analysis module further includes preliminary convolutional neural networks and training unit, the instruction Practice the image data set that unit image data expands after module amplification and train the preliminary convolutional neural networks, optimizes its ginseng Number, make its can determine whether Thyroid Neoplasms painting picture in cell it is good pernicious.
The present invention also provides a kind of Thyroid Neoplasms smear image classification devices, including memory, processor And it is stored in the computer program that can be run in the memory and on the processor, the processor executes the meter The step of Thyroid Neoplasms smear image classification method of the present invention being realized when calculation machine program.
The present invention also provides a kind of computer readable storage medium, which has computer Program, the computer program realize Thyroid Neoplasms smear image classification method of the present invention when being executed by processor The step of.
Equally based on above-mentioned sorting technique, the present invention therefrom provides a kind of for Thyroid Neoplasms smear figure As the construction method and its system of the convolutional neural networks of classification.
The construction method of the convolutional neural networks for Thyroid Neoplasms smear image classification includes:
The Thyroid Neoplasms for obtaining several certain sizes apply picture;
It is applied from Thyroid Neoplasms and intercepts the good pernicious mark of discerning region progress in picture;
Picture is applied as training set using through the Thyroid Neoplasms of good pernicious mark, and carries out data amplification;
Generate preliminary convolutional neural networks;
Preliminary convolutional neural networks are trained with the training set after amplification, optimizes its parameter, it is made to can determine whether thyroid tumors Cell is good pernicious in cytologic slide image, to form ripe convolutional neural networks.
Preferably, the certain size is 224 × 224 pixels or 299 × 299 pixels.Further, the image of certain size It can automatically be intercepted from the microphoto of Thyroid Neoplasms smear by computer, it can also be by manually intercepting.
Preferably, described applied from Thyroid Neoplasms intercepts the good pernicious mark of discerning region progress in picture Note is by the interception for manually carrying out discerning region and good pernicious mark.
Preferably, the method for the data amplification is:It is carried out by the way of to image progress flip horizontal and/or rotation Data expand.It is further preferred that any one of the number of degrees of the rotation in 0 degree, 90 degree, 180 degree, 270 degree.
Preferably, the preliminary convolutional neural networks of generation further include using pre-training model to existing convolutional Neural net The parameter of the convolutional layer of network is initialized, and pre-training is preferably carried out on ImageNet data sets.
Preferably, preliminary convolutional Neural net is inputted during training preliminary convolutional neural networks with the training set after amplification The image data of network passes through normalized.
For above-mentioned construction method, the present invention provides corresponding structure systems, and the system comprises Data Generator, nets Network generator and training unit;The Data Generator generates one tentatively for generating training data, the network generator Convolutional neural networks, the then all incoming training unit of training data and preliminary convolutional neural networks, by training unit to tentatively rolling up Product neural network is trained.
Further, the Data Generator is divided into data providing unit, data mark unit and data processing unit three Part;Data providing unit provides Thyroid Neoplasms and applies picture, and data mark unit and carry out good evil to these images Property mark, data processing unit pre-processes these images, such as cutting, albefaction, normalization.The system frame of above system Figure is as shown in Figure 1.
Preferably, the system also includes authentication unit, the accuracy rate for verifying convolutional neural networks.The authentication unit It can be not only used for verifying the pregroup rate of preliminary neural network, it can also be used to the pregroup rate of the ripe neural network of verification, it can be by setting Threshold value is determined to judge the pregroup rate of network.
Preferably, the system also includes Web crawlers, for searching for and providing satisfactory existing neural network, The Web crawler can realize automatically generating for convolutional neural networks, without artificially specified network.
It is further preferred that the network building systems of the present invention search most suitable goitre using Recognition with Recurrent Neural Network The existing convolutional neural networks of oncocyte smear image classification, the system comprises Data Generator, Web crawler, networks Generator, training unit and authentication unit, the Data Generator include at data providing unit, data mark unit and data Manage three parts of unit;Its system block diagram is as shown in Figure 2.
Web crawler is used to control the search process of existing convolutional neural networks, and internal includes a major cycle, no Network is searched for disconnectedly;It is generated by network in web search each time comprising a Recognition with Recurrent Neural Network inside network generator Device generates a convolutional neural networks, and the classifying quality of final network can also feed back to Web crawler and network generator tune Its whole parameter, to generate the better convolutional neural networks of effect.
Data Generator is for generating training set, verification collection data, also producing test set number in some cases According to.Data providing unit therein provides Thyroid Neoplasms and applies picture, and data mark unit and carried out to these images Good pernicious mark, data processing unit carry out cutting and whitening pretreatment to these images.
The effect of each network is trained and is verified by training unit and authentication unit.Thyroid Neoplasms Smear image data and all incoming training unit of the network generated each time and authentication unit, are trained on training set respectively It is verified on verification collection, obtains the accuracy rate on verification collection.
Above-mentioned preferred network building systems can be used for automatically generating convolutional neural networks, and circulation step is as follows:
1) the n-th convolutional neural networks are generated;
2) the n-th convolutional neural networks are trained with Thyroid Neoplasms smear image data training set;
3) with Thyroid Neoplasms smear image data verification collection verify it is trained after the n-th convolutional neural networks Accuracy rate, the verification collection are that wherein each image is all different from training set one of any one image through good pernicious point The Thyroid Neoplasms smear image set of class;
Wherein, n is natural number, increases by 1 per circulation primary n;A threshold value is set, it is accurate when the n-th convolutional neural networks When rate is less than threshold value, step 1) is returned to after the parameter of Recognition with Recurrent Neural Network is updated using Policy-Gradient algorithm;When the n-th convolutional Neural When the accuracy rate of network is higher than threshold value, end loop step.
The above-mentioned flow chart for automatically generating convolutional neural networks is as shown in Figure 3.
The present invention also provides a kind of convolutional neural networks for building Thyroid Neoplasms smear image classification Device, including memory, processor and be stored in the computer that can be run in the memory and on the processor Program, the processor are realized of the present invention for Thyroid Neoplasms painting picture when executing the computer program The step of network establishing method of classification.
The present invention also provides a kind of computer readable storage medium, which has computer Program, the computer program are realized of the present invention for Thyroid Neoplasms smear image classification when being executed by processor Network establishing method the step of.
The present invention has following advantageous effects:
First, Thyroid Neoplasms smear image classification method and its device of the present invention can assist doctor couple Thyroid Neoplasms smear (especially Fine-needle Aspiration Tissuess smear) carries out diagnostic analysis;Considerably reduce doctor's Workload, and in doctor's misjudgment, doctor can be reminded to carry out reanalysing judgement to sample, to avoid mistaken diagnosis.
Second, full automatic Thyroid Neoplasms smear diagnosis may be implemented in the present invention, in addition in network struction It needs doctor to carry out Manual interception in the process and marks the images such as training set, verification collection, the present invention can lead in actually diagnosing It crosses computer and intercepts multiple images automatically and analyzed and determined, final synthesis obtains benign from malignant tumors judging result.
Image data is expanded several times by third, the present invention using the method for online data amplification, both can avoid traditional data Amplification occupies the problem of very big disk space, and is greatly improved the speed of data processing.
4th, the present invention is using deep learning method on the basis of existing VGG-16 or Inception V3 neural networks On construct neural network for Thyroid Neoplasms smear image classification of the accuracy rate 90% or more, for assisting Doctor diagnoses thyroid tumors, improves the accuracy rate of diagnosis.
5th, the present invention is found using Recognition with Recurrent Neural Network using intensified learning method and is most suitable for Thyroid Neoplasms The convolutional neural networks of smear image classification, to set up than VGG-16 or Inception V3 neural network accuracy rate highers Neural network, can further improve the accuracy rate of diagnosis.
The technique effect of the design of the present invention, concrete structure and generation is described further below with reference to attached drawing, with It is fully understood from the purpose of the present invention, feature and effect.
Description of the drawings
Fig. 1 is the system block diagram of neural network structure system;
Fig. 2 is the system block diagram of intensified learning method neural network structure system;
Fig. 3 is the flow chart that convolutional neural networks are automatically generated using Recognition with Recurrent Neural Network;
Fig. 4 is 224 × 224 picture intercepted from Thyroid Neoplasms smear microphoto, wherein part A packet Three papillary thyroid carcinomas (papillary thyroid carcinoma, PTC) malignant cell picture, part B are included Include three kinds of benign tumor cells pictures.
Specific implementation mode
Embodiment 1 is classified with the VGG-16 neural networks built
The Thyroid Neoplasms through good pernicious mark for obtaining certain size apply picture
1, thyroid cell smear microphoto is obtained
Data set in the present embodiment is acquired from thyroid nodule patient there by Tumor Hispital Attached to Fudan Univ. Hospital carries out thyroid tumors examination by centesis to the doubtful patient that thyroid nodule canceration occurs, and obtains Thyroid Neoplasms sample This, carries out it smear detection, obtains microphoto and carries out good pernicious mark.
The magnifying power of these cell smear microphotos is all identical, is 400 × magnifying power;Data set includes 159 Pernicious microphoto and 120 benign microphotos, every microphoto are from different patients.
2, discerning region is intercepted from microphoto
Multiple 224 × 224 pictures are intercepted from each thyroid cell smear microphoto as training test specimens This, each pictures of interception all include a certain number of cells.
Thyroid tumors it is good it is pernicious be to be analyzed and determined according to the cellular morphology in smear microphoto, thyroid gland dislike Property tumour cytologic slide in cell differ that establish a capital be malignant cell, so process of this interception picture is by artificial It carries out.Cell in the picture intercepted out is good pernicious with very strong discrimination for thyroid tumors, and network can be made to swollen The benign of tumor pernicious makes accurate judgement.
With reference to Fig. 4, six pictures are all 224 × 224 intercepted from Thyroid Neoplasms smear microphoto Picture.Part A includes three PTC malignant cell pictures, and part B includes three kinds of benign tumor cells pictures.
Training set is formed with the image of acquisition, and data amplification is carried out to training set
First, collection, verification collection and test set is trained to data set to divide.By data set according to 6: 1: 1 ratio with Machine is divided into training set, verification collection and test set, and ensures the image from the same cytologic slide microphoto all same Under collection.
Finally, training set image has 759, and verification collection image has 128, and test set picture has 126.
Then, data amplification is carried out to training set;Two kinds of amplification modes of flip horizontal and rotation are used, training set is expanded Increase into original eight times.Rotation process includes 0 degree, 90 degree, 180 degree and 270 degree of four kinds of rotation modes.
The present invention expands mode to training set using online data, and whole numbers are carried out in advance before training instead of traditional According to the method for amplification.The data set formed after conventional method amplification can occupy prodigious disk space, train in the present embodiment When per every image in a collection of (batch) all carry out overturning and/or rotation transformation at random, when trained iterations are enough When, each image in eight kinds of mapping modes can all be trained, and greatly reduce the memory space of occupancy in this way.
Generate preliminary convolutional neural networks
Apply the nerve net of the good pernicious classification of picture in the present embodiment for Thyroid Neoplasms with VGG-16 structures Network.It modifies to the full articulamentum of former network, the output channel number of the last one full articulamentum is changed to 2 from 1000, respectively Represent the image be classified as it is benign, pernicious, picture keep 224 × 224 full size inputted.
The parameter of convolutional layer is initialized using pre-training model.Pre-training is carried out on ImageNet data sets. The method that this process has used transfer learning, ImageNet data sets have a large amount of picture, can be very well using the pre-training model Ground initializes convolutional layer.In addition, pre-training can also greatly speed up the convergence rate of network.
Preliminary convolutional neural networks are trained with the training set after amplification, optimizes its parameter, it is made to can determine whether thyroid tumors Cell is good pernicious in cytologic slide image, to form ripe convolutional neural networks
Normalization pretreatment can be passed through by inputting the image of network.When training, its pixel is calculated separately for every image The mean value of rgb value, then each pixel on picture subtracts the mean value, and online data amplification is carried out when training.
Network is trained using the stochastic gradient descent method with mini-batch.Fixed number is all chosen in each round training The part sample of amount, rather than all samples.These samples are called a mini-batch.To a mini-batch Interior sample calculates separately gradient, finds out average value, is then updated to network parameter.
The dropout rates of Dropout layers between full articulamentum are set as 0.5.
It obtains Thyroid Neoplasms to be sorted and applies picture, with ripe convolutional neural networks to thin in the image Born of the same parents carry out good pernicious judgement
Classification of the present invention there are two types of method by the neural network after training for thyroid adenoma cytologic slide image, point It is not semi-automatic method and full-automatic method.
It is the method for semi-automation first.Include one by manually being intercepted multiple from Thyroid Neoplasms smear picture These 224 × 224 pictures are all inputted network and carry out good pernicious judgement by 224 × 224 regions of fixed number amount cell.If all sentencing Break to be benign, final result is exactly benign tumour;If at least one is judged as pernicious, final result is exactly pernicious swollen Tumor.
Followed by full-automatic method.A large amount of 224 × 224 regions are generated by sliding window algorithm by computer.First The good pernicious judgement of shape gland oncocytology smear is according to the form of the tumour cell in image, and malignant tumour is not Tumour cell is all malignant cell in smear, as long as there are malignant cell being exactly malignant tumour in smear.So this Invention intercepts 224 × 224 pictures in Thyroid Neoplasms apply picture and carries out benign from malignant tumors judgement as much as possible, To avoid omission malignant cell.Equally, these 224 × 224 pictures are all inputted network and carries out good pernicious judgement.If all It is judged as benign, final result is exactly benign tumour;If at least one is judged as pernicious, final result is exactly pernicious swollen Tumor.
Full-automatic method does not need Manual interception picture, it is possible to reduce labor workload.Meanwhile manual operation may also leak Malignant cell picture is cut, full-automatic method can be to avoid malignant cell be omitted, to reduce misdiagnosis rate.
For above-mentioned steps, sorter provided in this embodiment includes:Image data acquisition module:It is waited for point for obtaining The Thyroid Neoplasms of class apply picture;Image data expands module:For the first shape through good pernicious mark to acquisition Gland oncocytology applies picture and carries out data amplification;Analysis of image data module:Including housebroken ripe convolutional Neural net Network applies picture for analyzing Thyroid Neoplasms to be sorted;Classification results output module:For output category knot Fruit, all cells are judged as benign in image, export good results, and it is pernicious to have at least one cell in image, is exported Pernicious result;Described image data analysis module further includes preliminary convolutional neural networks and training unit, and the training unit is used The image data set that image data expands after module amplification trains the preliminary convolutional neural networks, optimizes its parameter, makes it can Judge Thyroid Neoplasms apply picture in cell it is good pernicious.
Embodiment 2 is classified with the Inception V3 neural networks built
The structure and sorting technique of the present embodiment are same as Example 1, existing when differing only in using Inception V3 Picture is amplified to 299 × 299 to input again.
The comparison of the neural network of embodiment 3VGG-16 and Inception V3 structures
The accuracy rate of two network models is tested with the test set in above-described embodiment.The test accuracy rate can accurately reflect Effect of two kinds of convolutional neural networks in thyroid tumors Fine-needle Aspiration Tissuess smear image classification task.In addition, this reality Susceptibility, specificity, positive predictive value, negative predictive value that example has also counted two methods are applied, the results are shown in Table 1.
Effects of the 1 VGG-16 and Inception V3 of table on test set
As it can be seen from table 1 accuracys rate of the VGG-16 on test set is very high, reach 97.66%.Inception V3 effects relatively almost, but have also reached 92.75%.This illustrates that two kinds of neural networks in the present invention are thin in thyroid tumors Born of the same parents learn and achieve good effect in smear image analysis.
Embodiment 4 is found with intensified learning method and is most suitable for thyroid tumors Fine-needle Aspiration Tissuess smear image classification Convolutional neural networks
The building mode of network and mode classification are different from Examples 1 and 2 in the present embodiment, and mainly training step is not It is together, existing that details are as follows.
The present embodiment uses Recognition with Recurrent Neural Network as intensified learning neural network forecast device, for generating convolutional neural networks. The each iteration of Recognition with Recurrent Neural Network can all add one layer, including convolutional layer, pond layer and full articulamentum to convolutional neural networks, or Person terminates the generating process of convolutional neural networks.For convolutional layer, Recognition with Recurrent Neural Network predicts its number of channels and kernel size. For pond layer, Recognition with Recurrent Neural Network predicts its kernel size.For full articulamentum, Recognition with Recurrent Neural Network predicts its port number Amount.These prediction processes are realized by the grader of Recognition with Recurrent Neural Network output layer.First grader prediction addition Convolutional layer, pond layer, full articulamentum terminate generating process.Other grader predicts convolutional layer, pond layer and complete respectively The number of channels or kernel size of articulamentum.Number of channels is 128,256,512 and 1024, and kernel size is 1 × 1,2 × 2 With 3 × 3.
The flow for finding network is as shown in Figure 3.First, (a 1st) convolutional neural networks are generated with Recognition with Recurrent Neural Network; Then, it is trained on Thyroid Neoplasms smear training set of images, and its accuracy rate is verified on verification collection.Setting One accuracy rate threshold value, using the accuracy rate information, updates cycle god if accuracy rate is less than threshold value using Policy-Gradient algorithm Parameter through network;Then, the first step is returned to, (a 2nd) convolutional neural networks are regenerated, retraining is simultaneously verified, so Cycle finally when accuracy rate is higher than threshold value, just terminates convolutional network and finds process, this collects upper accuracy rate in verification Highest (n-th) convolutional neural networks structure just applies the classification of picture as final thyroid tumors Fine-needle Aspiration Tissuess Network.In addition, verification collection is also incorporated to the training set re -training network.It also tests to be formed with test set in the present embodiment Ripe convolutional neural networks accuracy rate, for being compared with the convolutional neural networks in Examples 1 and 2.
The convolutional neural networks searched out with intensified learning method are relative to the existing net such as VGG-16 and Inception V3 Network is more targeted, and it is accurate that preferably classification can be obtained on thyroid tumors Fine-needle Aspiration Tissuess smear diagnostic task Rate.Meanwhile the present invention accelerates the search speed of convolutional neural networks using the method for intensified learning, it can be in a short period of time Find the very high convolutional neural networks of classification accuracy.
Collection is tested after tested, and the convolutional neural networks searched out in the present embodiment are in thyroid tumors Fine-needle Aspiration Tissuess Effect in smear image classification task is higher than Examples 1 and 2, and the accuracy rate of highest convolutional neural networks is up to 99%.
5 neural network of embodiment builds system
The present embodiment is related to a system, as shown in Figure 1.The system includes Data Generator, network generator and training Unit;The Data Generator generates a preliminary convolutional neural networks for generating training data, the network generator, so Training data and all incoming training unit of preliminary convolutional neural networks afterwards, instruct preliminary convolutional neural networks by training unit Practice.
The Data Generator is divided into three data providing unit, data mark unit and data processing unit parts;Number Thyroid Neoplasms painting picture is provided according to unit is provided, data mark unit and carry out good pernicious mark to these images, Data processing unit pre-processes these images, such as cutting, albefaction, normalization.
The neural network of 6 intensified learning method of embodiment builds system
The system that the present embodiment is related to, as shown in Figure 2.The system searches most suitable thyroid gland using Recognition with Recurrent Neural Network The existing convolutional neural networks of oncocytology smear image classification, including Web crawler, network generator, data generate Five device, training unit and test cell parts.
Web crawler is the search process for controlling convolutional neural networks, and inside includes a major cycle, constantly Ground searches for network and carries out the verification of network effect;Include a Recognition with Recurrent Neural Network inside network generator, in net each time In network search, a convolutional neural networks are generated by network generator, can also feed back to network in the classifying quality of final network Generator adjusts its parameter, to generate the better convolutional neural networks of effect.
Data Generator is for generating training, verification and test data.Data are also divided into inside Data Generator to carry For three unit, data mark unit and data processing unit parts.Data providing unit provides Thyroid Neoplasms and applies Picture, data mark unit and carry out good pernicious mark to these images, data processing unit these images cut and The pretreatment of albefaction.
The effect of each network is trained and is verified by training unit and authentication unit.Thyroid Neoplasms Smear image data and all incoming training unit of the network generated each time and authentication unit, are trained on training set respectively It is verified on verification collection, obtains the accuracy rate on verification collection.
The preferred embodiment of the present invention has been described in detail above.It should be appreciated that the ordinary skill of this field is without wound The property made labour, which according to the present invention can conceive, makes many modifications and variations.Therefore, all technician in the art Pass through the available technology of logical analysis, reasoning, or a limited experiment on the basis of existing technology under this invention's idea Scheme, all should be in the protection domain being defined in the patent claims.

Claims (10)

1. a kind of construction method of convolutional neural networks for Thyroid Neoplasms smear image classification, feature exist In, including:
The Thyroid Neoplasms for obtaining several certain sizes apply picture;
It is applied from Thyroid Neoplasms and intercepts the good pernicious mark of discerning region progress in picture;
Picture is applied as training set using through the Thyroid Neoplasms of good pernicious mark, and carries out data amplification;
Generate preliminary convolutional neural networks;
Preliminary convolutional neural networks are trained with the training set after amplification, optimizes its parameter, it is made to can determine whether Thyroid Neoplasms Cell is good pernicious in painting picture, to form ripe convolutional neural networks.
2. the structure side for the convolutional neural networks of Thyroid Neoplasms smear image classification as described in claim 1 Method, which is characterized in that the method for data amplification is:It is carried out by the way of to image progress flip horizontal and/or rotation Data expand.
3. a kind of construction method of convolutional neural networks for Thyroid Neoplasms smear image classification, feature exist In, including following circulation step:
1) the n-th convolutional neural networks are generated;
2) the n-th convolutional neural networks are trained with Thyroid Neoplasms smear training set of images;
3) with Thyroid Neoplasms smear image authentication collection verify it is trained after the n-th convolutional neural networks accuracy rate, The verification collection is the first through good pernicious classification that wherein each image is all different from any one image in training set Shape gland oncocytology smear image set;
Wherein, n is natural number, increases by 1 per circulation primary n;A threshold value is set, when the accuracy rate of the n-th convolutional neural networks is low When the threshold value, step 1) is returned to after the parameter of the Recognition with Recurrent Neural Network is updated using Policy-Gradient algorithm;When the n-th convolution When the accuracy rate of neural network is higher than the threshold value, end loop step.
4. a kind of structure system of convolutional neural networks for Thyroid Neoplasms smear image classification, feature exist In, including Data Generator, network generator and training unit;The Data Generator is for generating training data, the net Network generator generates a preliminary convolutional neural networks, and then training data and all incoming training of preliminary convolutional neural networks are single Member is trained preliminary convolutional neural networks by training unit.
5. the structure system for the convolutional neural networks of Thyroid Neoplasms smear image classification as claimed in claim 4 System, which is characterized in that the Data Generator is divided into three data providing unit, data mark unit and data processing unit portions Point, the data providing unit provides Thyroid Neoplasms and applies picture, and the data mark unit carries out image good Pernicious mark, the data processing unit pre-process image.
6. the structure system for the convolutional neural networks of Thyroid Neoplasms smear image classification as claimed in claim 4 System, which is characterized in that further include authentication unit, the accuracy rate for verifying the convolutional neural networks.
7. the structure system for the convolutional neural networks of Thyroid Neoplasms smear image classification as claimed in claim 4 System, which is characterized in that further include Web crawler, for searching for and providing satisfactory existing neural network.
8. a kind of structure system of convolutional neural networks for Thyroid Neoplasms smear image classification, feature exist In, including Data Generator, Web crawler, network generator, training unit and authentication unit, the Data Generator include Data providing unit, data mark unit and data processing unit;The Web crawler is for controlling existing convolutional Neural net The search process of network, internal includes a major cycle, constantly searches for network;The Data Generator is for generating training Collection, verification collection data, the data providing unit therein provide Thyroid Neoplasms and apply picture, the data mark Unit carries out good pernicious mark to image, and the data processing unit carries out cutting and whitening pretreatment to image;Each network Effect be to be trained and verified by the training unit and the authentication unit.
9. a kind of device for building the convolutional neural networks of Thyroid Neoplasms smear image classification, including storage Device, processor and it is stored in the computer program that can be run in the memory and on the processor, which is characterized in that The processor is realized when executing the computer program such as the step of claim 1 or 3 the method.
10. a kind of computer readable storage medium, the computer-readable recording medium storage has computer program, feature to exist In realization is such as the step of claim 1 or 3 the method when the computer program is executed by processor.
CN201810318298.9A 2018-04-10 2018-04-10 Network construction method and system for thyroid tumor cytology smear image classification Active CN108564026B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201810318298.9A CN108564026B (en) 2018-04-10 2018-04-10 Network construction method and system for thyroid tumor cytology smear image classification

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201810318298.9A CN108564026B (en) 2018-04-10 2018-04-10 Network construction method and system for thyroid tumor cytology smear image classification

Publications (2)

Publication Number Publication Date
CN108564026A true CN108564026A (en) 2018-09-21
CN108564026B CN108564026B (en) 2021-11-02

Family

ID=63534686

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201810318298.9A Active CN108564026B (en) 2018-04-10 2018-04-10 Network construction method and system for thyroid tumor cytology smear image classification

Country Status (1)

Country Link
CN (1) CN108564026B (en)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109409517A (en) * 2018-09-30 2019-03-01 北京字节跳动网络技术有限公司 The training method and device of object detection network
CN110009626A (en) * 2019-04-11 2019-07-12 北京百度网讯科技有限公司 Method and apparatus for generating image
CN110021022A (en) * 2019-02-21 2019-07-16 哈尔滨理工大学 A kind of thyroid gland nuclear medical image diagnostic method based on deep learning
CN110503154A (en) * 2019-08-27 2019-11-26 携程计算机技术(上海)有限公司 Method, system, electronic equipment and the storage medium of image classification
CN110739051A (en) * 2019-10-08 2020-01-31 中山大学附属第三医院 Method for establishing eosinophilic granulocyte proportion model by using nasal polyp pathological picture
CN110866540A (en) * 2019-10-10 2020-03-06 北京农业信息技术研究中心 Method and device for identifying grass in field seedling stage
CN111134735A (en) * 2019-12-19 2020-05-12 复旦大学附属中山医院 Lung cell pathology rapid on-site evaluation system and method and computer readable storage medium
CN111275080A (en) * 2020-01-14 2020-06-12 腾讯科技(深圳)有限公司 Artificial intelligence-based image classification model training method, classification method and device
CN111368872A (en) * 2019-12-20 2020-07-03 浙江大学 Breast cancer mitosis cell detection method based on fusion characteristics and verification model
US11200659B2 (en) 2019-11-18 2021-12-14 Stmicroelectronics (Rousset) Sas Neural network training device, system and method
US11501424B2 (en) 2019-11-18 2022-11-15 Stmicroelectronics (Rousset) Sas Neural network training device, system and method
CN115760777A (en) * 2022-11-21 2023-03-07 脉得智能科技(无锡)有限公司 Hashimoto's thyroiditis diagnostic system based on neural network structure search
CN116152806A (en) * 2022-02-15 2023-05-23 河南省儿童医院郑州儿童医院 Bone marrow cell identification method and system based on convolutional neural network

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105718944A (en) * 2016-01-19 2016-06-29 上海交通大学 Depth scattering convolution network learning method and system based on nuclear space
CN106874955A (en) * 2017-02-24 2017-06-20 深圳市唯特视科技有限公司 A kind of 3D shape sorting technique based on depth convolutional neural networks
CN107492090A (en) * 2016-06-09 2017-12-19 西门子保健有限责任公司 Analyzed according to generated data using the tumor phenotypes based on image of machine learning

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105718944A (en) * 2016-01-19 2016-06-29 上海交通大学 Depth scattering convolution network learning method and system based on nuclear space
CN107492090A (en) * 2016-06-09 2017-12-19 西门子保健有限责任公司 Analyzed according to generated data using the tumor phenotypes based on image of machine learning
CN106874955A (en) * 2017-02-24 2017-06-20 深圳市唯特视科技有限公司 A kind of 3D shape sorting technique based on depth convolutional neural networks

Non-Patent Citations (5)

* Cited by examiner, † Cited by third party
Title
EMMANUEL OKAFOR 等: "Operational data augmentation in classifying single aerial images of animals", 《2017 IEEE INTERNATIONAL CONFERENCE ON INNOVATIONS IN INTELLIGENT SYSTEMS AND APPLICATIONS (INISTA)》 *
HIEU PHAM 等: "Efficient Neural Architecture Search via Parameters Sharing", 《ARXIV:1802.03268V1 [CS.LG]》 *
卢宏涛 等: "深度卷积神经网络在计算机视觉中的应用研究综述", 《数据采集与处理》 *
向俊 等: "甲状腺乳头状癌咽旁淋巴结转移13例分析", 《中国实用外科杂志》 *
薛迪秀: "基于卷积神经网络的医学图像癌变识别研究", 《中国博士学位论文全文数据库信息科技辑》 *

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109409517A (en) * 2018-09-30 2019-03-01 北京字节跳动网络技术有限公司 The training method and device of object detection network
CN110021022A (en) * 2019-02-21 2019-07-16 哈尔滨理工大学 A kind of thyroid gland nuclear medical image diagnostic method based on deep learning
CN110009626A (en) * 2019-04-11 2019-07-12 北京百度网讯科技有限公司 Method and apparatus for generating image
CN110503154A (en) * 2019-08-27 2019-11-26 携程计算机技术(上海)有限公司 Method, system, electronic equipment and the storage medium of image classification
CN110739051A (en) * 2019-10-08 2020-01-31 中山大学附属第三医院 Method for establishing eosinophilic granulocyte proportion model by using nasal polyp pathological picture
CN110739051B (en) * 2019-10-08 2022-06-03 中山大学附属第三医院 Method for establishing eosinophilic granulocyte proportion model by using nasal polyp pathological picture
CN110866540A (en) * 2019-10-10 2020-03-06 北京农业信息技术研究中心 Method and device for identifying grass in field seedling stage
US11501424B2 (en) 2019-11-18 2022-11-15 Stmicroelectronics (Rousset) Sas Neural network training device, system and method
US11699224B2 (en) 2019-11-18 2023-07-11 Stmicroelectronics (Rousset) Sas Neural network training device, system and method
US11200659B2 (en) 2019-11-18 2021-12-14 Stmicroelectronics (Rousset) Sas Neural network training device, system and method
CN111134735A (en) * 2019-12-19 2020-05-12 复旦大学附属中山医院 Lung cell pathology rapid on-site evaluation system and method and computer readable storage medium
CN111368872A (en) * 2019-12-20 2020-07-03 浙江大学 Breast cancer mitosis cell detection method based on fusion characteristics and verification model
CN111275080A (en) * 2020-01-14 2020-06-12 腾讯科技(深圳)有限公司 Artificial intelligence-based image classification model training method, classification method and device
CN116152806A (en) * 2022-02-15 2023-05-23 河南省儿童医院郑州儿童医院 Bone marrow cell identification method and system based on convolutional neural network
CN116152806B (en) * 2022-02-15 2024-03-15 河南省儿童医院郑州儿童医院 Bone marrow cell identification method and system based on convolutional neural network
CN115760777A (en) * 2022-11-21 2023-03-07 脉得智能科技(无锡)有限公司 Hashimoto's thyroiditis diagnostic system based on neural network structure search
CN115760777B (en) * 2022-11-21 2024-04-30 脉得智能科技(无锡)有限公司 Hashimoto thyroiditis diagnosis system based on neural network structure search

Also Published As

Publication number Publication date
CN108564026B (en) 2021-11-02

Similar Documents

Publication Publication Date Title
CN108564026A (en) Network establishing method and system for Thyroid Neoplasms smear image classification
CN108564123A (en) A kind of Thyroid Neoplasms smear image classification method and its device
CN108389201B (en) Lung nodule benign and malignant classification method based on 3D convolutional neural network and deep learning
CN109447940B (en) Convolutional neural network training method, ultrasonic image identification and positioning method and system
CN112101451B (en) Breast cancer tissue pathological type classification method based on generation of antagonism network screening image block
CN109376636A (en) Eye ground image classification method based on capsule network
CN111488921B (en) Intelligent analysis system and method for panoramic digital pathological image
CN108717554A (en) A kind of thyroid tumors histopathologic slide image classification method and its device
CN109376777A (en) Cervical cancer tissues pathological image analysis method and equipment based on deep learning
CN108257135A (en) The assistant diagnosis system of medical image features is understood based on deep learning method
CN108764329A (en) A kind of construction method of lung cancer pathology image data set
Deng et al. Classification of breast density categories based on SE-Attention neural networks
CN107506761A (en) Brain image dividing method and system based on notable inquiry learning convolutional neural networks
Liang et al. Identification of colon cancer using multi-scale feature fusion convolutional neural network based on shearlet transform
CN105844228A (en) Remote sensing image cloud detection method based on convolution nerve network
CN105913086A (en) Computer-aided mammary gland diagnosing method by means of characteristic weight adaptive selection
CN105069774B (en) The Target Segmentation method of optimization is cut based on multi-instance learning and figure
CN107516312A (en) A kind of Chinese medicine complexion automatic classification method using shallow-layer neutral net
US11935279B1 (en) Weakly supervised pathological image tissue segmentation method based on online noise suppression strategy
CN108511055A (en) Ventricular premature beat identifying system and method based on Multiple Classifier Fusion and diagnostic rule
CN103984954B (en) Image combining method based on multi-feature fusion
CN109671055A (en) Pulmonary nodule detection method and device
CN106169084A (en) A kind of SVM mammary gland sorting technique based on Gauss kernel parameter selection
CN107492084A (en) Typical packed cell core image combining method based on randomness
Nguyen et al. An effective deep learning architecture combination for tissue microarray spots classification of h&e stained colorectal images

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant