CN108549757B - Model self-selection reciprocating type mixed transportation pump discharge flow rate prediction method - Google Patents
Model self-selection reciprocating type mixed transportation pump discharge flow rate prediction method Download PDFInfo
- Publication number
- CN108549757B CN108549757B CN201810288855.7A CN201810288855A CN108549757B CN 108549757 B CN108549757 B CN 108549757B CN 201810288855 A CN201810288855 A CN 201810288855A CN 108549757 B CN108549757 B CN 108549757B
- Authority
- CN
- China
- Prior art keywords
- gpr
- model
- prediction
- flow rate
- discharge flow
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 238000000034 method Methods 0.000 title claims abstract description 37
- 238000012360 testing method Methods 0.000 claims description 54
- 230000008569 process Effects 0.000 claims description 13
- 238000012549 training Methods 0.000 claims description 10
- 150000001875 compounds Chemical class 0.000 claims description 3
- NAWXUBYGYWOOIX-SFHVURJKSA-N (2s)-2-[[4-[2-(2,4-diaminoquinazolin-6-yl)ethyl]benzoyl]amino]-4-methylidenepentanedioic acid Chemical compound C1=CC2=NC(N)=NC(N)=C2C=C1CCC1=CC=C(C(=O)N[C@@H](CC(=C)C(O)=O)C(O)=O)C=C1 NAWXUBYGYWOOIX-SFHVURJKSA-N 0.000 claims description 2
- 238000004458 analytical method Methods 0.000 claims description 2
- 238000004364 calculation method Methods 0.000 claims description 2
- 239000011159 matrix material Substances 0.000 claims description 2
- 239000007789 gas Substances 0.000 description 10
- 230000008859 change Effects 0.000 description 6
- 238000013461 design Methods 0.000 description 6
- 230000000694 effects Effects 0.000 description 5
- 230000007246 mechanism Effects 0.000 description 5
- 230000001419 dependent effect Effects 0.000 description 4
- 238000002474 experimental method Methods 0.000 description 4
- 238000011160 research Methods 0.000 description 3
- 230000007547 defect Effects 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 238000011156 evaluation Methods 0.000 description 2
- 230000001747 exhibiting effect Effects 0.000 description 2
- 230000006870 function Effects 0.000 description 2
- 238000004519 manufacturing process Methods 0.000 description 2
- 238000005259 measurement Methods 0.000 description 2
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 description 2
- 230000035772 mutation Effects 0.000 description 2
- 230000010349 pulsation Effects 0.000 description 2
- 238000010187 selection method Methods 0.000 description 2
- 230000003044 adaptive effect Effects 0.000 description 1
- 230000001174 ascending effect Effects 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 239000012530 fluid Substances 0.000 description 1
- 230000001939 inductive effect Effects 0.000 description 1
- 230000003993 interaction Effects 0.000 description 1
- 238000013332 literature search Methods 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 239000003345 natural gas Substances 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 238000004088 simulation Methods 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F30/00—Computer-aided design [CAD]
- G06F30/20—Design optimisation, verification or simulation
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F18/00—Pattern recognition
- G06F18/20—Analysing
- G06F18/21—Design or setup of recognition systems or techniques; Extraction of features in feature space; Blind source separation
- G06F18/214—Generating training patterns; Bootstrap methods, e.g. bagging or boosting
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F18/00—Pattern recognition
- G06F18/20—Analysing
- G06F18/24—Classification techniques
- G06F18/241—Classification techniques relating to the classification model, e.g. parametric or non-parametric approaches
- G06F18/2415—Classification techniques relating to the classification model, e.g. parametric or non-parametric approaches based on parametric or probabilistic models, e.g. based on likelihood ratio or false acceptance rate versus a false rejection rate
- G06F18/24155—Bayesian classification
Landscapes
- Engineering & Computer Science (AREA)
- Theoretical Computer Science (AREA)
- Physics & Mathematics (AREA)
- Data Mining & Analysis (AREA)
- Evolutionary Computation (AREA)
- General Physics & Mathematics (AREA)
- General Engineering & Computer Science (AREA)
- Life Sciences & Earth Sciences (AREA)
- Computer Vision & Pattern Recognition (AREA)
- Evolutionary Biology (AREA)
- Bioinformatics & Computational Biology (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Artificial Intelligence (AREA)
- Probability & Statistics with Applications (AREA)
- Computer Hardware Design (AREA)
- Geometry (AREA)
- Control Of Positive-Displacement Pumps (AREA)
Abstract
本发明公开了一种模型自选择的往复式混输泵排出流率预测方法,它包括以下步骤:(1)确定预测模型的输入和输出变量,收集建模样本;(2)建立往复式混输泵排出流率的局部GPR模型;(3)建立往复式混输泵排出流率的加权GPR模型;(4)建立往复式混输泵排出流率的即时GPR模型;(5)基于预测概率信息,自动为每个新的输入样本点选择合适的预测模型;(6)重复步骤(2)至(5),可从局部GPR、加权GPR和即时GPR模型中,为新的工况下每个输入样本点找到最合适的预测模型,继而得出新的工况下,往复式混输泵的排出流率曲线,本发明基于有限建模样本,实现对混输工况下往复式混输泵排出流率的建模和预测,在工程上容易实施、准确性高。
The invention discloses a model self-selecting method for predicting the discharge flow rate of a reciprocating mixed pump, which comprises the following steps: (1) determining the input and output variables of the prediction model, and collecting modeling samples; (3) Establish a weighted GPR model of the discharge flow rate of the reciprocating mixed pump; (4) Establish an instant GPR model of the discharge flow rate of the reciprocating mixed pump; (5) Based on the predicted probability information, and automatically select a suitable prediction model for each new input sample point; (6) Repeat steps (2) to (5), from the partial GPR, weighted GPR and immediate GPR models, for each new operating condition. Find the most suitable prediction model for each input sample point, and then obtain the discharge flow rate curve of the reciprocating mixed pump under the new working condition. Modeling and prediction of pump discharge flow rate is easy to implement and accurate in engineering.
Description
Claims (2)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201810288855.7A CN108549757B (en) | 2018-04-03 | 2018-04-03 | Model self-selection reciprocating type mixed transportation pump discharge flow rate prediction method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201810288855.7A CN108549757B (en) | 2018-04-03 | 2018-04-03 | Model self-selection reciprocating type mixed transportation pump discharge flow rate prediction method |
Publications (2)
Publication Number | Publication Date |
---|---|
CN108549757A CN108549757A (en) | 2018-09-18 |
CN108549757B true CN108549757B (en) | 2021-10-26 |
Family
ID=63513887
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201810288855.7A Active CN108549757B (en) | 2018-04-03 | 2018-04-03 | Model self-selection reciprocating type mixed transportation pump discharge flow rate prediction method |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN108549757B (en) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN109446741B (en) * | 2018-12-21 | 2023-04-18 | 浙江工业大学 | Modeling and predicting method for instantaneous temperature characteristic of pump cavity of mixed transportation pump |
CN113553673B (en) * | 2021-07-21 | 2023-03-21 | 浙江工业大学 | Centrifugal pump efficiency prediction method based on data-driven modeling |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103884075A (en) * | 2014-01-06 | 2014-06-25 | 浙江工业大学 | Computational fluid dynamics and energy prediction hybrid based greenhouse energy-saving control method |
CN104699894A (en) * | 2015-01-26 | 2015-06-10 | 江南大学 | JITL (just-in-time learning) based multi-model fusion modeling method adopting GPR (Gaussian process regression) |
CN105913078A (en) * | 2016-04-07 | 2016-08-31 | 江南大学 | Multi-mode soft measurement method for improving adaptive affine propagation clustering |
WO2017188501A1 (en) * | 2016-04-29 | 2017-11-02 | 경희대학교 산학협력단 | Method for recovering original signal in reduced complexity ds-cdma system |
CN107451101A (en) * | 2017-07-21 | 2017-12-08 | 江南大学 | It is a kind of to be layered integrated Gaussian process recurrence soft-measuring modeling method |
Family Cites Families (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20090150126A1 (en) * | 2007-12-10 | 2009-06-11 | Yahoo! Inc. | System and method for sparse gaussian process regression using predictive measures |
CN104778298B (en) * | 2015-01-26 | 2017-09-19 | 江南大学 | Gaussian process regression soft sensor modeling method based on EGMM |
CN106056127A (en) * | 2016-04-07 | 2016-10-26 | 江南大学 | GPR (gaussian process regression) online soft measurement method with model updating |
-
2018
- 2018-04-03 CN CN201810288855.7A patent/CN108549757B/en active Active
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103884075A (en) * | 2014-01-06 | 2014-06-25 | 浙江工业大学 | Computational fluid dynamics and energy prediction hybrid based greenhouse energy-saving control method |
CN104699894A (en) * | 2015-01-26 | 2015-06-10 | 江南大学 | JITL (just-in-time learning) based multi-model fusion modeling method adopting GPR (Gaussian process regression) |
CN105913078A (en) * | 2016-04-07 | 2016-08-31 | 江南大学 | Multi-mode soft measurement method for improving adaptive affine propagation clustering |
WO2017188501A1 (en) * | 2016-04-29 | 2017-11-02 | 경희대학교 산학협력단 | Method for recovering original signal in reduced complexity ds-cdma system |
CN107451101A (en) * | 2017-07-21 | 2017-12-08 | 江南大学 | It is a kind of to be layered integrated Gaussian process recurrence soft-measuring modeling method |
Non-Patent Citations (2)
Title |
---|
Auto-Switch Gaussian Process Regression-Based Probabilistic Soft Sensors for Industrial Multigrade Processes with Transitions;Yi Liu 等;《Industrial & Engineering Chemistry Research》;20150413;第54卷(第18期);5037–5047 * |
基于即时学习的复杂非线性过程软测量建模及应用;袁小锋;《中国博士学位论文全文数据库 信息科技辑》;20170815(第8期);I140-24 * |
Also Published As
Publication number | Publication date |
---|---|
CN108549757A (en) | 2018-09-18 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Ping et al. | Introducing machine learning and hybrid algorithm for prediction and optimization of multistage centrifugal pump in an ORC system | |
CN107918709B (en) | Prediction method for transient opening height of one-way valve for multiphase mixed transportation pump | |
CN106677763B (en) | Dynamic integrated modeling-based oil well working fluid level prediction method | |
Pei et al. | Optimization on the impeller of a low-specific-speed centrifugal pump for hydraulic performance improvement | |
CN104481496B (en) | Fault diagnosis method of sucker-rod pump well | |
Deng et al. | Actively exploring informative data for smart modeling of industrial multiphase flow processes | |
Vicario et al. | Meta‐models in computer experiments: Kriging versus artificial neural networks | |
CN108549757B (en) | Model self-selection reciprocating type mixed transportation pump discharge flow rate prediction method | |
CN109446741B (en) | Modeling and predicting method for instantaneous temperature characteristic of pump cavity of mixed transportation pump | |
CN108510120B (en) | Mixed modeling and prediction method for discharge flow rate of reciprocating type mixed transmission pump | |
Lin et al. | Neural architecture design for gpu-efficient networks | |
Chen et al. | Knowledge-based turbomachinery design system via a deep neural network and multi-output Gaussian process | |
Al-Rbaihat et al. | Performance evaluation of supersonic flow for variable geometry radial ejector through CFD models based on DES-turbulence models, GPR machine learning, and MPA optimization | |
Deng et al. | Active learning for modeling and prediction of dynamical fluid processes | |
Deng et al. | Hybrid model for discharge flow rate prediction of reciprocating multiphase pumps | |
CN108694293B (en) | An Active Modeling and Prediction Method for Flow Rate of Reciprocating Mixed Pump | |
CN113283039B (en) | Engine exhaust system optimization method, device, medium and electronic equipment | |
CN113379103B (en) | Prediction method of pump equipment internal flow field based on reduced order model | |
Chu et al. | Rapid modeling method for performance prediction of centrifugal compressor based on model migration and SVM | |
CN113343390B (en) | Engine linearization modeling method based on neural network nonlinear model | |
CN116401755A (en) | CNN-LSTM-Attention network structure-based solid rocket engine total thrust prediction method | |
Chen et al. | “No Free Lunch” in Neural Architectures? A Joint Analysis of Expressivity, Convergence, and Generalization | |
Deng et al. | Special probabilistic prediction model for temperature characteristics of dynamic fluid processes | |
Ortikkhuzhayev et al. | Gas dynamics modelling of a self-acting reciprocating compressor discharge valve in hyperworks CFD | |
Razaaly et al. | Uncertainty Quantification of an ORC turbine blade under a low quantile constrain |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |