CN108558253A - 一种具备自我感知能力的自修复混凝土结构及其制作方法 - Google Patents

一种具备自我感知能力的自修复混凝土结构及其制作方法 Download PDF

Info

Publication number
CN108558253A
CN108558253A CN201810592878.7A CN201810592878A CN108558253A CN 108558253 A CN108558253 A CN 108558253A CN 201810592878 A CN201810592878 A CN 201810592878A CN 108558253 A CN108558253 A CN 108558253A
Authority
CN
China
Prior art keywords
self
particle
concrete
sodium metasilicate
repair
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201810592878.7A
Other languages
English (en)
Inventor
吕宏鑫
李静
陈连佳
陈万昕
甘振先
冯伟浩
李小雨
高嘉欣
戚桠童
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
South China University of Technology SCUT
Original Assignee
South China University of Technology SCUT
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by South China University of Technology SCUT filed Critical South China University of Technology SCUT
Priority to CN201810592878.7A priority Critical patent/CN108558253A/zh
Publication of CN108558253A publication Critical patent/CN108558253A/zh
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B40/00Processes, in general, for influencing or modifying the properties of mortars, concrete or artificial stone compositions, e.g. their setting or hardening ability
    • C04B40/0028Aspects relating to the mixing step of the mortar preparation
    • C04B40/0039Premixtures of ingredients
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B20/00Use of materials as fillers for mortars, concrete or artificial stone according to more than one of groups C04B14/00 - C04B18/00 and characterised by shape or grain distribution; Treatment of materials according to more than one of the groups C04B14/00 - C04B18/00 specially adapted to enhance their filling properties in mortars, concrete or artificial stone; Expanding or defibrillating materials
    • C04B20/10Coating or impregnating
    • C04B20/1018Coating or impregnating with organic materials
    • C04B20/1029Macromolecular compounds
    • C04B20/1037Macromolecular compounds obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B28/00Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements
    • C04B28/02Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements containing hydraulic cements other than calcium sulfates

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Inorganic Chemistry (AREA)
  • Curing Cements, Concrete, And Artificial Stone (AREA)

Abstract

本发明公开了一种具备自我感知能力的自修复混凝土结构,包括混凝土构件,所述混凝土构件内均匀分布有若干碳纤维及硅酸钠修复颗粒,所述的硅酸钠修复颗粒包括环氧树脂、若干均匀包裹在所述环氧树脂内的无水硅酸钠颗粒,所述混凝土构件上还贴有用于实时监测混凝土电阻率变化的应变片。本发明还提供了一种具备自我感知能力的混凝土结构的制作方法。本发明能使混凝土结构具备自诊断和损伤自修复的能力,从而提高混凝土的结构的安全性、耐久性和经济性。

Description

一种具备自我感知能力的自修复混凝土结构及其制作方法
技术领域
本发明涉及一种能自我感知工作状况的自修复的混凝土结构及其制作方法,包括混凝土构件,属于智能混凝土及其类似建筑材料领域。
背景技术
混凝土在正常的服役过程中,由于环境和疲劳损伤等因素不可避免地会产生裂缝,这些裂缝为外界的有害物质提供了进入混凝土内部的通道,进而加速内部钢筋的锈蚀,降低混凝土结构的安全性和耐久性。对于已充分发展的宏观裂缝,我们很容易地可以用肉眼识别,并利用传统的手段,即结构加固法、灌浆法、填充法等进行后期的修复;而对于微小裂缝,在现行的探测技术下,其难以被及时、准确地探测,此时利用传统的裂缝修复手段达不到修复效果,未能及时进行有效修复的微观裂缝不但会影响结构的正常使用性能和缩短使用寿命,还可能进一步发展为宏观裂缝并导致结构脆性断裂,产生严重的灾难性事故。更重要是,传统裂缝修补手段成本十分高昂,耗费大量人力物力。近年来,建材趋向智能化发展,且工程结构的安全性和耐久性越来越受关注,混凝土结构也被期待能具有损伤自诊断、自修复的能力。
发明内容
有鉴于此,本发明迎合建材智能化趋势、工程安全和耐久性的实际需要,提供一种具备损伤自诊断、自修复能力的智能混凝土结构及其制作方法。
本发明采用以下方案实现:
一种具备自我感知能力的自修复混凝土结构,包括混凝土构件,所述混凝土构件内均匀分布有若干碳纤维及硅酸钠修复颗粒,所述的硅酸钠修复颗粒包括环氧树脂、若干均匀包裹在所述环氧树脂内的无水硅酸钠颗粒,所述混凝土构件上还贴有用于实时监测混凝土电阻率变化的应变片。
进一步地,所述碳纤维为长度尺寸为8~9mm的短切碳纤维。
进一步地,所述的硅酸钠修复颗粒为直径5~6mm的片状颗粒。
一种如所述自修复混凝土结构制作方法,包括步骤:
步骤1、制备硅酸钠修复颗粒,并将其破碎成直径为5~6mm的片状颗粒;
步骤2、设计混凝土配合比,确定碳纤维和硅酸钠修复颗粒掺量;
步骤3、浇筑混凝土构件上的混凝土,并养护成型;
步骤4、在养护成型的混凝土构件上贴上应变片。
进一步地,所述的步骤1具体包括:
步骤11、将透明胶带撕开后于环氧树脂中浸泡后取出;
步骤12、将无水硅酸钠颗粒均匀地撒在胶带粘性一面;
步骤13、将均匀洒满无水硅酸钠颗粒的胶带再浸泡一遍环氧树脂后取出;
步骤14、将胶带置于烘箱中在70摄氏度的情况下烘干5h后取出;
步骤15、撕去胶带,并将所得固体破碎成5~6mm的片状颗粒,即为实际使用的硅酸钠修复颗粒。
进一步地,所述碳纤维的总体积为混凝土构件体积的0.45%~0.55%。
进一步地,所述的硅酸钠修复颗粒与胶凝材料的体积比为3.5%~4.5%。
进一步地,所述的步骤2中,当所述混凝土构件1的强度等级为C40、其坍落度为160~200mm时,其水泥、细骨料、粗骨料、水、粉煤灰、减水剂的配合比为:1:1.75:3.58:0.46:0.26:0.012,所述碳纤维掺入量为混凝土构件体积的0.45%~0.55%,所述的硅酸钠修复颗粒与胶凝材料的体积比为3.5%~4.5%。
进一步地,所述水泥为PO 42.5级,密度为3100kg/m3;所述的粉煤灰为Ⅱ粉煤灰,密度为2100kg/m3;所述减水剂为聚羧酸减水剂,减水率为28~30%;所述粗骨料为最大粒径为25mm碎石,表观密度2600kg/m3,堆积密度1600kg/m3,紧密堆积密度1680kg/m3;所述细骨料为中砂,表观密度2620kg/m3,堆积密度1610kg/m3,紧密堆积密度1700kg/m3,细度模数为2.6。
进一步地,步骤3中,所述硅酸钠修复剂复合颗粒和碳纤维均以骨料的形式均匀掺入混凝土中,所述混凝土构件采用自密实混凝土,在浇筑过程中免振捣。以保证掺入硅酸钠修复剂不受扰动、振捣而提前破碎。
与现有技术相比,本发明赋予混凝土结构损伤自诊断、自修复的能力,在混凝土裂缝的发展初期就进行了有效地抑制,大大降低了裂缝的后期修复所产生的高额成本,极大地提高了混凝土结构的耐久性、安全性和经济性。
附图说明
图1是本发明实施例的自修复混凝土结构的构造示意图。
图2是本发明实施例的硅酸钠修复剂复合颗粒构造示意图。
图中标号说明:1-混凝土构件、2-碳纤维、3-硅酸钠修复颗粒、4-无水硅酸钠颗粒、5-环氧树脂。
具体实施方式
为使本发明的目的、技术方案及优点更加清楚明白,以下将通过具体实施例和相关附图,对本发明作进一步详细说明。
实施例一
如图1~2所示,一种具备自我感知能力的自修复混凝土结构,包括混凝土构件1,所述混凝土构件1内均匀分布有若干碳纤维2及硅酸钠修复颗粒3,所述碳纤维2为长度尺寸为8~9mm的短切碳纤维。
所述的硅酸钠修复颗粒3为直径5~6mm的片状颗粒,包括环氧树脂5、若干均匀包裹在所述环氧树脂5内的无水硅酸钠颗粒4,所述混凝土构件1上还贴有用于实时监测混凝土电阻率变化的应变片,应变片通过电路与外界电脑相连,通过检测混凝土电阻率的变化,进而监测混凝土的工作状况。
实施例二
一种如所述自修复混凝土结构制作方法,包括步骤:
步骤1、制备硅酸钠修复颗粒3,并将其破碎成直径为5~6mm的片状颗粒;
步骤2、设计混凝土配合比,确定碳纤维2和硅酸钠修复颗粒3掺量;
步骤3、浇筑混凝土构件上的混凝土,并养护成型;
步骤4、在养护成型的混凝土构件上贴上应变片。
本实施例中,所述的步骤1具体包括:
步骤11、将透明胶带撕开后于环氧树脂5中浸泡后取出;
步骤12、将无水硅酸钠颗粒4均匀地撒在胶带粘性一面;
步骤13、将均匀洒满无水硅酸钠颗粒4的胶带再浸泡一遍环氧树脂5后取出;
步骤14、将胶带置于烘箱中在70摄氏度的情况下烘干5h后取出;
步骤15、撕去胶带,并将所得固体破碎成5~6mm的片状颗粒,即为实际使用的硅酸钠修复颗粒3。
所述碳纤维2的总体积为混凝土构件1体积的0.45%~0.55%。所述的硅酸钠修复颗粒3与胶凝材料的体积比为3.5%~4.5%。
本实施例的所述的步骤2中,当所述混凝土构件1的强度等级为C40、其坍落度为160~200mm时,其水泥、细骨料、粗骨料、水、粉煤灰、减水剂的配合比为:1:1.75:3.58:0.46:0.26:0.012,所述碳纤维掺入量为混凝土构件1体积的0.45%~0.55%,所述的硅酸钠修复颗粒3与胶凝材料的体积比为3.5%~4.5%。
具体地,本实施例中,所述水泥为PO 42.5级,密度为3100kg/m3;所述的粉煤灰为Ⅱ粉煤灰,密度为2100kg/m3;所述减水剂为聚羧酸减水剂,减水率为28~30%;所述粗骨料为最大粒径为25mm碎石,表观密度2600kg/m3,堆积密度1600kg/m3,紧密堆积密度1680kg/m3;所述细骨料为中砂,表观密度2620kg/m3,堆积密度1610kg/m3,紧密堆积密度1700kg/m3,细度模数为2.6。
制作过程中,所述硅酸钠修复剂复合颗粒4和碳纤维均以骨料的形式均匀掺入混凝土中,所述混凝土构件1采用自密实混凝土,在浇筑过程中免振捣,以保证掺入硅酸钠修复剂不受扰动、振捣而提前破碎。
上述实施例的混凝土构件1由于外力作用或环境因素产生裂缝,通过外界电脑实时监测可知混凝土结构的工作状况,裂缝贯穿硅酸钠修复剂复合颗粒使无水硅酸钠暴露,进而与混凝土基体中的氢氧化钙反应生成填充裂缝的水化硅酸钙凝胶,进而使裂缝得到闭合。
应说明的是,以上所述仅为本发明的较佳实施例而已,并不用以限制本发明,凡在本发明的精神和原则之内,所作的任何修改、等同替换和改进等,均应包含在本发明的保护范围。

Claims (10)

1.一种具备自我感知能力的自修复混凝土结构,包括混凝土构件1,其特征在于:所述混凝土构件(1)内均匀分布有若干碳纤维(2)及硅酸钠修复颗粒(3),所述的硅酸钠修复颗粒(3)包括环氧树脂5、若干均匀包裹在所述环氧树脂(5)内的无水硅酸钠颗粒(4),所述混凝土构件(1)上还贴有用于实时监测混凝土电阻率变化的应变片。
2.根据权利要求1所述的具备自我感知能力的自修复混凝土结构,其特征在于:所述碳纤维(2)为长度尺寸为8~9mm的短切碳纤维。
3.根据权利要求1所述的具备自我感知能力的自修复混凝土结构,其特征在于:所述的硅酸钠修复颗粒(3)为直径5~6mm的片状颗粒。
4.一种如权利要求1-3中任一项所述自修复混凝土结构制作方法,其特征在于,包括步骤:
步骤1、制备硅酸钠修复颗粒(3),并将其破碎成直径为5~6mm的片状颗粒;
步骤2、设计混凝土配合比,确定碳纤维(2)和硅酸钠修复颗粒(3)掺量;
步骤3、浇筑混凝土构件上的混凝土,并养护成型;
步骤4、在养护成型的混凝土构件上贴上应变片。
5.根据权利要求4所述的具备自我感知能力的自修复混凝土结构,其特征在于:所述碳纤维(2)的总体积为混凝土构件(1)体积的0.45%~0.55%。
6.根据权利要求4所述的具备自我感知能力的自修复混凝土结构,其特征在于:所述的硅酸钠修复颗粒(3)与胶凝材料的体积比为3.5%~4.5%。
7.根据权利要求4所述的制作方法,其特征在于,所述的步骤1具体包括:
步骤11、将透明胶带撕开后于环氧树脂(5)中浸泡后取出;
步骤12、将无水硅酸钠颗粒(4)均匀地撒在胶带粘性一面;
步骤13、将均匀洒满无水硅酸钠颗粒(4)的胶带再浸泡一遍环氧树脂(5)后取出;
步骤14、将胶带置于烘箱中在70摄氏度的情况下烘干5h后取出;
步骤15、撕去胶带,并将所得固体破碎成5~6mm的片状颗粒,即为实际使用的硅酸钠修复颗粒(3)。
8.根据权利要求4所述的制作方法,其特征在于,所述的步骤2中,当所述混凝土构件(1)的强度等级为C40、其坍落度为160~200mm时,其水泥、细骨料、粗骨料、水、粉煤灰、减水剂的配合比为:1:1.75:3.58:0.46:0.26:0.012,所述碳纤维掺入量为混凝土构件(1)体积的0.45%~0.55%,所述的硅酸钠修复颗粒(3)与胶凝材料的体积比为3.5%~4.5%。
9.根据权利要求8所述的制作方法,其特征在于,所述水泥为PO 42.5级,密度为3100kg/m3;所述的粉煤灰为Ⅱ粉煤灰,密度为2100kg/m3;所述减水剂为聚羧酸减水剂,减水率为28~30%;所述粗骨料为最大粒径为25mm碎石,表观密度2600kg/m3,堆积密度1600kg/m3,紧密堆积密度1680kg/m3;所述细骨料为中砂,表观密度2620kg/m3,堆积密度1610kg/m3,紧密堆积密度1700kg/m3,细度模数为2.6。
10.根据权利要求8所述的制作方法,其特征在于,步骤3中,所述硅酸钠修复剂复合颗粒(4)和碳纤维均以骨料的形式均匀掺入混凝土中,所述混凝土构件(1)采用自密实混凝土,在浇筑过程中免振捣。
CN201810592878.7A 2018-06-11 2018-06-11 一种具备自我感知能力的自修复混凝土结构及其制作方法 Pending CN108558253A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201810592878.7A CN108558253A (zh) 2018-06-11 2018-06-11 一种具备自我感知能力的自修复混凝土结构及其制作方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201810592878.7A CN108558253A (zh) 2018-06-11 2018-06-11 一种具备自我感知能力的自修复混凝土结构及其制作方法

Publications (1)

Publication Number Publication Date
CN108558253A true CN108558253A (zh) 2018-09-21

Family

ID=63553261

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201810592878.7A Pending CN108558253A (zh) 2018-06-11 2018-06-11 一种具备自我感知能力的自修复混凝土结构及其制作方法

Country Status (1)

Country Link
CN (1) CN108558253A (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109180044A (zh) * 2018-10-10 2019-01-11 华南理工大学 一种聚苯乙烯微胶囊自修复混凝土结构及其制作方法
CN111333359A (zh) * 2020-02-28 2020-06-26 河海大学 一种内含自适应封头的混凝土自修复系统

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7022179B1 (en) * 1990-06-19 2006-04-04 Dry Carolyn M Self-repairing, reinforced matrix materials
CN107285693A (zh) * 2017-05-02 2017-10-24 华南理工大学 一种具有自修复能力的现浇混凝土免拆模板的制备方法
US20180072624A1 (en) * 2015-03-31 2018-03-15 Shenzhen University Microcapsule for self-healing concrete and preparation method thereof, and self-healing concrete and preparation method thereof

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7022179B1 (en) * 1990-06-19 2006-04-04 Dry Carolyn M Self-repairing, reinforced matrix materials
US20180072624A1 (en) * 2015-03-31 2018-03-15 Shenzhen University Microcapsule for self-healing concrete and preparation method thereof, and self-healing concrete and preparation method thereof
CN107285693A (zh) * 2017-05-02 2017-10-24 华南理工大学 一种具有自修复能力的现浇混凝土免拆模板的制备方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
余丽武, 东南大学出版社 *
江沈阳等: "掺入硅酸钠修复剂的自修复混凝土修复后寿命预测以及最优修复剂掺量的研究", 《混凝土》 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109180044A (zh) * 2018-10-10 2019-01-11 华南理工大学 一种聚苯乙烯微胶囊自修复混凝土结构及其制作方法
CN111333359A (zh) * 2020-02-28 2020-06-26 河海大学 一种内含自适应封头的混凝土自修复系统
CN111333359B (zh) * 2020-02-28 2021-04-09 河海大学 一种内含自适应封头的混凝土自修复系统

Similar Documents

Publication Publication Date Title
Gao et al. Durability of steel fibre-reinforced recycled coarse aggregate concrete
Xiong et al. Experimental study on the effects of glass fibres and expansive agent on the bond behaviour of glass/basalt FRP bars in seawater sea-sand concrete
Hung et al. Mechanical properties and self-healing evaluation of strain-hardening cementitious composites with high volumes of hybrid pozzolan materials
Prince et al. Bond behaviour of deformed steel bars embedded in recycled aggregate concrete
US20190202738A1 (en) Multi-functional cementitious materials with ultra-high damage tolerance and self-sensing ability
Xue et al. Bending behavior and failure mode of cemented tailings backfill composites incorporating different fibers for sustainable construction
Wang et al. Evaluation of damage and repair rate of self-healing microcapsule-based cementitious materials using electrochemical impedance spectroscopy
Hung et al. Impact of natural weathering on medium-term self-healing performance of fiber reinforced cementitious composites with intrinsic crack-width control capability
Brunetaud et al. Size effect of concrete samples on the kinetics of external sulfate attack
Fakhri et al. Combined effects of recycled crumb rubber and silica fume on mechanical properties and mode I fracture toughness of self‐compacting concrete
Chen et al. Interface bond behavior of tensioned glass fiber-reinforced polymer (GFRP) tendons embedded in cemented soils
Cui et al. Bond Stress between Steel‐Reinforced Bars and Fly Ash‐Based Geopolymer Concrete
Xiong et al. Compressive behaviour of seawater sea-sand concrete containing glass fibres and expansive agents
CN108558253A (zh) 一种具备自我感知能力的自修复混凝土结构及其制作方法
Kubat et al. CFRP confinement of circular concrete columns affected by alkali-aggregate reaction
Al-Fakih et al. Evaluation of the mechanical performance and sustainability of rubberized concrete interlocking masonry prism
Zhao et al. Early properties and modeling of cemented superfine tailings backfill containing sodium dodecyl sulfate: microstructure, mechanics, and acoustics
Qin et al. Dynamic behavior of carbon nanotubes and basalt fiber reinforced coral sand cement mortar at high strain rates
Lu et al. Durability of GFRP bars embedded in seawater sea-sand concrete: a coupling effect of prestress and immersion in seawater
Atkinson et al. Performance of 3D printed columns using self-sensing cementitious composites
Lei et al. Failure behaviour and damage evolution of multi-recycled aggregate concrete under triaxial compression
Liu et al. Identification of bending fracture characteristics of cement-stabilized coral aggregate in four-point bending tests based on acoustic emission
Zhang et al. Performance of recycled aggregate concrete in a real project
Lam et al. Experimental and numerical investigations of the tensile behaviour of steel-TRM prepared with recycled glass sands and lime
Hossain et al. Investigation of the effect of nylon fiber in concrete rehabilitation

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication
RJ01 Rejection of invention patent application after publication

Application publication date: 20180921