CN108562882A - 一种星载sar影像几何交叉定标方法和系统 - Google Patents

一种星载sar影像几何交叉定标方法和系统 Download PDF

Info

Publication number
CN108562882A
CN108562882A CN201810644872.XA CN201810644872A CN108562882A CN 108562882 A CN108562882 A CN 108562882A CN 201810644872 A CN201810644872 A CN 201810644872A CN 108562882 A CN108562882 A CN 108562882A
Authority
CN
China
Prior art keywords
image
calibrated
model
geometric calibration
same place
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201810644872.XA
Other languages
English (en)
Other versions
CN108562882B (zh
Inventor
张过
邓明军
赵瑞山
徐凯
郭风成
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Wuhan University WHU
Original Assignee
Wuhan University WHU
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Wuhan University WHU filed Critical Wuhan University WHU
Priority to CN201810644872.XA priority Critical patent/CN108562882B/zh
Publication of CN108562882A publication Critical patent/CN108562882A/zh
Application granted granted Critical
Publication of CN108562882B publication Critical patent/CN108562882B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/88Radar or analogous systems specially adapted for specific applications
    • G01S13/89Radar or analogous systems specially adapted for specific applications for mapping or imaging
    • G01S13/90Radar or analogous systems specially adapted for specific applications for mapping or imaging using synthetic aperture techniques, e.g. synthetic aperture radar [SAR] techniques
    • G01S13/904SAR modes
    • G01S13/9058Bistatic or multistatic SAR
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/02Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S13/00
    • G01S7/40Means for monitoring or calibrating
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/88Radar or analogous systems specially adapted for specific applications
    • G01S13/89Radar or analogous systems specially adapted for specific applications for mapping or imaging
    • G01S13/90Radar or analogous systems specially adapted for specific applications for mapping or imaging using synthetic aperture techniques, e.g. synthetic aperture radar [SAR] techniques

Landscapes

  • Engineering & Computer Science (AREA)
  • Remote Sensing (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Physics & Mathematics (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • General Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Radar Systems Or Details Thereof (AREA)
  • Image Processing (AREA)

Abstract

本发明涉及一种星载SAR影像几何交叉定标方法和系统,包括步骤1),建立待标定影像的大气延迟改正模型;步骤2),建立待标定影像的几何定标模型;步骤3),从待标定影像和基准影像上选取若干对同名点;步骤4,根据待标定影像成像时间,利用NCEP提供的全球大气数据和欧洲定轨中心(CODE)提供的电离层电子含量分布数据,通过步骤1)建立的大气延迟改正模型计算待标定影像的大气延迟改正值;步骤5),利用步骤3)获取的若干对同名点和步骤4)得到的大气延迟改正值代入步骤2)的建立的几何定标模型,完成几何定标参数解算。采用本发明可以实现SAR卫星的常态化、短周期几何定标,不需要在地面提前布设靶标,大大节约了人力和财力成本。

Description

一种星载SAR影像几何交叉定标方法和系统
技术领域
本发明涉及一种几何定标方法,特别是一种星载SAR(Synthetic ApertureRadar)影像几何交叉定标方法和系统。
背景技术
几何定标是指利用地面高精度控制数据精确标定星上成像几何参数,对卫星影像的几何精度提升具有重要意义。
传统的几何定标方法依赖于几何定标场的高精度控制数据,因此,卫星发射后,需要收集定标场区域的影像完成几何定标,只有当卫星成功获取到定标场区域影像才能进行几何定标,这无法满足卫星常态化、快速几何定标需求。另外,固定可用的几何定标场数量过少,卫星对定标场的拍摄频次过低,无法利用定标技术监测星上几何成像参数的变化,导致卫星产品精度降低。
发明内容
因此,针对上述问题,本发明的目的在于提供一种不依赖地面控制数据的几何交叉定标方法,在相近入射角情况下,基于同名点定位一致性约束来实现几何交叉定标,解决SAR卫星的快速精确标定及短周期标定难题。
为实现上述目的,本发明采取以下技术方案:一种星载SAR影像几何交叉定标方法,其具体包括以下步骤:
步骤1),建立待标定影像的大气延迟改正模型;
步骤2),建立待标定影像的几何定标模型;
步骤3),从待标定影像和基准影像上选取若干对同名点;
步骤4,根据待标定影像成像时间,利用NCEP提供的全球大气数据和欧洲定轨中心(CODE)提供的电离层电子含量分布数据,通过步骤1)建立的大气延迟改正模型计算待标定影像的大气延迟改正值;
步骤5),利用步骤3)获取的若干对同名点和步骤4)得到的大气延迟改正值代入步骤2)的建立的几何定标模型,完成几何定标参数解算。
进一步的,所述步骤1)中,建立大气延迟改正模型的具体实现方式如下;
①利用美国国家环境预报中心(NCEP)提供的全球大气数据,从中获取影像区域的干大气压强Pd,地面温度T,经验常数k1,确定干大气延迟分量:
②根据NCEP大气数据,从中获取影像区域的湿大气压强Pw和地面温度T,经验常数k2,经验常数k3,确定湿大气延迟分量:
③根据影像辅助文件中提供的雷达信号频率f、欧洲定轨中心(CODE)提供的天顶方向电子含量tec和经验常数k4计算电离层天顶方向延迟分量:
④确定映射函数形式为:
其中,m(ε)是与入射角ε相关的映射函数;
⑤将步骤①确定的干大气延迟分量Δdry、步骤②确定的湿大气延迟分量Δwet、步骤③确定的电离层延迟改正、步骤④确定的映射函数代入大气延迟改正模型,得到大气延迟改正模型为:
进一步的,所述步骤2)中,建立待标定影像的几何定标模型的具体实现方式如下;
①根据距离-多普勒定位模型的反算方法确定目标点成像时的距离向快时间tr和方位向慢时间ta
②从影像提供的辅助文件中确定该定标景影像的距离向起始时间的测量值tr0和方位向起始时间的测量值ta0
③通过影像匹配的方式或者人工刺点的方式确定目标点的像平面列坐标x和像平面行坐标y,建立待标定影像的几何定标模型为:
式中,tdelay为大气延迟改正值,Δtr是距离向斜距改正参数,Δta是方位向时间改正参数,fs是雷达采样频率,prf是脉冲重复频率。
进一步的,所述步骤4)中,通过影像匹配的方式或者人工刺点的方式从待标定影像和基准影像上选取同名点(x,y)和(x',y'),同名点的对数大于3。
进一步的,所述步骤5)中解算几何定标参数的具体实现方式如下,
利用基准影像距离多普勒模型及SRTM-DEM数据通过迭代计算(x',y')对应的地面坐标(X,Y,Z),则得到待标定卫星影像目标点(x,y,X,Y,Z),其中(x,y)和(x',y')分别为待标定影像和基准影像上的同名点,几何定标模型可以写成如下形式:
对上式建立误差方程如下:
V=BX-L
其中,X=[dΔtr,dΔta]T,
利用步骤3)获取的若干对同名点和步骤4)得到的大气延迟改正值代入步骤2)的建立的几何定标模型,根据式(7),采用最小二乘法,解算距离向斜距改正参数Δtr和方位向时间改正参数Δta
本发明还提供一种星载SAR影像几何交叉定标系统,包括如下模块:
大气延迟改正模型建立模块,用于建立待标定影像的大气延迟改正模型;
几何定标模型建立模块,用于建立待标定影像的几何定标模型;
同名点选取模块,用于从待标定影像和基准影像上选取若干对同名点;
大气延迟改正值计算模块,用于根据待标定影像成像时间,利用NCEP提供的全球大气数据和欧洲定轨中心(CODE)提供的电离层电子含量分布数据,通过步骤1)建立的大气延迟改正模型计算待标定影像的大气延迟改正值;
几何定标参数解算模块,用于利用同名点选取模块中获取的若干对同名点和大气延迟改正值计算模块中得到的大气延迟改正值代入几何定标模型建立模块中建立的几何定标模型,完成几何定标参数解算。
进一步的,所述大气延迟改正模型建立模块中,建立大气延迟改正模型的具体实现方式如下;
①利用美国国家环境预报中心(NCEP)提供的全球大气数据,从中获取影像区域的干大气压强Pd,地面温度T,经验常数k1确定干大气延迟分量:
②根据NCEP大气数据,从中获取影像区域的湿大气压强Pw和地面温度T,经验常数k2,经验常数k3确定湿大气延迟分量:
③根据影像辅助文件中提供的雷达信号频率f、欧洲定轨中心(CODE)提供的天顶方向电子含量tec和经验常数k4计算电离层天顶方向延迟分量:
④确定映射函数形式为:
其中,m(ε)是与入射角ε相关的映射函数;
⑤将步骤①确定的干大气延迟分量Δdry、步骤②确定的湿大气延迟分量Δwet、步骤③确定的电离层延迟改正、步骤④确定的映射函数代入大气延迟改正模型,得到大气延迟改正模型为:
进一步的,所述几何定标模型建立模块中,建立待标定影像的几何定标模型的具体实现方式如下;
①根据距离-多普勒定位模型的反算方法确定目标点成像时的距离向快时间tr和方位向慢时间ta
②从影像提供的辅助文件中确定该定标景影像的距离向起始时间的测量值tr0和方位向起始时间的测量值ta0
③影像匹配的方式或者人工刺点的方式确定目标点的像平面列坐标x和像平面行坐标y,建立待标定影像的几何定标模型为:
式中,tdelay为大气延迟改正值,Δtr是距离向斜距改正参数,Δta是方位向时间改正参数,fs是雷达采样频率,prf是脉冲重复频率。
进一步的,所述同名点选取模块中,通过影像匹配的方式或者人工刺点的方式从待标定影像和基准影像上选取同名点(x,y)和(x',y'),同名点的对数大于3。
进一步的,所述几何定标参数解算模块中解算几何定标参数的具体实现方式如下,
利用基准影像距离多普勒模型及SRTM-DEM数据通过迭代计算(x',y')对应的地面坐标(X,Y,Z),则得到待标定卫星影像目标点(x,y,X,Y,Z),其中(x,y)和(x',y')分别为待标定影像和基准影像上的同名点,几何定标模型可以写成如下形式:
对上式建立误差方程如下:
V=BX-L
其中,X=[dΔtr,dΔta]T,
利用步骤3)获取的若干对同名点和步骤4)得到的大气延迟改正值代入步骤2)的建立的几何定标模型,根据式(7),采用最小二乘法,解算距离向斜距改正参数Δtr和方位向时间改正参数Δta
本发明由于采取以上技术方案,其具有以下优点:1、本发明是通过基准影像和待标定影像的配准来获取待标定影像几何定标参数解算所需的控制点,不需要依赖地面定标场的控制数据。2、采用本发明可以对星上成像参数进行定期监测,提高影像几何定位精度。3、采用本发明可以实现SAR卫星的常态化、短周期几何定标,不需要在地面提前布设靶标,大大节约了人力和财力成本。
附图说明
图1为本发明流程图。
图2为同名点两次成像示意图。
具体实施方式
如图1所示,本发明星载SAR影像几何交叉定标方法,具体包括以下步骤:
1)建立待标定影像大气延迟改正模型;电磁波信号在大气中传播遵循Fermat定律,即信号在空间任意两点之间传播时间最小化。已知雷达观测信号在大气中传播速度v、折射率n与真空中的光速c的关系有n=c/v,由此可推得在大气中雷达观测信号发射到地面z点的传播时延为:
大气延迟改正模型多写成大气天顶延迟和高度角相关映射函数的乘积:
其中,n(z)为天顶方向大气折射率,m(ε)是与入射角ε相关的映射函数。
采用以下步骤计算大气天顶延迟:
①利用美国国家环境预报中心(NCEP)提供的全球大气数据,从中获取影像区域的干大气压强Pd,地面温度T,经验常数k1,确定干大气延迟分量:
②根据NCEP大气数据,从中获取影像区域的湿大气压强Pw和地面温度T,经验常数k2,经验常数k3,确定湿大气延迟分量:
③根据影像辅助文件中提供的雷达信号频率f、欧洲定轨中心(CODE)提供的天顶方向电子含量tec和经验常数k4计算电离层天顶方向延迟分量:
④确定映射函数形式为:
其中,m(ε)是与入射角ε相关的映射函数
⑤将步骤①确定的干大气延迟分量Δdry、步骤②确定的湿大气延迟分量Δwet、步骤③确定的电离层延迟改正、步骤④确定的映射函数代入大气延迟改正模型,得到大气延迟改正模型为:
2)建立待标定影像的几何定标模型
①根据距离-多普勒定位模型的反算方法确定目标点成像时的距离向快时间tr和方位向慢时间ta
②从影像提供的辅助文件中确定该定标景影像的距离向起始时间的测量值tr0和方位向起始时间的测量值ta0
③通过影像匹配的方式或者人工刺点的方式确定目标点的像平面列坐标x和像平面行坐标y;建立待标定影像的几何定标模型为:
式中,tdelay为大气延迟改正值,Δtr是距离向斜距改正参数,Δta是方位向时间改正参数,fs是雷达采样频率,prf是脉冲重复频率。
3)获取同名点对
通过影像匹配的方式或者人工刺点的方式从待标定影像和基准影像上选取3对以上同名点(x,y)和(x',y'),同名点两次成像的示意图如图2所示,θ1,θ2分别为待标定影像和基准影像的入射角,Δr1,Δr2分别为高程误差Δh在待标定影像和基准影像上的投影,Δs为待标定影像和基准影像的高程投影差之差。
4)大气延迟改正值计算
根据待标定影像成像时间,利用National Centers for EnvironmentalPrediction(NCEP)提供的全球大气数据和欧洲定轨中心(CODE)提供的电离层电子含量分布数据,根据步骤1)建立的大气延迟改正模型计算待标定影像的大气延迟改正值tdelay
5)定标参数解算
利用基准影像距离多普勒模型及SRTM-DEM数据通过迭代计算(x',y')对应的地面坐标(X,Y,Z),则得到待标定卫星影像控制点(x,y,X,Y,Z),几何定标模型可以写成如下形式:
对上式建立误差方程如下:
V=BX-L
其中,X=[dΔtr,dΔta]T,
利用获取的若干对同名点和步骤4)得到的大气延迟改正值代入步骤2)的建立的几何定标模型,根据式(7),采用最小二乘法,解算距离向斜距改正参数Δtr和方位向时间改正参数Δta
本发明实施例还提供一种星载SAR影像几何交叉定标系统,包括如下模块:
大气延迟改正模型建立模块,用于建立待标定影像的大气延迟改正模型;
几何定标模型建立模块,用于建立待标定影像的几何定标模型;
同名点选取模块,用于从待标定影像和基准影像上选取若干对同名点;
大气延迟改正值计算模块,用于根据待标定影像成像时间,利用NCEP提供的全球大气数据和欧洲定轨中心(CODE)提供的电离层电子含量分布数据,通过步骤1)建立的大气延迟改正模型计算待标定影像的大气延迟改正值;
几何定标参数解算模块,用于利用同名点选取模块中获取的若干对同名点和大气延迟改正值计算模块中得到的大气延迟改正值代入几何定标模型建立模块中建立的几何定标模型,完成几何定标参数解算。
其中,所述大气延迟改正模型建立模块中,建立大气延迟改正模型的具体实现方式如下;
①利用美国国家环境预报中心(NCEP)提供的全球大气数据,从中获取影像区域的干大气压强Pd,地面温度T,经验常数k1确定干大气延迟分量:
②根据NCEP大气数据,从中获取影像区域的湿大气压强Pw和地面温度T,经验常数k2,经验常数k3确定湿大气延迟分量:
③根据影像辅助文件中提供的雷达信号频率f、欧洲定轨中心(CODE)提供的天顶方向电子含量tec和经验常数k4计算电离层天顶方向延迟分量:
④确定映射函数形式为:
其中,m(ε)是与入射角ε相关的映射函数;
⑤将步骤①确定的干大气延迟分量Δdry、步骤②确定的湿大气延迟分量Δwet、步骤③确定的电离层延迟改正、步骤④确定的映射函数代入大气延迟改正模型,得到大气延迟改正模型为:
其中,所述几何定标模型建立模块中,建立待标定影像的几何定标模型的具体实现方式如下;
①根据距离-多普勒定位模型的反算方法确定目标点成像时的距离向快时间tr和方位向慢时间ta
②从影像提供的辅助文件中确定该定标景影像的距离向起始时间的测量值tr0和方位向起始时间的测量值ta0
③影像匹配的方式或者人工刺点的方式确定目标点的像平面列坐标x和像平面行坐标y,建立待标定影像的几何定标模型为:
式中,tdelay为大气延迟改正值,Δtr是距离向斜距改正参数,Δta是方位向时间改正参数,fs是雷达采样频率,prf是脉冲重复频率。
其中,所述同名点选取模块中,通过影像匹配的方式或者人工刺点的方式从待标定影像和基准影像上选取同名点(x,y)和(x',y'),同名点的对数大于3。
其中,所述几何定标参数解算模块中解算几何定标参数的具体实现方式如下,
利用基准影像距离多普勒模型及SRTM-DEM数据通过迭代计算(x',y')对应的地面坐标(X,Y,Z),则得到待标定卫星影像目标点(x,y,X,Y,Z),其中(x,y)和(x',y')分别为待标定影像和基准影像上的同名点,几何定标模型可以写成如下形式:
对上式建立误差方程如下:
V=BX-L
其中,X=[dΔtr,dΔta]T,
利用步骤3)获取的若干对同名点和步骤4)得到的大气延迟改正值代入步骤2)的建立的几何定标模型,根据式(7),采用最小二乘法,解算距离向斜距改正参数Δtr和方位向时间改正参数Δta
各模块和各步骤的实现方式相对应,本发明不予撰述。
以上所述的具体实施例,对本发明的目的、技术方案和有益效果进行了进一步详细说明,应理解的是,以上所述仅为本发明的具体实施例而已,并不用于限制本发明,凡在本发明的精神和原则之内,所做的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。

Claims (10)

1.一种星载SAR影像几何交叉定标方法,其特征在于,包括如下步骤:
步骤1),建立待标定影像的大气延迟改正模型;
步骤2),建立待标定影像的几何定标模型;
步骤3),从待标定影像和基准影像上选取若干对同名点;
步骤4,根据待标定影像成像时间,利用NCEP提供的全球大气数据和欧洲定轨中心(CODE)提供的电离层电子含量分布数据,通过步骤1)建立的大气延迟改正模型计算待标定影像的大气延迟改正值;
步骤5),利用步骤3)获取的若干对同名点和步骤4)得到的大气延迟改正值代入步骤2)的建立的几何定标模型,完成几何定标参数解算。
2.如权利要求1所述的一种星载SAR影像几何交叉定标方法,其特征在于:所述步骤1)中,建立大气延迟改正模型的具体实现方式如下;
①利用美国国家环境预报中心(NCEP)提供的全球大气数据,从中获取影像区域的干大气压强Pd,地面温度T,经验常数k1,确定干大气延迟分量:
②根据NCEP大气数据,从中获取影像区域的湿大气压强Pw和地面温度T,经验常数k2,经验常数k3,确定湿大气延迟分量:
③根据影像辅助文件中提供的雷达信号频率f、欧洲定轨中心(CODE)提供的天顶方向电子含量tec和经验常数k4计算电离层天顶方向延迟分量:
④确定映射函数形式为:
其中,m(ε)是与入射角ε相关的映射函数;
⑤将步骤①确定的干大气延迟分量Δdry、步骤②确定的湿大气延迟分量Δwet、步骤③确定的电离层延迟改正、步骤④确定的映射函数代入大气延迟改正模型,得到大气延迟改正模型为:
3.如权利要求书1所述的一种星载SAR影像几何交叉定标方法,其特征在于:所述步骤2)中,建立待标定影像的几何定标模型的具体实现方式如下;
①根据距离-多普勒定位模型的反算方法确定目标点成像时的距离向快时间tr和方位向慢时间ta
②从影像提供的辅助文件中确定该定标景影像的距离向起始时间的测量值tr0和方位向起始时间的测量值ta0
③通过影像匹配的方式或者人工刺点的方式确定目标点的像平面列坐标x和像平面行坐标y,建立待标定影像的几何定标模型为:
式中,tdelay为大气延迟改正值,Δtr是距离向斜距改正参数,Δta是方位向时间改正参数,fs是雷达采样频率,prf是脉冲重复频率。
4.如权利要求书1所述的一种星载SAR影像几何交叉定标方法,其特征在于:所述步骤4)中,通过影像匹配的方式或者人工刺点的方式从待标定影像和基准影像上选取同名点(x,y)和(x',y'),同名点的对数大于3。
5.如权利要求书3所述的一种星载SAR影像几何交叉定标方法,其特征在于:所述步骤5)中解算几何定标参数的具体实现方式如下,
利用基准影像距离多普勒模型及SRTM-DEM数据通过迭代计算(x',y')对应的地面坐标(X,Y,Z),则得到待标定卫星影像目标点(x,y,X,Y,Z),其中(x,y)和(x',y')分别为待标定影像和基准影像上的同名点,几何定标模型可以写成如下形式:
对上式建立误差方程如下:
V=BX-L
其中,X=[dΔtr,dΔta]T,
利用步骤3)获取的若干对同名点和步骤4)得到的大气延迟改正值代入步骤2)的建立的几何定标模型,根据式(7),采用最小二乘法,解算距离向斜距改正参数Δtr和方位向时间改正参数Δta
6.一种星载SAR影像几何交叉定标系统,其特征在于,包括如下模块:
大气延迟改正模型建立模块,用于建立待标定影像的大气延迟改正模型;
几何定标模型建立模块,用于建立待标定影像的几何定标模型;
同名点选取模块,用于从待标定影像和基准影像上选取若干对同名点;
大气延迟改正值计算模块,用于根据待标定影像成像时间,利用NCEP提供的全球大气数据和欧洲定轨中心(CODE)提供的电离层电子含量分布数据,通过步骤1)建立的大气延迟改正模型计算待标定影像的大气延迟改正值;
几何定标参数解算模块,用于利用同名点选取模块中获取的若干对同名点和大气延迟改正值计算模块中得到的大气延迟改正值代入几何定标模型建立模块中建立的几何定标模型,完成几何定标参数解算。
7.如权利要求6所述的一种星载SAR影像几何交叉定标系统,其特征在于:所述大气延迟改正模型建立模块中,建立大气延迟改正模型的具体实现方式如下;
①利用美国国家环境预报中心(NCEP)提供的全球大气数据,从中获取影像区域的干大气压强Pd,地面温度T,经验常数k1确定干大气延迟分量:
②根据NCEP大气数据,从中获取影像区域的湿大气压强Pw和地面温度T,经验常数k2,经验常数k3确定湿大气延迟分量:
③根据影像辅助文件中提供的雷达信号频率f、欧洲定轨中心(CODE)提供的天顶方向电子含量tec和经验常数k4计算电离层天顶方向延迟分量:
④确定映射函数形式为:
其中,m(ε)是与入射角ε相关的映射函数;
⑤将步骤①确定的干大气延迟分量Δdry、步骤②确定的湿大气延迟分量Δwet、步骤③确定的电离层延迟改正、步骤④确定的映射函数代入大气延迟改正模型,得到大气延迟改正模型为:
8.如权利要求书6所述的一种星载SAR影像几何交叉定标系统,其特征在于:所述几何定标模型建立模块中,建立待标定影像的几何定标模型的具体实现方式如下;
①根据距离-多普勒定位模型的反算方法确定目标点成像时的距离向快时间tr和方位向慢时间ta
②从影像提供的辅助文件中确定该定标景影像的距离向起始时间的测量值tr0和方位向起始时间的测量值ta0
③影像匹配的方式或者人工刺点的方式确定目标点的像平面列坐标x和像平面行坐标y,建立待标定影像的几何定标模型为:
式中,tdelay为大气延迟改正值,Δtr是距离向斜距改正参数,Δta是方位向时间改正参数,fs是雷达采样频率,prf是脉冲重复频率。
9.如权利要求书6所述的一种星载SAR影像几何交叉定标系统,其特征在于:所述同名点选取模块中,通过影像匹配的方式或者人工刺点的方式从待标定影像和基准影像上选取同名点(x,y)和(x',y'),同名点的对数大于3。
10.如权利要求书8所述的一种星载SAR影像几何交叉定标系统,其特征在于:所述几何定标参数解算模块中解算几何定标参数的具体实现方式如下,
利用基准影像距离多普勒模型及SRTM-DEM数据通过迭代计算(x',y')对应的地面坐标(X,Y,Z),则得到待标定卫星影像目标点(x,y,X,Y,Z),其中(x,y)和(x',y')分别为待标定影像和基准影像上的同名点,几何定标模型可以写成如下形式:
对上式建立误差方程如下:
V=BX-L
其中,X=[dΔtr,dΔta]T,
利用步骤3)获取的若干对同名点和步骤4)得到的大气延迟改正值代入步骤2)的建立的几何定标模型,根据式(7),采用最小二乘法,解算距离向斜距改正参数Δtr和方位向时间改正参数Δta
CN201810644872.XA 2018-06-21 2018-06-21 一种星载sar影像几何交叉定标方法和系统 Active CN108562882B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201810644872.XA CN108562882B (zh) 2018-06-21 2018-06-21 一种星载sar影像几何交叉定标方法和系统

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201810644872.XA CN108562882B (zh) 2018-06-21 2018-06-21 一种星载sar影像几何交叉定标方法和系统

Publications (2)

Publication Number Publication Date
CN108562882A true CN108562882A (zh) 2018-09-21
CN108562882B CN108562882B (zh) 2020-04-10

Family

ID=63554080

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201810644872.XA Active CN108562882B (zh) 2018-06-21 2018-06-21 一种星载sar影像几何交叉定标方法和系统

Country Status (1)

Country Link
CN (1) CN108562882B (zh)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109597040A (zh) * 2018-12-28 2019-04-09 武汉大学 一种星载sar影像无场几何定标方法
CN110030968A (zh) * 2019-04-16 2019-07-19 武汉大学 一种基于星载立体光学影像的地面遮挡物仰角测量方法
CN110954302A (zh) * 2019-11-08 2020-04-03 航天东方红卫星有限公司 一种基于同平台交叉定标的光谱匹配因子确定方法
CN111310309A (zh) * 2020-01-20 2020-06-19 中国矿业大学 一种基于无人机热红外影像温度反演校正方法
CN112305510A (zh) * 2020-09-22 2021-02-02 江苏师范大学 一种基于dem匹配的合成孔径雷达影像几何定标方法
CN113759330A (zh) * 2021-08-22 2021-12-07 北京化工大学 一种sar交叉定标参考目标选择方法
CN116184341A (zh) * 2023-04-27 2023-05-30 中科星图测控技术股份有限公司 一种星座内sar载荷交叉辐射定标方法

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105301570A (zh) * 2015-10-20 2016-02-03 中国科学院电子学研究所 一种机载顺轨干涉sar系统的外场定标方法
CN107367716A (zh) * 2017-07-04 2017-11-21 武汉大学 一种高精度星载sar几何定标方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105301570A (zh) * 2015-10-20 2016-02-03 中国科学院电子学研究所 一种机载顺轨干涉sar系统的外场定标方法
CN107367716A (zh) * 2017-07-04 2017-11-21 武汉大学 一种高精度星载sar几何定标方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
RUISHAN ZHAO等: "Multimode Hybrid Geometric Calibration of Spaceborne SAR Considering Atmospheric Propagation Delay", 《REMOTE SENSING》 *
赵瑞山等: "利用光学遥感影像进行星载SAR影像正射纠正", 《测绘通报》 *

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109597040A (zh) * 2018-12-28 2019-04-09 武汉大学 一种星载sar影像无场几何定标方法
CN109597040B (zh) * 2018-12-28 2023-07-18 武汉大学 一种星载sar影像无场几何定标方法
CN110030968A (zh) * 2019-04-16 2019-07-19 武汉大学 一种基于星载立体光学影像的地面遮挡物仰角测量方法
CN110954302A (zh) * 2019-11-08 2020-04-03 航天东方红卫星有限公司 一种基于同平台交叉定标的光谱匹配因子确定方法
CN110954302B (zh) * 2019-11-08 2021-07-13 航天东方红卫星有限公司 一种基于同平台交叉定标的光谱匹配因子确定方法
CN111310309A (zh) * 2020-01-20 2020-06-19 中国矿业大学 一种基于无人机热红外影像温度反演校正方法
CN112305510A (zh) * 2020-09-22 2021-02-02 江苏师范大学 一种基于dem匹配的合成孔径雷达影像几何定标方法
CN113759330A (zh) * 2021-08-22 2021-12-07 北京化工大学 一种sar交叉定标参考目标选择方法
CN113759330B (zh) * 2021-08-22 2023-12-15 北京化工大学 一种sar交叉定标参考目标选择方法
CN116184341A (zh) * 2023-04-27 2023-05-30 中科星图测控技术股份有限公司 一种星座内sar载荷交叉辐射定标方法
CN116184341B (zh) * 2023-04-27 2023-08-29 中科星图测控技术股份有限公司 一种星座内sar载荷交叉辐射定标方法

Also Published As

Publication number Publication date
CN108562882B (zh) 2020-04-10

Similar Documents

Publication Publication Date Title
CN108562882A (zh) 一种星载sar影像几何交叉定标方法和系统
CN107367716B (zh) 一种高精度星载sar几何定标方法
Stöcker et al. Quality assessment of combined IMU/GNSS data for direct georeferencing in the context of UAV-based mapping
CN110646782B (zh) 一种基于波形匹配的星载激光在轨指向检校方法
US8717226B2 (en) Method for processing signals of an airborne radar with correction of the error in the radar beam pointing angle and corresponding device
WO2021097983A1 (zh) 定位的方法、装置、设备及存储介质
CN109597040B (zh) 一种星载sar影像无场几何定标方法
CN105004354A (zh) 大斜视角下无人机可见光和红外图像目标定位方法
CN108876846B (zh) 一种基于光变曲线的卫星本体尺寸计算方法
CN108535715A (zh) 一种适用于机载光电观瞄系统的大气折射下目标定位方法
CN105606128A (zh) 一种星载激光高度计外场检校方法
CN113409400A (zh) 一种基于自动跟踪的机载光电系统目标地理定位方法
CN113218577A (zh) 一种星敏感器星点质心位置精度的外场测量方法
CN116123998A (zh) 多站点基于视频采集对空中炸点进行实时测量方法
CN112346027B (zh) 用于确定合成孔径雷达图像的散射特性的方法和系统
CN106353756A (zh) 基于图像匹配的下降轨聚束合成孔径雷达定位方法
CN113608186A (zh) 一种雷达系统与光电成像系统的标校方法
EP1859295A1 (en) A calibration method and system for position measurements
CN109959365B (zh) 一种基于位姿信息测量的海天线定位方法
CN110455277A (zh) 基于物联网数据融合的高精度姿态测量装置与方法
CN116203544A (zh) 一种移动测量系统往返测回无控自检校方法、装置及介质
CN113109829B (zh) 一种同步扫描交会测量敏感器的标定方法
CN114280613A (zh) 基于dem数据生成仿真机载火控雷达对地测绘图像方法
CN114004949A (zh) 机载点云辅助的移动测量系统安置参数检校方法及系统
CN114047486A (zh) 一种雷达导引头挂飞试验安装误差角标定方法及存储介质

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant