CN108549402A - Unmanned aerial vehicle group method for allocating tasks based on quantum crow group hunting mechanism - Google Patents

Unmanned aerial vehicle group method for allocating tasks based on quantum crow group hunting mechanism Download PDF

Info

Publication number
CN108549402A
CN108549402A CN201810224721.9A CN201810224721A CN108549402A CN 108549402 A CN108549402 A CN 108549402A CN 201810224721 A CN201810224721 A CN 201810224721A CN 108549402 A CN108549402 A CN 108549402A
Authority
CN
China
Prior art keywords
quantum
crow
task
unmanned plane
unmanned
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201810224721.9A
Other languages
Chinese (zh)
Other versions
CN108549402B (en
Inventor
高洪元
苏雪
张世铂
刁鸣
马铭阳
侯阳阳
苏雨萌
马雨微
孙贺麟
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Harbin Engineering University
Original Assignee
Harbin Engineering University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Harbin Engineering University filed Critical Harbin Engineering University
Priority to CN201810224721.9A priority Critical patent/CN108549402B/en
Publication of CN108549402A publication Critical patent/CN108549402A/en
Application granted granted Critical
Publication of CN108549402B publication Critical patent/CN108549402B/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
    • G05D1/10Simultaneous control of position or course in three dimensions
    • G05D1/101Simultaneous control of position or course in three dimensions specially adapted for aircraft
    • G05D1/104Simultaneous control of position or course in three dimensions specially adapted for aircraft involving a plurality of aircrafts, e.g. formation flying

Landscapes

  • Engineering & Computer Science (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Automation & Control Theory (AREA)
  • Management, Administration, Business Operations System, And Electronic Commerce (AREA)

Abstract

The present invention relates to a kind of unmanned aerial vehicle group method for allocating tasks based on quantum crow group hunting mechanism, including:Establish the unmanned aerial vehicle group Task Assignment Model from multiple starting points to multiple tasks, including unmanned plane model number, starting and terminal point and distribution model;Initialize quantum crow group;Fitness calculating carried out to every quantum crow according to fitness function, the position of the corresponding quantum crow of calculated fitness function minimum value saves as global optimum's food position;Update the quantum position and position of every quantum crow;Fitness calculating is carried out to every quantum crow according to fitness function, determine the hiding food position of every quantum crow, optimal food position so far is found simultaneously, and global optimum's food position is exported if reaching greatest iteration algebraically, is mapped as task allocation matrix.The present invention solves discrete multiple constraint object function Solve problems, and discrete quantum crow algorithm has fast convergence rate, the high advantage of convergence precision as Evolution Strategies.

Description

Unmanned aerial vehicle group method for allocating tasks based on quantum crow group hunting mechanism
Technical field
The present invention relates to a kind of unmanned aerial vehicle group method for allocating tasks, especially a kind of base is based on quantum crow group hunting mechanism Unmanned aerial vehicle group method for allocating tasks, belong to unmanned plane autonomous control field.
Background technology
Unmanned plane is also known as unmanned vehicle (Unmanned Aerial Vehicle, UAV), its use process In, operating personnel need not be carried, lift is provided with air force, can be flown by remote control or in pre-programmed control System is lower to carry out autonomous flight, and particular task is executed by carrying task device.Unmanned plane has compact, using flexible, hidden The advantages that covering property is good, adaptable, can under various severe, dangerous and extreme environments, complete some mankind can not reach and The particular job and task being engaged in.The development of unmanned plane, production and application cost are far below manned aircraft, therefore in army Thing and civil field suffer from wide application space.
The distribution of unmanned plane task is one of the key technology of unmanned plane autonomous control, is that unmanned plane realizes intelligent, autonomous An important factor for flight and task execution.The distribution of unmanned plane task refers to during the entire process of task execution, by certain Method for allocating tasks is that unmanned plane determines whether execution task and executes which kind of task, on the one hand rational task distribution can be protected Demonstrate,prove the Least-cost of unmanned plane, the completion each task that another aspect again can be best.
It finds by prior art documents, Tang Chuanlin etc. exists《Electric light and control》
" the more UCAV air-to-ground attacks targets based on game theory point delivered on (2011, Vol.18, No.10, pp.28-31) With " in propose Task Assignment Model, seek optimal task assignment with game theory algorithm, but algorithm model is complicated, precision is not It is enough high and computationally intensive.MehmetDeng《Information Sciences》(2014, Vol.255, No.10, pp.28-31) on " the Approximating the optimal mapping for weapon target that deliver The method solution Weapon-Target Assignment Problem of assignment by fuzzy reasoning " fuzzy reasonings, but reasoning Process is complicated, and computationally intensive, practicability is not high.With the development of intelligent heuristics computing technique, Intelligent Optimization Technique has been answered For in the Task Allocation Problem of multiple no-manned plane.Li Wei etc. exists《Control and decision》(2010,Vol.25,No.9,pp.1359– 1364) particle cluster algorithm is applied to multiple no-manned plane by " the multiple no-manned plane method for allocating tasks based on particle cluster algorithm " delivered on Task Allocation Problem, but particle cluster algorithm is easily trapped into local optimum, and convergence precision is to be improved.Li Yan etc. exists《Space flight Journal》" the Cooperative Air Combat based on SA-DPSO hybrid optimization algorithms proposed on (2014, Vol.25, No.9, pp.1626-631) Simulated annealing and particle cluster algorithm are combined and carry out unmanned plane task distribution by Fire Distribution ", and this method has preferably Convergence rate, but it is easily trapped into dimension calamity, optimizing performance is inadequate.
Because above-mentioned unmanned plane method for allocating tasks is all nonlinear solution method, hold very much during solution It easily is absorbed in local extremum, hardly results in globally optimal solution.And existing unmanned plane method for allocating tasks is carrying out unmanned aerial vehicle group Various evaluation indexes and constraint are seldom considered in task distribution, therefore its application range is limited.From this, finding new appoint Distribution method of being engaged in is of great value to improve the performance of unmanned plane operation.
Invention content
For the above-mentioned prior art, considering more terminals of a lot of points and suitable the technical problem to be solved by the present invention is to provide a kind of Together in the unmanned aerial vehicle group method for allocating tasks based on quantum crow group hunting mechanism of dispersed problem.
In order to solve the above technical problems, a kind of unmanned aerial vehicle group task distribution based on quantum crow group hunting mechanism of the present invention Method includes the following steps:
Step 1:Initialization greatest iteration algebraically is Tmax, establish the unmanned aerial vehicle group task from multiple starting points to multiple tasks Distribution model:Assuming that there is the unmanned plane of U kind models to execute Q task from M starting point;
If the coordinate of m-th of starting point of unmanned plane isWherein 1≤m≤M, unmanned plane are appointed for q-th The coordinate of business isWherein 1≤q≤Q is divided into L type to all unmanned planes according to starting point and model, Wherein L=U × M, i.e. same type unmanned plane starting point having the same and belong to same model;
According to the starting point of the model of l type unmanned planes, the starting point coordinate for obtaining l type unmanned planes isWherein l=1,2 ..., L, then the starting point of l types unmanned plane be at a distance from q-th of task Dl,qAnd meet:
The task allocation matrix of unmanned aerial vehicle group L row Q row allocation matrix A={ al,q|al,q∈{0,1}}L×QIt indicates, if l The unmanned plane of a model executes q-th of task, then al,q=1, otherwise al,q=0;
If each unmanned plane has the D kind weapons, l type unmanned planes to be using the probability of d kind weaponsL types nobody Machine is δ using the cost of d kind weaponsl,d, wherein 1≤d≤D, 1≤l≤L, the killing rate of d kinds q-th of task of weapon pair areWherein 1≤d≤D, 1≤q≤Q, if unmanned plane injures probability matrix P={ Pl,q,d|Pl,q,d∈[0,1]}L×Q×D, Pl,q,dIt is degree of injuring and satisfaction of the l types unmanned plane using d kind q-th of task of weapon pair:Degree of the injuring threshold value of q-th of task is Wq, wherein 1≤q≤Q, if the value of q-th of task For Vq, the quantity for possessing l type unmanned planes is Bl, the unmanned plane maximum formation number to the attack of q-th of task is Cq, l types without Man-machine ultimate run is Rl, the ultimate run of whole unmanned planes is Omax, the flying speed of l type unmanned planes is Zl, whole nothings The man-machine maximum flight time is Zmax
Unmanned plane Task Assignment Model is respectively by target value revenue function, flying distance function, consumption bullet amount cost function With target coverage rate function representation:
(1) normalization target value revenue function is:Wherein A For task allocation matrix, A={ al,q|al,q∈{0,1}}L×Q, Pl,q,dD kinds q-th of task of weapon pair is used for l type unmanned planes Injure probability, d is the type using weapon, and the type needs for the weapon that the unmanned planes of l types uses are set in advance, VqIt is The value of q task, N are the unmanned plane number of actual participation task in task distribution, It is worth for maximum task, max is to seek max function;
(2) normalization flying distance function is: Wherein λ1, λ2For the weight of two factors, λ12=1, λ12>=0,For the length of longest path,RlFor the ultimate run of l type unmanned planes;
(3) normalization consumption bullet cost function is:The unmanned plane of wherein l types makes The type needs of weapon are set in advance, δmaxFor maximum cost,
(4) normalization target coverage degree function is:
The unmanned aerial vehicle group Task Assignment Model meets following constraints:
(1) task troops constrain:The unmanned plane of each type sets out number and no more than possesses the type unmanned plane number Mesh,
(2) unmanned plane combat radius constrains:Ensure the flying distance of unmanned plane within its combat radius, al,q×(Dl,q- Rl)≤0 (l=1,2 ..., L;Q=1,2 ..., Q);
(3) to the constraint of target Damage degree:The unmanned plane of execution task q is to the degree of injuring of task q not less than the task Degree of injuring threshold value,Pl,q,dFor l Type unmanned plane is using the probability of injuring of d kinds q-th of task of weapon pair, and d is the type using weapon, and the unmanned plane of l types uses Weapon type needs be set in advance;
(4) constraint of the unmanned plane number of target of attack:It is maximum that it is no more than to the unmanned plane number of q-th of task attack Formation number, i.e.,
(5) constraint of the voyage of target of attack:I.e. the voyage of strike mission is no more than given ultimate run,OmaxFor the ultimate run of all unmanned planes;
(6) constraint of the time of target of attack:The time of strike mission is no more than given maximum time,ZmaxFor the maximum flight time of all unmanned planes;
Population scale K, the dimension J=L × Q of optimization problem for determining quantum crow group, are incremented by according to l, mode incremental q Arrange unmanned aerial vehicle group task allocation matrix A={ al,q|al,q∈{0,1}}L×QIn element, useElement in corresponding record unmanned aerial vehicle group task allocation matrix A;
Step 2:Initialize quantum crow group:
By the quantum position of i-th quantum crowBe set as per one-dimensionalWherein 1≤i≤K, 1≤j≤J, and the quantum position of i-th quantum crow is measured, obtain i-th The position of quantum crowThe hiding food position of i-th quantum crow of initialization isWherein 1≤i≤K, t are iterations, set t=0 at the beginning;
To the jth dimension of the quantum position of i-th quantum crowIt measures, obtains the position of i-th quantum crow Jth is tieed upWherein 1≤i≤K, 1≤j≤J,Be meet it is equally distributed Random number;
Step 3:Fitness calculating, calculated fitness function are carried out to every quantum crow according to fitness function The position of the corresponding quantum crow of minimum value saves as global optimum's food position
Step 4:Update the quantum position and position of every quantum crow:
I-th quantum crow randomly selects another quantum crow s in quantum crow group, followed by quantum crow s It is found that the food position hidden by quantum crow s, quantum crow s find that the perception probability being followed is μ, ifQuantum crow i carries out the update of quantum position by strategy 1, and otherwise quantum crow i passes through tactful 2 amounts of progress The update of sub- position;
Strategy 1 meets:I-th quantum crow carries out the update of position according to food position hiding quantum crow s, the The renewal equation at the quantum rotation angle of the jth dimension of i quantum crow isWherein e1For Constant determines the influence degree for guiding the position of the quantum crow to develop the quantum crow, and H is Flight Length;
Strategy 2 meets:I-th quantum crow carries out position according to itself hiding food position and optimal food position Update, the renewal equation at the quantum rotation angle of the jth dimension of i-th quantum crow isWherein e2,e3For constant, determines and guide the quantum crow The influence degree that develops to the quantum crow of position;
The evolution process of quantum position is as follows:
Wherein ζ=0.15/J is mutation probability, and abs () is to seek ABS function;
The position of quantum crow is obtained to quantum crow quantum position measurement, measurement rules are as follows:
Wherein 1≤i≤K, 1≤j≤J,It is to meet equally distributed random number;
Step 5:Fitness calculating is carried out to every quantum crow according to fitness function, determines every quantum crow Hiding food position, while finding to the optimal food position of current iteration algebraically;
By the position of i-th quantum crowIt is assigned to task allocation matrix A, according toCarry out fitness calculating;
The hiding food position of quantum crow is chosen using greedy selection strategy, ifThenOtherwise
Step 6:If reaching greatest iteration algebraically Tmax, algorithm termination, execution step 7;Otherwise, t=t+1 is enabled, is returned Step 4 continues;
Step 7:Global optimum's food position is exported, task allocation matrix is mapped as.
A kind of unmanned aerial vehicle group method for allocating tasks based on quantum crow group hunting mechanism of the present invention further includes:
Fitness evaluation process is as follows in step 3:First by the position of t i-th quantum crow of generationIt is assigned to and appoints Be engaged in allocation matrix A, wherein the jth dimension of t i-th quantum crow of generationIt is assigned to al,q, according toFitness calculating is carried out, wherein
c1,c2,c3,c4,c5,c6For penalty coefficient, ω1234For weighted factor, ω1234=1,0 ≤ω1234≤ 1, max are to seek max function, and min is to seek minimum value function.
Beneficial effects of the present invention:The present invention is directed to the deficiency of existing unmanned aerial vehicle group method for allocating tasks, it is proposed that a kind of Consider the unmanned aerial vehicle group Task Assignment Model of a lot of more terminals of point, while proposing a kind of quantum crow being suitable for dispersed problem Group hunting mechanism is used to solve the Task Allocation Problem of unmanned aerial vehicle group.Compared with prior art, the present invention has fully considered nobody Group of planes task encountered during distributing the case where executing multiple tasks from multiple starting points, while considering target value income Function, flying distance function, consumption bullet amount cost function and the multiple targets of target coverage rate function, have the following advantages:
(1) present invention solves discrete multiple constraint object function Solve problems, and futuramic discrete quantum crow is calculated Method is handled different target function as Evolution Strategies, using linear weight, and designed method has fast convergence rate, The high advantage of convergence precision.
(2) relative to existing unmanned aerial vehicle group method for allocating tasks, the present invention can be solved effectively to the more mesh of unmanned aerial vehicle group Constraint requirements are marked, illustrate that the applicability of this method is wider.
(3) it is more excellent than population to show that unmanned aerial vehicle group method for allocating tasks proposed by the invention can be obtained for simulation result Change (Particle Swarm Optimization, PSO) method and realize more reasonably unmanned plane task allocation plan, to say The validity of this method is illustrated.
Description of the drawings
Fig. 1 is unmanned aerial vehicle group task allocation process diagram;
Fig. 2 is the flow chart of quantum crow location updating;
Fig. 3 is the convergence curve that two methods realize the distribution of multiple no-manned plane task.
Specific implementation mode
The specific embodiment of the invention is illustrated below in conjunction with the accompanying drawings.
As shown in Figure 1, technical solution of the present invention includes the following steps:
Step 1:Establish the unmanned aerial vehicle group Task Assignment Model from multiple starting points to multiple tasks, it is assumed that there are U kind types here Number unmanned plane execute Q task from M starting point.
If the coordinate of m-th of starting point of unmanned plane isWherein 1≤m≤M, unmanned plane are appointed for q-th The coordinate of business isWherein 1≤q≤Q.L can be divided into according to its starting point and model to all unmanned planes Type, wherein L=U × M, i.e. same type unmanned plane starting point having the same and belong to same model.
According to the starting point of the model of l type unmanned planes, the starting point coordinate that can obtain l type unmanned planes isWherein l=1,2 ..., L, the then starting point of l types unmanned plane and q-th of task distance Dl,q For
The task allocation matrix of unmanned aerial vehicle group can use L row Q row allocation matrix A={ al,q|al,q∈{0,1}}L×QIt indicates, if The unmanned plane of first of model executes q-th of task, then al,q=1, otherwise al,q=0.
If each unmanned plane has the D kind weapons, l type unmanned planes to be using the probability of d kind weaponsL types nobody Machine is δ using the cost of d kind weaponsl,d, wherein 1≤d≤D, 1≤l≤L.The killing rate of d kinds q-th of task of weapon pair isWherein 1≤d≤D, 1≤q≤Q, if unmanned plane injures probability matrix P={ Pl,q,d|Pl,q,d∈[0,1]}L×Q×D, Pl,q,dIt is that l types unmanned plane is using the degree of injuring of d kind q-th of task of weapon pairQ Degree of the injuring threshold value of a task is Wq, wherein 1≤q≤Q.If the value of q-th of task is Vq, possess the quantity of l type unmanned planes For Bl, the unmanned plane maximum formation number to the attack of q-th of task is Cq, the ultimate run of l type unmanned planes is Rl, institute whether there is or not Man-machine ultimate run is Omax, the flying speed of l type unmanned planes is Zl, the maximum flight time of all unmanned planes is Zmax
Unmanned plane Task Assignment Model can be by target value revenue function, flying distance function, consumption bullet amount cost function With target coverage rate function representation.
(1) normalization target value revenue function is:Wherein A For task allocation matrix, A={ al,q|al,q∈{0,1}}L×Q, Pl,q,dD kinds q-th of task of weapon pair is used for l type unmanned planes Injure probability, d is the type using weapon, and the type needs for the weapon that the unmanned planes of l types uses are set in advance.VqIt is The value of q task, N are the unmanned plane number of actual participation task in task distribution, It is worth for maximum task, max is to seek max function.
(2) normalization flying distance function is: Wherein λ1, λ2For the weight of two factors, λ12=1, λ12>=0,For the length of longest path,RlFor the ultimate run of l type unmanned planes.
(3) normalization consumption bullet cost function is:The unmanned plane of wherein l types makes The type needs of weapon are set in advance, δmaxFor maximum cost,
(4) normalization target coverage degree function is:
In addition to this, following constraints should also be met:
(1) task troops constrain.That is the unmanned plane of each type sets out number and no more than possesses the type unmanned plane Number.
(2) unmanned plane combat radius constrains.It must assure that the flying distance of unmanned plane within its combat radius.al,q ×(Dl,q-Rl)≤0 (l=1,2 ..., L;Q=1,2 ..., Q).
(3) to the constraint of target Damage degree.This should be not less than to the degree of injuring of task q by executing the unmanned plane of task q Degree of the injuring threshold value of business. Pl,q,dIt is l types unmanned plane using the probability of injuring of d kinds q-th of task of weapon pair, d is the type for using weapon, the nothing of l types The type needs of the man-machine weapon used are set in advance.
(4) constraint of the unmanned plane number of target of attack.It is maximum that it is no more than to the unmanned plane number of q-th of task attack Formation number, i.e.,
(5) constraint of the voyage of target of attack.I.e. the voyage of strike mission is no more than given ultimate run.OmaxFor the ultimate run of all unmanned planes.
(6) constraint of the time of target of attack.I.e. the time of strike mission is no more than given maximum time.ZmaxFor the maximum flight time of all unmanned planes.
Then, it is determined that population scale K, the dimension J=L × Q of optimization problem of quantum crow group, it is incremental to be incremented by q according to l Mode arranges unmanned aerial vehicle group task allocation matrix A={ al,q|al,q∈{0,1}}L×QIn element, useElement in corresponding record unmanned aerial vehicle group task allocation matrix A.
Step 2:Initialize quantum crow group.
By the quantum position of i-th quantum crowBe set as per one-dimensionalWherein 1≤i≤K, 1≤j≤J, and the quantum position of i-th quantum crow is measured to obtain i-th The position of quantum crowThe hiding food position of i-th quantum crow of initialization isWherein 1≤i≤K.T is iterations, sets t=0 at the beginning.
To the jth dimension of the quantum position of i-th quantum crowIt measures, obtains the position of i-th quantum crow Jth is tieed upWherein 1≤i≤K, 1≤j≤J,Be meet it is equally distributed Random number.
Step 3:Fitness calculating, calculated fitness function are carried out to every quantum crow according to fitness function The position of the corresponding quantum crow of minimum value saves as global optimum's food position
The process of fitness evaluation is as follows:
First by the position of t i-th quantum crow of generationIt is assigned to task allocation matrix A, wherein i-th amount of t generations The jth of sub- crow is tieed upIt is assigned to al,q.According toFitness calculating is carried out, wherein
c1,c2,c3,c4,c5,c6For penalty coefficient, ω1234For weighted factor, ω1234=1,0 ≤ω1234≤ 1, max are to seek max function, and min is to seek minimum value function.
Step 4:Update the quantum position and position of every quantum crow.
As shown in Fig. 2, i-th quantum crow randomly selects another quantum crow s in quantum crow group, followed by Quantum crow s come find by quantum crow s hide food position.Quantum crow s has found that the perception probability being followed is μ.IfQuantum crow i carries out the update of quantum position by strategy 1, and otherwise quantum crow i passes through tactful 2 amounts of progress The update of sub- position.
Strategy 1:I-th quantum crow carries out the update of position according to food position hiding quantum crow s.I-th The renewal equation at quantum rotation angle of the jth dimension of quantum crow isWherein e1It is normal Number determines the influence degree for guiding the position of the quantum crow to develop the quantum crow, and H is Flight Length.
Strategy 2:I-th quantum crow carries out position more according to itself hiding food position and optimal food position Newly.The renewal equation at the quantum rotation angle of the jth dimension of i-th quantum crow isWherein e2,e3For constant, determines and guide the quantum crow The influence degree that develops to the quantum crow of position.
The evolution process of quantum position is as follows:
Wherein ζ=0.15/J is mutation probability, and abs () is to seek ABS function.
The position of quantum crow is obtained to quantum crow quantum position measurement.Measurement rules are as follows:
Wherein 1≤i≤K, 1≤j≤J,It is to meet equally distributed random number.
Step 5:Fitness calculating is carried out to every quantum crow according to fitness function, determines every quantum crow Hiding food position, while finding optimal food position so far.
By the position of i-th quantum crowIt is assigned to task allocation matrix A.According toCarry out fitness calculating.
The hiding food position of quantum crow is chosen using greedy selection strategy, ifThenOtherwise
Step 6:If reaching greatest iteration algebraically, algorithm terminates, and executes step 7;Otherwise, t=t+1 is enabled, step is returned Rapid four continue.
Step 7:Global optimum's food position is exported, task allocation matrix is mapped as.
Specific embodiment is as follows:
The setting of its model parameter is as follows:
The model number U=4 of unmanned plane, unmanned plane play points M=3, the coordinate of starting point be (368,319,150), (264, 44,264) coordinate of and (296,242,347.5), the number of tasks Q=10 of unmanned plane, the 1st task are (264,715,800), Task value is 5, and degree of injuring threshold value is all 0.5;The coordinate of 2nd task is (225,605,670), and task value is 5, is injured It is 0.5 to spend threshold value all;The coordinate of 3rd task is (168,538,340), and task value is 2, and degree of injuring threshold value is all 0.5;The The coordinate of 4 tasks is (180,455,670), and task value is 1, and degree of injuring threshold value is all 0.5;The coordinate of 5th task is (120,400,600), task value are 2, and degree of injuring threshold value is all 0.5;The coordinate of 6th task is (96,304,233), is appointed Business value is 5, and degree of injuring threshold value is all 0.5;The coordinate of 7th task is (10,451,233), and task value is 5, degree of injuring Threshold value is all 0.5;The coordinate of 8th task is (162,660,233), and task value is 5, and degree of injuring threshold value is all the 0.5, the 9th The coordinate of a task is (110,561,45), and task value is 5, and degree of injuring threshold value is all 0.5;The coordinate of 10th task is (105,473,1830), task value are 5, and degree of injuring threshold value is all 0.5.Unmanned plane weapon type D=2, wherein the 1st kind of model The 2nd kind of weapon is used with the unmanned plane of the 2nd kind of model, the unmanned plane of the 3rd kind of model and the 4th kind of model uses the 1st kind of weapon, the The cost of a kind of weapon is 5 units, and the cost of the 2nd kind of weapon is 3 units, and the unmanned plane of the 1st kind of model selects the 1st kind of force The probability of device is 0.67, and it is 0.78 to select the probability of the 2nd kind of weapon;The unmanned plane of 2nd kind of model selects the probability of the 1st kind of weapon It is 0.67, it is 0.78 to select the probability of the 2nd kind of weapon;It is 0.92 that the unmanned plane of 3rd kind of model, which selects the probability of the 1st kind of weapon, It is 0.92 to select the probability of the 2nd kind of weapon;It is 0.92 that the unmanned plane of 4th kind of model, which selects the probability of the 1st kind of weapon, selects the 2nd The probability of kind weapon is 0.92.The killing rate of the 1st task of 1st kind of weapon pair and the 2nd task is 0.92;1st kind of weapon pair The killing rate of 3rd task, the 4th task and the 5th task is 0.8;The 6th task of 1st kind of weapon pair, the 7th task and The killing rate of 8th task is 0.94;The killing rate of the 9th task of 1st kind of weapon pair and the 10th task is 0.6.2nd kind of force The 1st task of device pair, the 2nd task, the 3rd task, the killing rate of the 4th task and the 5th task are all 0.8;2nd kind of force The killing rate of the 6th task of device pair, the 7th task and the 8th task is 0.92;The killing rate of the 9th task of 2nd kind of weapon pair It is 0.97;The killing rate of the 10th task of 2nd kind of weapon pair is 0.6.The quantity of 1st type unmanned plane is 5, ultimate run 300, The quantity of 2nd type unmanned plane is 6, ultimate run 900.The quantity of 3rd type unmanned plane is 6, ultimate run 900.4th type without Man-machine quantity is 15, ultimate run 1700.The quantity of 5th type unmanned plane is 3, ultimate run 300.6th type unmanned plane Quantity be 5, ultimate run 900.The quantity of 7th type unmanned plane is 6, ultimate run 900.The quantity of 8th type unmanned plane It is 4, ultimate run 1700.The quantity of 9th type unmanned plane is 5, ultimate run 300.The quantity of 10th type unmanned plane is 10, Ultimate run is 900.The quantity of type 11 unmanned plane is 5, ultimate run 900.The quantity of 12nd type unmanned plane is 10, maximum Voyage is 1700.Unmanned plane maximum formation number to task attack is all 8.Weight λ1=1, λ2=0, object function weights omega1 =0.322, ω2=0.214, ω3=0.1856, ω4=0.2784.Penalty coefficient c1=c2=c3=c6=50, c4=c5=0. The unit of above-mentioned coordinate, voyage is all km.
The parameter setting of unmanned aerial vehicle group method for allocating tasks based on quantum crow group hunting mechanism is as follows:Population scale K =20, maximum iteration 200, perception probability μ=0.1, the influence degree e to develop to the quantum crow1=0.06, e2= 0.03, e3=0.01, Flight Length H=2.
The parameter setting of unmanned aerial vehicle group method for allocating tasks based on particle cluster algorithm is shown in that Li Wei etc. exists《Control and decision》 " the multiple no-manned plane method for allocating tasks based on particle cluster algorithm " delivered on (2010, Vol.25No.9, pp.1359-1364), Other parameters are identical as the unmanned aerial vehicle group method for allocating tasks based on quantum crow group hunting mechanism.
As shown in figure 3, under the conditions of above-mentioned parameter is arranged, realize that the convergence of multiple no-manned plane task distribution is bent for two methods Line, the present invention have convergence effect faster.
It is as shown in the table for unmanned aerial vehicle group method for allocating tasks result based on quantum crow group hunting mechanism:
The unmanned plane of 1 each starting point of table corresponds to the model distribution of task
Wherein M1 indicates that first starting point, M2 indicate that first starting point, M3 indicate third starting point.Q1 to Q10 distinguishes table Show the 1 to 10th task.U1 indicates that 1 model unmanned plane, U2 indicate that 2 model unmanned planes, U3 indicate that 3 model unmanned planes, U4 indicate 4 Model unmanned plane, 0 indicates that no unmanned plane executes the task from this starting point.
The present invention solves that traditional algorithm search speed is slow and computationally intensive, it is difficult to find the OPTIMAL TASK point of unmanned aerial vehicle group Match, and the existing unmanned aerial vehicle group task distribution design based on intelligence computation seldom considers various evaluation index peace treaties Beam, application range are limited.A kind of consideration unmanned aerial vehicle group Task Assignment Model is proposed, while proposing a kind of discrete quantum crow Crow group hunting mechanism is used to solve the Task Allocation Problem of unmanned aerial vehicle group.Need steps of the method are:The first step is established from more A starting point is to the unmanned aerial vehicle group Task Assignment Model of multiple tasks, including unmanned plane model number, starting and terminal point and distribution model.The Two steps, initialization quantum crow group.Third walks, and carries out fitness calculating to every quantum crow according to fitness function, calculates The position of the corresponding quantum crow of fitness function minimum value gone out saves as global optimum's food position.4th step updates every The quantum position of quantum crow and position.5th step carries out fitness calculating, really according to fitness function to every quantum crow The hiding food position of fixed every quantum crow, while optimal food position so far is found, if reaching greatest iteration Algebraically then exports global optimum's food position, is mapped as task allocation matrix.

Claims (2)

1. a kind of unmanned aerial vehicle group method for allocating tasks based on quantum crow group hunting mechanism, which is characterized in that including following step Suddenly:
Step 1:Initialization greatest iteration algebraically is Tmax, establish the unmanned aerial vehicle group task distribution from multiple starting points to multiple tasks Model:Assuming that there is the unmanned plane of U kind models to execute Q task from M starting point;
If the coordinate of m-th of starting point of unmanned plane isWherein 1≤m≤M, q-th of task of unmanned plane Coordinate isWherein 1≤q≤Q is divided into L type to all unmanned planes according to starting point and model, wherein L=U × M, i.e. same type unmanned plane starting point having the same and belong to same model;
According to the starting point of the model of l type unmanned planes, the starting point coordinate for obtaining l type unmanned planes is Wherein l=1,2 ..., L, then the starting point of l types unmanned plane is D at a distance from q-th of taskl,qAnd meet:
The task allocation matrix of unmanned aerial vehicle group L row Q row allocation matrix A={ al,q|al,q∈{0,1}}L×QIt indicates, if first of type Number unmanned plane execute q-th of task, then al,q=1, otherwise al,q=0;
If each unmanned plane has the D kind weapons, l type unmanned planes to be using the probability of d kind weaponsL type unmanned planes make Cost with d kind weapons is δl,d, wherein 1≤d≤D, 1≤l≤L, the killing rate of d kinds q-th of task of weapon pair areWherein 1≤d≤D, 1≤q≤Q, if unmanned plane injures probability matrix P={ Pl,q,d|Pl,q,d∈[0,1]}L×Q×D, Pl,q,dIt is degree of injuring and satisfaction of the l types unmanned plane using d kind q-th of task of weapon pair: Degree of the injuring threshold value of q-th of task is Wq, wherein 1≤q≤Q, if the value of q-th of task is Vq, possess l type unmanned planes Quantity is Bl, the unmanned plane maximum formation number to the attack of q-th of task is Cq, the ultimate run of l type unmanned planes is Rl, entirely The ultimate run of portion's unmanned plane is Omax, the flying speed of l type unmanned planes is Zl, the maximum flight time of whole unmanned planes is Zmax
Unmanned plane Task Assignment Model is respectively by target value revenue function, flying distance function, consumption bullet amount cost function and mesh Mark coverage rate function representation:
(1) normalization target value revenue function is:Wherein A is task Allocation matrix, A={ al,q|al,q∈{0,1}}L×Q, Pl,q,dQ-th of task is injured using d kinds weapon for l types unmanned plane Probability, d are set in advance for the type needs of the weapon used using the unmanned plane of the type of weapon, l types, VqIt is q-th The value of business, N are the unmanned plane number of actual participation task in task distribution, It is worth for maximum task, max is to seek max function;
(2) normalization flying distance function is:Its Middle λ1, λ2For the weight of two factors, λ12=1, λ12>=0,For the length of longest path, RlFor the ultimate run of l type unmanned planes;
(3) normalization consumption bullet cost function is:What the unmanned plane of wherein l types used The type needs of weapon are set in advance, δmaxFor maximum cost,
(4) normalization target coverage degree function is:
The unmanned aerial vehicle group Task Assignment Model meets following constraints:
(1) task troops constrain:The unmanned plane of each type sets out number and no more than possesses the type unmanned plane number,
(2) unmanned plane combat radius constrains:Ensure the flying distance of unmanned plane within its combat radius, al,q×(Dl,q-Rl)≤ 0 (l=1,2 ..., L;Q=1,2 ..., Q);
(3) to the constraint of target Damage degree:Degree of injuring injuring not less than the task of the unmanned plane of execution task q to task q Threshold value is spent,Pl,q,dFor l types without The man-machine probability of injuring using d kinds q-th of task of weapon pair, d are the type using weapon, the force that the unmanned planes of l types uses The type needs of device are set in advance;
(4) constraint of the unmanned plane number of target of attack:It is no more than its maximum to the unmanned plane number of q-th of task attack to form into columns Number, i.e.,
(5) constraint of the voyage of target of attack:I.e. the voyage of strike mission is no more than given ultimate run,OmaxFor the ultimate run of all unmanned planes;
(6) constraint of the time of target of attack:The time of strike mission is no more than given maximum time,ZmaxFor the maximum flight time of all unmanned planes;
Population scale K, the dimension J=L × Q of optimization problem for determining quantum crow group, are incremented by, mode incremental q is arranged according to l Unmanned aerial vehicle group task allocation matrix A={ al,q|al,q∈{0,1}}L×QIn element, useIt is right The element in unmanned aerial vehicle group task allocation matrix A should be recorded;
Step 2:Initialize quantum crow group:
By the quantum position of i-th quantum crowBe set as per one-dimensionalIts In 1≤i≤K, 1≤j≤J, and the quantum position of i-th quantum crow is measured, obtains the position of i-th quantum crowThe hiding food position of i-th quantum crow of initialization isWherein 1≤i≤K, t are iterations, set t=0 at the beginning;
To the jth dimension of the quantum position of i-th quantum crowIt measures, obtains the jth of the position of i-th quantum crow DimensionWherein 1≤i≤K, 1≤j≤J,Be meet it is equally distributed with Machine number;
Step 3:Fitness calculating is carried out to every quantum crow according to fitness function, calculated fitness function is minimum The position for being worth corresponding quantum crow saves as global optimum's food position
Step 4:Update the quantum position and position of every quantum crow:
I-th quantum crow randomly selects another quantum crow s in quantum crow group, is sent out followed by quantum crow s The food position now hidden by quantum crow s, quantum crow s have found that the perception probability being followed is μ, ifAmount Sub- crow i carries out the update of quantum position by strategy 1, and otherwise quantum crow i carries out the update of quantum position by strategy 2;
Strategy 1 meets:Food position that i-th quantum crow is hidden according to quantum crow s carries out the update of position, i-th The renewal equation at quantum rotation angle of the jth dimension of quantum crow isWherein e1It is normal Number determines the influence degree for guiding the position of the quantum crow to develop the quantum crow, and H is Flight Length;
Strategy 2 meets:I-th quantum crow carries out position more according to itself hiding food position and optimal food position Newly, the renewal equation at the quantum rotation angle of the jth dimension of i-th quantum crow isWherein e2,e3For constant, determines and guide the quantum crow The influence degree that develops to the quantum crow of position;
The evolution process of quantum position is as follows:
Wherein ζ=0.15/J is mutation probability, and abs () is to seek ABS function;
The position of quantum crow is obtained to quantum crow quantum position measurement, measurement rules are as follows:
Wherein 1≤i≤K, 1≤j≤J,It is to meet equally distributed random number;
Step 5:Fitness calculating is carried out to every quantum crow according to fitness function, determines hiding for every quantum crow Food position, while finding to the optimal food position of current iteration algebraically;
By the position of i-th quantum crowIt is assigned to task allocation matrix A, according toCarry out fitness calculating;
The hiding food position of quantum crow is chosen using greedy selection strategy, ifThenOtherwise
Step 6:If reaching greatest iteration algebraically Tmax, algorithm termination, execution step 7;Otherwise, t=t+1, return to step are enabled Four continue;
Step 7:Global optimum's food position is exported, task allocation matrix is mapped as.
2. a kind of unmanned aerial vehicle group method for allocating tasks based on quantum crow group hunting mechanism according to claim 1, It is characterized in that:The process of fitness evaluation described in step 3 is as follows:
First by the position of t i-th quantum crow of generationIt is assigned to task allocation matrix A, wherein t i-th quantum crow of generation The jth of crow is tieed upIt is assigned to al,q, according to Fitness calculating is carried out, wherein
c1,c2,c3,c4,c5,c6For penalty coefficient, ω1234For weighted factor, ω1234=1,0≤ ω1234≤ 1, max are to seek max function, and min is to seek minimum value function.
CN201810224721.9A 2018-03-19 2018-03-19 Unmanned aerial vehicle group task allocation method based on quantum crow group search mechanism Active CN108549402B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201810224721.9A CN108549402B (en) 2018-03-19 2018-03-19 Unmanned aerial vehicle group task allocation method based on quantum crow group search mechanism

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201810224721.9A CN108549402B (en) 2018-03-19 2018-03-19 Unmanned aerial vehicle group task allocation method based on quantum crow group search mechanism

Publications (2)

Publication Number Publication Date
CN108549402A true CN108549402A (en) 2018-09-18
CN108549402B CN108549402B (en) 2020-11-10

Family

ID=63516652

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201810224721.9A Active CN108549402B (en) 2018-03-19 2018-03-19 Unmanned aerial vehicle group task allocation method based on quantum crow group search mechanism

Country Status (1)

Country Link
CN (1) CN108549402B (en)

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109460056A (en) * 2018-11-06 2019-03-12 哈尔滨工程大学 Unmanned plane cluster fight game decision-making method based on quantum krill group's mechanism of Evolution
CN109507891A (en) * 2019-01-21 2019-03-22 闽江学院 A kind of Semi-active fuzzy control method
CN109656136A (en) * 2018-12-14 2019-04-19 哈尔滨工程大学 Underwater more AUV co-located formation topological structure optimization methods based on acoustic measurement network
CN109740954A (en) * 2019-01-10 2019-05-10 北京理工大学 A kind of quick grouping method of extensive unmanned plane towards disaster relief task
CN110083173A (en) * 2019-04-08 2019-08-02 合肥工业大学 The optimization method of unmanned plane formation patrol task distribution
CN111476965A (en) * 2020-03-13 2020-07-31 深圳信息职业技术学院 Method for constructing fire detection model, fire detection method and related equipment
CN111766901A (en) * 2020-07-22 2020-10-13 哈尔滨工程大学 Multi-unmanned aerial vehicle cooperative target distribution attack method
CN112046467A (en) * 2020-09-03 2020-12-08 北京量子信息科学研究院 Automatic driving control method and system based on quantum computing
CN112596373A (en) * 2020-10-27 2021-04-02 西北工业大学 Unmanned aerial vehicle attitude control parameter intelligent setting method based on quantum firefly algorithm
CN113009934A (en) * 2021-03-24 2021-06-22 西北工业大学 Multi-unmanned aerial vehicle task dynamic allocation method based on improved particle swarm optimization
CN113077082A (en) * 2021-03-26 2021-07-06 安徽理工大学 Mining area mining subsidence prediction method based on improved crow search algorithm
CN113608546A (en) * 2021-07-12 2021-11-05 哈尔滨工程大学 Quantum sea lion mechanism unmanned aerial vehicle group task allocation method
CN113868932A (en) * 2021-06-09 2021-12-31 南京大学 Task allocation method based on complete information bidding game
CN114815896A (en) * 2022-05-27 2022-07-29 哈尔滨工程大学 Heterogeneous multi-unmanned aerial vehicle cooperative task allocation method
CN114995492A (en) * 2022-05-27 2022-09-02 哈尔滨工程大学 Multi-unmanned aerial vehicle disaster rescue planning method
CN115617071A (en) * 2022-10-07 2023-01-17 哈尔滨工程大学 Multi-unmanned-aerial-vehicle task planning method of quantum ounce mechanism
CN117556979A (en) * 2024-01-11 2024-02-13 中国科学院工程热物理研究所 Unmanned plane platform and load integrated design method based on group intelligent search
CN118504928A (en) * 2024-07-10 2024-08-16 中国人民解放军国防科技大学 Task planning method based on multi-objective combined optimization
CN118504928B (en) * 2024-07-10 2024-10-25 中国人民解放军国防科技大学 Task planning method based on multi-objective combined optimization

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101136081A (en) * 2007-09-13 2008-03-05 北京航空航天大学 Unmanned operational aircraft multiple plains synergic tasks distributing method based on ant colony intelligent
CN104102791A (en) * 2014-08-01 2014-10-15 哈尔滨工程大学 Antenna array spare construction method based on quantum glowworm search mechanism
CN105225003A (en) * 2015-09-23 2016-01-06 西北工业大学 A kind of cuckoo searching algorithm solves the method for UAV multitask investigation decision problem
US20160304198A1 (en) * 2014-12-03 2016-10-20 Google Inc. Systems and methods for reliable relative navigation and autonomous following between unmanned aerial vehicle and a target object
CN107045458A (en) * 2017-03-09 2017-08-15 西北工业大学 Unmanned plane cotasking distribution method based on multi-target quantum particle cluster algorithm
CN107622327A (en) * 2017-09-15 2018-01-23 哈尔滨工程大学 Multiple no-manned plane path planning method based on cultural ant colony search mechanisms

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101136081A (en) * 2007-09-13 2008-03-05 北京航空航天大学 Unmanned operational aircraft multiple plains synergic tasks distributing method based on ant colony intelligent
CN104102791A (en) * 2014-08-01 2014-10-15 哈尔滨工程大学 Antenna array spare construction method based on quantum glowworm search mechanism
US20160304198A1 (en) * 2014-12-03 2016-10-20 Google Inc. Systems and methods for reliable relative navigation and autonomous following between unmanned aerial vehicle and a target object
CN105225003A (en) * 2015-09-23 2016-01-06 西北工业大学 A kind of cuckoo searching algorithm solves the method for UAV multitask investigation decision problem
CN107045458A (en) * 2017-03-09 2017-08-15 西北工业大学 Unmanned plane cotasking distribution method based on multi-target quantum particle cluster algorithm
CN107622327A (en) * 2017-09-15 2018-01-23 哈尔滨工程大学 Multiple no-manned plane path planning method based on cultural ant colony search mechanisms

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
ASRI BEKTI PRATIWI: "A Hybrid Cat Swarm Optimization - Crow Search Algorithm for Vehicle Routing Problem with Time Windows", 《IEEE》 *
王记丰 等: "基于量子粒子群优化算法的多机协同目标分配问题研究", 《船舶电子工程》 *

Cited By (30)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109460056A (en) * 2018-11-06 2019-03-12 哈尔滨工程大学 Unmanned plane cluster fight game decision-making method based on quantum krill group's mechanism of Evolution
CN109460056B (en) * 2018-11-06 2021-12-24 哈尔滨工程大学 Unmanned aerial vehicle cluster combat game decision method based on quantum krill cluster evolution mechanism
CN109656136A (en) * 2018-12-14 2019-04-19 哈尔滨工程大学 Underwater more AUV co-located formation topological structure optimization methods based on acoustic measurement network
CN109656136B (en) * 2018-12-14 2022-03-18 哈尔滨工程大学 Underwater multi-AUV (autonomous underwater vehicle) co-location formation topological structure optimization method based on acoustic measurement network
CN109740954A (en) * 2019-01-10 2019-05-10 北京理工大学 A kind of quick grouping method of extensive unmanned plane towards disaster relief task
CN109507891B (en) * 2019-01-21 2021-07-27 闽江学院 Semi-active fuzzy control method
CN109507891A (en) * 2019-01-21 2019-03-22 闽江学院 A kind of Semi-active fuzzy control method
CN110083173A (en) * 2019-04-08 2019-08-02 合肥工业大学 The optimization method of unmanned plane formation patrol task distribution
CN110083173B (en) * 2019-04-08 2022-01-11 合肥工业大学 Optimization method for unmanned aerial vehicle formation inspection task allocation
CN111476965A (en) * 2020-03-13 2020-07-31 深圳信息职业技术学院 Method for constructing fire detection model, fire detection method and related equipment
CN111766901A (en) * 2020-07-22 2020-10-13 哈尔滨工程大学 Multi-unmanned aerial vehicle cooperative target distribution attack method
CN111766901B (en) * 2020-07-22 2022-10-04 哈尔滨工程大学 Multi-unmanned aerial vehicle cooperative target distribution attack method
CN112046467A (en) * 2020-09-03 2020-12-08 北京量子信息科学研究院 Automatic driving control method and system based on quantum computing
CN112046467B (en) * 2020-09-03 2021-06-04 北京量子信息科学研究院 Automatic driving control method and system based on quantum computing
CN112596373A (en) * 2020-10-27 2021-04-02 西北工业大学 Unmanned aerial vehicle attitude control parameter intelligent setting method based on quantum firefly algorithm
CN112596373B (en) * 2020-10-27 2023-05-23 西北工业大学 Unmanned aerial vehicle attitude control parameter intelligent setting method based on quantum firefly algorithm
CN113009934A (en) * 2021-03-24 2021-06-22 西北工业大学 Multi-unmanned aerial vehicle task dynamic allocation method based on improved particle swarm optimization
CN113077082A (en) * 2021-03-26 2021-07-06 安徽理工大学 Mining area mining subsidence prediction method based on improved crow search algorithm
CN113868932A (en) * 2021-06-09 2021-12-31 南京大学 Task allocation method based on complete information bidding game
CN113608546B (en) * 2021-07-12 2022-11-18 哈尔滨工程大学 Unmanned aerial vehicle group task distribution method based on quantum sea lion mechanism
CN113608546A (en) * 2021-07-12 2021-11-05 哈尔滨工程大学 Quantum sea lion mechanism unmanned aerial vehicle group task allocation method
CN114995492A (en) * 2022-05-27 2022-09-02 哈尔滨工程大学 Multi-unmanned aerial vehicle disaster rescue planning method
CN114815896A (en) * 2022-05-27 2022-07-29 哈尔滨工程大学 Heterogeneous multi-unmanned aerial vehicle cooperative task allocation method
CN114815896B (en) * 2022-05-27 2024-09-13 哈尔滨工程大学 Heterogeneous multi-unmanned aerial vehicle collaborative task allocation method
CN115617071A (en) * 2022-10-07 2023-01-17 哈尔滨工程大学 Multi-unmanned-aerial-vehicle task planning method of quantum ounce mechanism
CN115617071B (en) * 2022-10-07 2024-10-18 哈尔滨工程大学 Multi-unmanned aerial vehicle task planning method based on quantum seal mechanism
CN117556979A (en) * 2024-01-11 2024-02-13 中国科学院工程热物理研究所 Unmanned plane platform and load integrated design method based on group intelligent search
CN117556979B (en) * 2024-01-11 2024-03-08 中国科学院工程热物理研究所 Unmanned plane platform and load integrated design method based on group intelligent search
CN118504928A (en) * 2024-07-10 2024-08-16 中国人民解放军国防科技大学 Task planning method based on multi-objective combined optimization
CN118504928B (en) * 2024-07-10 2024-10-25 中国人民解放军国防科技大学 Task planning method based on multi-objective combined optimization

Also Published As

Publication number Publication date
CN108549402B (en) 2020-11-10

Similar Documents

Publication Publication Date Title
CN108549402A (en) Unmanned aerial vehicle group method for allocating tasks based on quantum crow group hunting mechanism
CN112733421B (en) Task planning method for cooperation of unmanned aerial vehicle with ground fight
CN111176334B (en) Multi-unmanned aerial vehicle cooperative target searching method
CN111722643B (en) Unmanned aerial vehicle cluster dynamic task allocation method imitating wolf colony cooperative hunting mechanism
CN111240353B (en) Unmanned aerial vehicle collaborative air combat decision method based on genetic fuzzy tree
Fu et al. Phase angle-encoded and quantum-behaved particle swarm optimization applied to three-dimensional route planning for UAV
CN108985549A (en) Unmanned plane method for allocating tasks based on quantum dove group's mechanism
CN111091273A (en) Multi-missile cooperative task planning method based on capability prediction
CN111121784B (en) Unmanned reconnaissance aircraft route planning method
CN108459616A (en) Unmanned aerial vehicle group collaboration covering Route planner based on artificial bee colony algorithm
CN108549210A (en) Multiple no-manned plane based on BP neural network PID control cooperates with flying method
CN113190041B (en) Unmanned aerial vehicle cluster online target distribution method based on constraint relaxation technology
CN111797966B (en) Multi-machine collaborative global target distribution method based on improved flock algorithm
CN116128095B (en) Method for evaluating combat effectiveness of ground-air unmanned platform
CN113324545A (en) Multi-unmanned aerial vehicle collaborative task planning method based on hybrid enhanced intelligence
CN115047907B (en) Air isomorphic formation command method based on multi-agent PPO algorithm
CN117150757A (en) Simulation deduction system based on digital twin
CN115420294A (en) Unmanned aerial vehicle path planning method and system based on improved artificial bee colony algorithm
CN115963724A (en) Unmanned aerial vehicle cluster task allocation method based on crowd-sourcing-inspired alliance game
Zu et al. Research on UAV path planning method based on improved HPO algorithm in multi-task environment
CN116088586B (en) Method for planning on-line tasks in unmanned aerial vehicle combat process
Qingtian Research on cooperate search path planning of multiple UAVs using Dubins curve
CN115617071B (en) Multi-unmanned aerial vehicle task planning method based on quantum seal mechanism
Gaowei et al. Using multi-layer coding genetic algorithm to solve time-critical task assignment of heterogeneous UAV teaming
Ye et al. Multi-UAV task assignment based on satisficing decision algorithm

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant