CN108549402A - Unmanned aerial vehicle group method for allocating tasks based on quantum crow group hunting mechanism - Google Patents
Unmanned aerial vehicle group method for allocating tasks based on quantum crow group hunting mechanism Download PDFInfo
- Publication number
- CN108549402A CN108549402A CN201810224721.9A CN201810224721A CN108549402A CN 108549402 A CN108549402 A CN 108549402A CN 201810224721 A CN201810224721 A CN 201810224721A CN 108549402 A CN108549402 A CN 108549402A
- Authority
- CN
- China
- Prior art keywords
- quantum
- crow
- task
- type
- unmanned plane
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000000034 method Methods 0.000 title claims abstract description 41
- 239000011159 matrix material Substances 0.000 claims abstract description 29
- 238000004422 calculation algorithm Methods 0.000 claims abstract description 15
- 230000006870 function Effects 0.000 claims description 54
- 238000005457 optimization Methods 0.000 claims description 10
- 230000015572 biosynthetic process Effects 0.000 claims description 6
- 238000005259 measurement Methods 0.000 claims description 6
- 238000011156 evaluation Methods 0.000 claims description 3
- 230000035772 mutation Effects 0.000 claims description 3
- 230000008447 perception Effects 0.000 claims description 2
- 238000010606 normalization Methods 0.000 claims 4
- 230000008901 benefit Effects 0.000 abstract description 10
- 238000004364 calculation method Methods 0.000 description 7
- 239000002245 particle Substances 0.000 description 6
- 238000005755 formation reaction Methods 0.000 description 5
- 238000009827 uniform distribution Methods 0.000 description 4
- 238000005516 engineering process Methods 0.000 description 3
- 238000013461 design Methods 0.000 description 2
- 238000011161 development Methods 0.000 description 2
- 238000012854 evaluation process Methods 0.000 description 2
- 231100000225 lethality Toxicity 0.000 description 2
- 230000009286 beneficial effect Effects 0.000 description 1
- 230000007812 deficiency Effects 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 238000013507 mapping Methods 0.000 description 1
- 238000002922 simulated annealing Methods 0.000 description 1
- 238000004088 simulation Methods 0.000 description 1
Classifications
-
- G—PHYSICS
- G05—CONTROLLING; REGULATING
- G05D—SYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
- G05D1/00—Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
- G05D1/10—Simultaneous control of position or course in three dimensions
- G05D1/101—Simultaneous control of position or course in three dimensions specially adapted for aircraft
- G05D1/104—Simultaneous control of position or course in three dimensions specially adapted for aircraft involving a plurality of aircrafts, e.g. formation flying
Landscapes
- Engineering & Computer Science (AREA)
- Aviation & Aerospace Engineering (AREA)
- Radar, Positioning & Navigation (AREA)
- Remote Sensing (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Automation & Control Theory (AREA)
- Management, Administration, Business Operations System, And Electronic Commerce (AREA)
Abstract
Description
技术领域technical field
本发明涉及一种无人机群任务分配方法,特别是一种基基于量子乌鸦群搜索机制的无人机群任务分配方法,属于无人机自主控制领域。The invention relates to a task allocation method for unmanned aerial vehicles, in particular to a task allocation method for unmanned aerial vehicles based on a quantum crow swarm search mechanism, which belongs to the field of autonomous control of unmanned aerial vehicles.
背景技术Background technique
无人机又称为无人驾驶飞行器(Unmanned Aerial Vehicle,UAV),在其使用过程中,不需要搭载操作人员,以空气动力提供升力,能够通过远程遥控飞行或在预定程序的控制下进行自主飞行,通过搭载任务设备执行特定任务。无人机具有体积小巧、使用灵活、隐蔽性好、适应性强等优点,能够在各种恶劣、危险和极限环境下,完成一些人类无法到达和从事的特定工作和任务。无人机的研制、生产和使用成本均远低于有人驾驶飞机,因此在军事和民用领域都有着广阔的应用空间。UAV is also called unmanned aerial vehicle (Unmanned Aerial Vehicle, UAV). During its use, it does not need to carry an operator, provides lift with aerodynamic force, and can fly autonomously through remote control or under the control of a predetermined program. Fly, and perform specific tasks by carrying mission equipment. UAVs have the advantages of small size, flexible use, good concealment, and strong adaptability. They can complete some specific tasks and tasks that humans cannot reach and engage in in various harsh, dangerous, and extreme environments. The development, production and use costs of UAVs are much lower than those of manned aircraft, so they have broad application space in both military and civilian fields.
无人机任务分配是无人机自主控制的关键技术之一,是无人机实现智能化、自主飞行与任务执行的重要因素。无人机任务分配是指在任务执行的整个过程中,通过一定的任务分配方法为无人机确定是否执行任务及执行何种任务,合理的任务分配一方面能够保证无人机的代价最小,另一方面又能最好的完成各项任务。UAV task allocation is one of the key technologies of UAV autonomous control, and it is an important factor for UAV to realize intelligent, autonomous flight and task execution. UAV task assignment means that in the whole process of task execution, a certain task assignment method is used to determine whether to perform tasks and what tasks to perform for UAVs. Reasonable task assignments can ensure that the cost of UAVs is minimized on the one hand. On the other hand, it can best complete various tasks.
经对现有技术文献的检索发现,唐传林等在《电光与控制》After searching the existing technical literature, it was found that Tang Chuanlin et al.
(2011,Vol.18,No.10,pp.28–31)上发表的“基于博弈论的多UCAV对地攻击目标分配”中提出了任务分配模型,用博弈论算法寻求最优任务分配,但是算法模型复杂,精度不够高且计算量大。Mehmet等在《Information Sciences》(2014,Vol.255,No.10,pp.28–31)上发表的“Approximating the optimal mapping for weapon targetassignment by fuzzy reasoning”用模糊推理的方法解决武器-目标分配问题,但是推理过程复杂,计算量大,实用性不高。随着智能启发式计算技术的发展,智能优化技术已经应用于多无人机的任务分配问题中。李炜等在《控制与决策》(2010,Vol.25,No.9,pp.1359–1364)上发表的“基于粒子群算法的多无人机任务分配方法”将粒子群算法应用于多无人机的任务分配问题,但是粒子群算法容易陷入局部最优,收敛精度有待提高。李俨等在《航天学报》(2014,Vol.25,No.9,pp.1626–631)上提出的“基于SA-DPSO混合优化算法的协同空战火力分配”将模拟退火算法和粒子群算法相结合进行无人机任务分配,这种方法有较好的收敛速度,但是容易陷入维数灾,寻优性能不够。(2011, Vol.18, No.10, pp.28–31) published a task allocation model in "Multi-UCAV Ground Attack Target Allocation Based on Game Theory", using game theory algorithms to seek optimal task allocation, However, the algorithm model is complex, the accuracy is not high enough, and the amount of calculation is large. Mehmet "Approximating the optimal mapping for weapon target assignment by fuzzy reasoning" published in "Information Sciences" (2014, Vol.255, No.10, pp.28–31) uses fuzzy reasoning to solve the weapon-target assignment problem, However, the reasoning process is complicated, the calculation load is large, and the practicability is not high. With the development of intelligent heuristic computing technology, intelligent optimization technology has been applied to the problem of multi-UAV task assignment. In "Control and Decision Making" (2010, Vol.25, No.9, pp.1359-1364), "Multi-UAV Task Allocation Method Based on Particle Swarm Algorithm" was published by Li Wei et al. The task allocation problem of UAV, but the particle swarm algorithm is easy to fall into local optimum, and the convergence accuracy needs to be improved. In the "Acta Aerospace Sciences" (2014, Vol.25, No.9, pp.1626-631) proposed by Li Yan et al. "Cooperative air combat firepower allocation based on SA-DPSO hybrid optimization algorithm" combines simulated annealing algorithm and particle swarm optimization algorithm Combined with UAV task allocation, this method has a better convergence speed, but it is easy to fall into the curse of dimensionality, and the optimization performance is not enough.
因为上述无人机任务分配方法都是非线性求解方法,所以在求解的过程中非常容易陷入局部极值,很难得到全局最优解。而现有的无人机任务分配方法在进行无人机群的任务分配中很少综合考虑各种评价指标和约束,故其应用范围受限。由此看来,寻找新的任务分配方法用以提高无人机作战的性能,是很有价值的。Because the above UAV task assignment methods are nonlinear solution methods, it is very easy to fall into local extremum during the solution process, and it is difficult to obtain the global optimal solution. However, the existing UAV task assignment methods seldom consider various evaluation indicators and constraints comprehensively in the task assignment of UAV swarms, so their application range is limited. From this point of view, it is very valuable to find new task allocation methods to improve the performance of UAV combat.
发明内容Contents of the invention
针对上述现有技术,本发明解决的技术问题是提供了一种考虑多起点多终点且适合于离散问题的基于量子乌鸦群搜索机制的无人机群任务分配方法。In view of the above-mentioned prior art, the technical problem solved by the present invention is to provide a UAV swarm task assignment method based on the quantum crow swarm search mechanism that considers multiple starting points and multiple destinations and is suitable for discrete problems.
为解决上述技术问题,本发明一种基于量子乌鸦群搜索机制的无人机群任务分配方法,包括以下步骤:In order to solve the above-mentioned technical problems, the present invention provides a method for assigning unmanned aerial vehicle swarm tasks based on the quantum crow swarm search mechanism, comprising the following steps:
步骤一:初始化最大迭代代数为Tmax,建立从多个起点到多个任务的无人机群任务分配模型:假设有U种型号的无人机从M个起点执行Q个任务;Step 1: Initialize the maximum iteration algebra as T max , and establish a UAV group task assignment model from multiple starting points to multiple tasks: Assume that there are U types of UAVs that perform Q tasks from M starting points;
设无人机第m个起点的坐标为其中1≤m≤M,无人机第q个任务的坐标为其中1≤q≤Q,对所有无人机按照起点和型号分成L个类型,其中L=U×M,即同一类型无人机具有相同的起点且属于同一型号;Let the coordinates of the mth starting point of the UAV be Where 1≤m≤M, the coordinates of the qth task of the UAV are Among them, 1≤q≤Q, all UAVs are divided into L types according to the starting point and model, where L=U×M, that is, the same type of UAV has the same starting point and belongs to the same model;
根据第l型无人机的型号的起点,得到第l型无人机的起点坐标为其中l=1,2,...,L,则第l型无人机的起点与第q个任务的距离为Dl,q且满足: According to the starting point of the model of the l-th UAV, the coordinates of the starting point of the l-th UAV are obtained as Where l=1,2,...,L, then the distance between the starting point of the l-type UAV and the q-th task is D l,q and satisfies:
无人机群的任务分配矩阵用L行Q列分配矩阵A={al,q|al,q∈{0,1}}L×Q表示,若第l个型号的无人机执行第q个任务,则al,q=1,否则al,q=0;The task assignment matrix of the UAV group is represented by the assignment matrix A={a l,q |a l,q ∈{0,1}} L×Q with L rows and Q columns. tasks, then a l,q =1, otherwise a l,q =0;
设每个无人机有D种武器,第l型无人机使用第d种武器的概率为第l型无人机使用第d种武器的造价为δl,d,其中1≤d≤D,1≤l≤L,第d种武器对第q个任务的杀伤率为其中1≤d≤D,1≤q≤Q,设无人机的毁伤概率矩阵P={Pl,q,d|Pl,q,d∈[0,1]}L×Q×D,Pl,q,d是第l型无人机使用第d种武器对第q个任务的毁伤度且满足:第q个任务的毁伤度阈值为Wq,其中1≤q≤Q,设第q个任务的价值为Vq,拥有第l型无人机的数量为Bl,对第q个任务攻击的无人机最大编队数目为Cq,第l型无人机的最大航程为Rl,全部无人机的最大航程为Omax,第l型无人机的飞行速度为Zl,全部无人机的最大飞行时间为Zmax;Assuming that each UAV has D types of weapons, the probability that the l-th UAV uses the d-th weapon is The cost of using the d-th weapon for the l-type UAV is δ l,d , where 1≤d≤D, 1≤l≤L, and the lethality rate of the d-th weapon for the q-th task is Where 1≤d≤D, 1≤q≤Q, the damage probability matrix of the UAV is set P={P l,q,d |P l,q,d ∈[0,1]} L×Q×D , P l,q,d is the damage degree of the l-type UAV to the q-th task using the d-th weapon and it satisfies: The damage threshold of the qth task is W q , where 1≤q≤Q, assuming the value of the qth task is V q , the number of the l-type UAVs is B l , and the attack on the qth task The maximum formation number of UAVs is C q , the maximum range of type l UAVs is R l , the maximum range of all UAVs is O max , the flight speed of type l UAVs is Z l , and all unmanned The maximum flight time of the aircraft is Z max ;
无人机任务分配模型分别由目标价值收益函数、飞行距离函数、耗弹量成本函数和目标覆盖率函数表示:The UAV task allocation model is represented by target value benefit function, flight distance function, ammunition consumption cost function and target coverage function respectively:
(1)归一化目标价值收益函数为:其中A为任务分配矩阵,A={al,q|al,q∈{0,1}}L×Q,Pl,q,d为第l型无人机使用d种武器对第q个任务的毁伤概率,d为使用武器的种类,第l型的无人机使用的武器的类型需要提前设定,Vq为第q个任务的价值,N为任务分配中实际参与任务的无人机数目,为最大任务价值,max为求取最大值函数;(1) The normalized target value benefit function is: Among them, A is the task assignment matrix, A={a l,q |a l,q ∈{0,1}} L×Q , P l,q,d is the type l UAV using d weapons to attack the qth The damage probability of a task, d is the type of weapon used, the type of weapon used by the l-th type UAV needs to be set in advance, V q is the value of the qth task, N is the number of people who actually participate in the task in the task allocation number of man-machines, is the maximum task value, and max is the function to obtain the maximum value;
(2)归一化飞行距离函数为:其中λ1,λ2为两个因素的权重,λ1+λ2=1,λ1,λ2≥0,为最长路径的长度,Rl为第l型无人机的最大航程;(2) The normalized flight distance function is: Where λ 1 , λ 2 are the weights of the two factors, λ 1 + λ 2 = 1, λ 1 , λ 2 ≥ 0, is the length of the longest path, R l is the maximum range of the l-type unmanned aerial vehicle;
(3)归一化耗弹成本函数为:其中第l型的无人机使用的武器的类型需要提前设定,δmax为最大成本, (3) The normalized ammunition consumption cost function is: Among them, the type of weapon used by the l-type UAV needs to be set in advance, δ max is the maximum cost,
(4)归一化目标覆盖度函数为: (4) The normalized target coverage function is:
所述无人机群任务分配模型满足如下约束条件:The UAV swarm task assignment model satisfies the following constraints:
(1)任务兵力约束:每一种类型的无人机出动数目不能超过拥有该类型无人机数目, (1) Mission force constraints: the number of dispatched drones of each type cannot exceed the number of owned drones of this type,
(2)无人机作战半径约束:保证无人机的飞行距离在其作战半径之内,al,q×(Dl,q-Rl)≤0(l=1,2,...,L;q=1,2,...,Q);(2) Combat radius constraint of UAV: ensure that the flight distance of UAV is within its combat radius, a l,q ×(D l,q -R l )≤0(l=1,2,... ,L;q=1,2,...,Q);
(3)对目标毁伤度的约束:执行任务q的无人机对任务q的毁伤度不小于该任务的毁伤度阈值,Pl,q,d为第l型无人机使用d种武器对第q个任务的毁伤概率,d为使用武器的种类,第l型的无人机使用的武器的类型需要提前设定;(3) Constraints on the damage degree of the target: the damage degree of the UAV performing the task q to the task q is not less than the damage threshold of the task, P l, q, d are the damage probability of the qth mission using d weapons for the l-type UAV, d is the type of weapon used, and the type of weapon used by the l-type UAV needs to be set in advance;
(4)攻击目标的无人机数目的约束:对第q个任务攻击的无人机数目不超过其最大编队数目,即 (4) Constraint on the number of drones attacking the target: the number of drones attacking the qth task does not exceed the maximum number of formations, that is,
(5)攻击目标的航程的约束:即攻击任务的航程不超过给定的最大航程,Omax为所有无人机的最大航程;(5) Constraints on the range of the attack target: that is, the range of the attack mission does not exceed the given maximum range, O max is the maximum range of all drones;
(6)攻击目标的时间的约束:攻击任务的时间不超过给定的最大时间,Zmax为所有无人机的最大飞行时间;(6) Constraint on the time of attacking the target: the time of attacking the task does not exceed the given maximum time, Z max is the maximum flight time of all drones;
确定量子乌鸦群的种群规模K,优化问题的维数J=L×Q,按照l递增,q递增的方式排列无人机群任务分配矩阵A={al,q|al,q∈{0,1}}L×Q中的元素,用对应记录无人机群任务分配矩阵A中的元素;Determine the population size K of the quantum crow group, the dimension of the optimization problem J=L×Q, arrange the UAV group task assignment matrix A={a l,q |a l,q ∈{0 ,1}} The elements in L×Q , use Correspondingly record the elements in the UAV swarm task assignment matrix A;
步骤二:初始化量子乌鸦群:Step 2: Initialize the quantum crow group:
将第i只量子乌鸦的量子位置的每一维设为其中1≤i≤K,1≤j≤J,并对第i只量子乌鸦的量子位置进行测量,得到第i只量子乌鸦的位置初始化第i只量子乌鸦的隐藏的食物位置为其中1≤i≤K,t为迭代次数,初时设t=0;Set the quantum position of the i-th quantum crow Each dimension of is set to Among them, 1≤i≤K, 1≤j≤J, and measure the quantum position of the i-th quantum crow to obtain the position of the i-th quantum crow Initialize the hidden food position of the i-th quantum crow as Where 1≤i≤K, t is the number of iterations, initially set t=0;
对第i只量子乌鸦的量子位置的第j维进行测量,得到第i只量子乌鸦的位置的第j维其中1≤i≤K,1≤j≤J,是满足均匀分布的随机数;For the j-th dimension of the quantum position of the i-th quantum crow Make a measurement to get the jth dimension of the position of the i-th quantum crow Where 1≤i≤K, 1≤j≤J, is a random number that satisfies the uniform distribution;
步骤三:根据适应度函数对每只量子乌鸦进行适应度计算,计算出的适应度函数最小值对应的量子乌鸦的位置存为全局最优食物位置 Step 3: Calculate the fitness of each quantum crow according to the fitness function, and store the position of the quantum crow corresponding to the minimum value of the calculated fitness function as the global optimal food position
步骤四:更新每只量子乌鸦的量子位置和位置:Step 4: Update the quantum position and position of each quantum crow:
第i只量子乌鸦随机选取量子乌鸦群中的另一个量子乌鸦s,然后跟随量子乌鸦s来发现被量子乌鸦s隐藏的食物位置,量子乌鸦s发现被跟随的感知概率为μ,若量子乌鸦i通过策略1进行量子位置的更新,否则量子乌鸦i通过策略2进行量子位置的更新;The i-th quantum crow randomly selects another quantum crow s in the quantum crow group, and then follows the quantum crow s to find the food location hidden by the quantum crow s. Quantum crow i updates the quantum position through strategy 1, otherwise quantum crow i updates the quantum position through strategy 2;
策略1满足:第i只量子乌鸦根据量子乌鸦s隐藏的食物位置来进行位置的更新,第i只量子乌鸦的第j维的量子旋转角的更新方程为其中e1为常数,决定了指引该量子乌鸦的位置对该量子乌鸦演化的影响程度,H为飞行长度;Strategy 1 satisfies: the i-th quantum crow updates its position according to the hidden food position of the quantum crow s, and the update equation of the j-th dimension quantum rotation angle of the i-th quantum crow is: Among them, e 1 is a constant, which determines the degree of influence on the evolution of the quantum crow by guiding the position of the quantum crow, and H is the flight length;
策略2满足:第i只量子乌鸦根据自身隐藏的食物位置和最优食物位置来进行位置的更新,第i只量子乌鸦的第j维的量子旋转角的更新方程为其中e2,e3为常数,决定了指引该量子乌鸦的位置对该量子乌鸦演化的影响程度;Strategy 2 satisfies: the i-th quantum crow updates its position according to its own hidden food position and the optimal food position, and the update equation of the j-th dimension quantum rotation angle of the i-th quantum crow is Among them, e 2 and e 3 are constants, which determine the influence degree of guiding the position of the quantum crow to the evolution of the quantum crow;
量子位置的演进过程如下:The evolution process of the quantum position is as follows:
其中ζ=0.15/J为变异概率,abs()为求取绝对值函数;Among them, ζ=0.15/J is the mutation probability, and abs() is the absolute value function;
对量子乌鸦量子位置测量得到量子乌鸦的位置,测量规则如下:The position of the quantum crow is obtained by measuring the quantum position of the quantum crow, and the measurement rules are as follows:
其中1≤i≤K,1≤j≤J,是满足均匀分布的随机数;Where 1≤i≤K, 1≤j≤J, is a random number that satisfies the uniform distribution;
步骤五:根据适应度函数对每只量子乌鸦进行适应度计算,确定每只量子乌鸦的隐藏的食物位置,同时找到至本次迭代代数的最优食物位置;Step 5: Calculate the fitness of each quantum crow according to the fitness function, determine the hidden food position of each quantum crow, and find the optimal food position up to this iteration algebra;
将第i只量子乌鸦的位置赋值给任务分配矩阵A,按照进行适应度计算;Set the position of the i-th quantum crow Assign a value to the task allocation matrix A, according to Perform fitness calculations;
采用贪婪选择策略选取量子乌鸦的隐藏的食物位置,若则否则 Use the greedy selection strategy to select the hidden food position of the quantum crow, if but otherwise
步骤六:如果达到最大迭代代数Tmax,算法终止,执行步骤七;否则,令t=t+1,返回步骤四继续进行;Step 6: If the maximum iteration number T max is reached, the algorithm is terminated, and step 7 is executed; otherwise, set t=t+1, and return to step 4 to continue;
步骤七:输出全局最优食物位置,映射为任务分配矩阵。Step 7: Output the global optimal food position and map it into a task assignment matrix.
本发明一种基于量子乌鸦群搜索机制的无人机群任务分配方法,还包括:The present invention is a kind of unmanned aerial vehicle swarm task assignment method based on quantum crow swarm search mechanism, also includes:
步骤三中适应度评价过程如下:首先将第t代第i只量子乌鸦的位置赋值给任务分配矩阵A,其中第t代第i只量子乌鸦的第j维赋值给al,q,按照进行适应度计算,其中The fitness evaluation process in Step 3 is as follows: First, the position of the i-th quantum crow in the t-th generation Assign a value to the task assignment matrix A, where the j-th dimension of the i-th quantum crow of the t-th generation Assigned to a l, q , according to Perform fitness calculations, where
c1,c2,c3,c4,c5,c6为惩罚系数,ω1,ω2,ω3,ω4为加权因子,ω1+ω2+ω3+ω4=1,0≤ω1,ω2,ω3,ω4≤1,max为求取最大值函数,min为求取最小值函数。c 1 , c 2 , c 3 , c 4 , c 5 , c 6 are penalty coefficients, ω 1 , ω 2 , ω 3 , ω 4 are weighting factors, ω 1 + ω 2 + ω 3 + ω 4 = 1, 0≤ω 1 ,ω 2 ,ω 3 ,ω 4 ≤1, max is the function to obtain the maximum value, and min is the function to obtain the minimum value.
本发明的有益效果:本发明针对现有无人机群任务分配方法的不足,提出了一种考虑多起点多终点的无人机群任务分配模型,同时提出了一种适合于离散问题的量子乌鸦群搜索机制用于求解无人机群的任务分配问题。与现有技术相比,本发明充分考虑了无人机群任务分配的过程中遇到的从多个起点执行多个任务的情况,同时考虑了目标价值收益函数、飞行距离函数、耗弹量成本函数和目标覆盖率函数多个目标,具有以下优点:Beneficial effects of the present invention: the present invention aims at the deficiencies of the existing UAV swarm task assignment method, proposes a UAV swarm task assignment model considering multiple starting points and multiple destinations, and proposes a quantum crow group suitable for discrete problems The search mechanism is used to solve the task assignment problem of UAV swarms. Compared with the prior art, the present invention fully considers the situation of performing multiple tasks from multiple starting points encountered in the process of task assignment of the UAV group, and simultaneously considers the target value benefit function, flight distance function, and ammunition consumption cost. Function and target coverage Function multiple targets, with the following advantages:
(1)本发明解决了离散多约束目标函数求解问题,并设计新颖的离散量子乌鸦算法作为演进策略,利用线性权重对不同目标函数进行处理,所设计的方法具有收敛速度快,收敛精度高的优点。(1) The present invention solves the problem of solving discrete multi-constrained objective functions, and designs a novel discrete quantum crow algorithm as an evolutionary strategy, utilizes linear weights to process different objective functions, and the method designed has the advantages of fast convergence speed and high convergence precision advantage.
(2)相对于现有的无人机群任务分配方法,本发明可以有效解决对无人机群多目标约束要求,说明本方法的适用性更广。(2) Compared with the existing UAV swarm task assignment method, the present invention can effectively solve the multi-target constraint requirement for the UAV swarm, which shows that the method has wider applicability.
(3)仿真结果表明,本发明所提出的无人机群任务分配方法能够得到比粒子群优化(Particle Swarm Optimization,PSO)方法实现更合理的无人机任务分配方案,从而说明了本方法的有效性。(3) The simulation results show that the UAV swarm task assignment method proposed in the present invention can obtain a more reasonable UAV task assignment scheme than the Particle Swarm Optimization (PSO) method, thus illustrating the effectiveness of the method sex.
附图说明Description of drawings
图1为无人机群任务分配流程图;Figure 1 is a flow chart of UAV swarm task assignment;
图2为量子乌鸦位置更新的流程图;Fig. 2 is the flowchart of quantum crow position update;
图3为两种方法实现多无人机任务分配的收敛曲线。Figure 3 shows the convergence curves of the two methods for multi-UAV task assignment.
具体实施方式Detailed ways
下面结合附图对本发明具体实施方式进行说明。The specific embodiments of the present invention will be described below in conjunction with the accompanying drawings.
如图1所示,本发明技术方案包括如下步骤:As shown in Figure 1, the technical solution of the present invention comprises the following steps:
步骤一:建立从多个起点到多个任务的无人机群任务分配模型,假设这里有U种型号的无人机从M个起点执行Q个任务。Step 1: Establish a UAV group task assignment model from multiple starting points to multiple tasks, assuming that there are U types of UAVs performing Q tasks from M starting points.
设无人机第m个起点的坐标为其中1≤m≤M,无人机第q个任务的坐标为其中1≤q≤Q。对所有无人机可按照其起点和型号分成L个类型,其中L=U×M,即同一类型无人机具有相同的起点且属于同一型号。Let the coordinates of the mth starting point of the UAV be Where 1≤m≤M, the coordinates of the qth task of the UAV are where 1≤q≤Q. All UAVs can be divided into L types according to their origin and model, where L=U×M, that is, UAVs of the same type have the same origin and belong to the same model.
根据第l型无人机的型号的起点,可得第l型无人机的起点坐标为其中l=1,2,...,L,则第l型无人机的起点与第q个任务的距离Dl,q为 According to the starting point of the type l UAV, the coordinates of the starting point of the lth type UAV can be obtained as Where l=1,2,...,L, then the distance D l,q between the starting point of the l-type UAV and the q-th task is
无人机群的任务分配矩阵可用L行Q列分配矩阵A={al,q|al,q∈{0,1}}L×Q表示,若第l个型号的无人机执行第q个任务,则al,q=1,否则al,q=0。The task assignment matrix of the UAV group can be expressed by the assignment matrix of L rows and Q columns A={a l,q |a l,q ∈{0,1}} L×Q , if the lth type of UAV executes the qth task, then a l,q =1, otherwise a l,q =0.
设每个无人机有D种武器,第l型无人机使用第d种武器的概率为第l型无人机使用第d种武器的造价为δl,d,其中1≤d≤D,1≤l≤L。第d种武器对第q个任务的杀伤率为其中1≤d≤D,1≤q≤Q,设无人机的毁伤概率矩阵P={Pl,q,d|Pl,q,d∈[0,1]}L×Q×D,Pl,q,d是第l型无人机使用第d种武器对第q个任务的毁伤度为第q个任务的毁伤度阈值为Wq,其中1≤q≤Q。设第q个任务的价值为Vq,拥有第l型无人机的数量为Bl,对第q个任务攻击的无人机最大编队数目为Cq,第l型无人机的最大航程为Rl,所有无人机的最大航程为Omax,第l型无人机的飞行速度为Zl,所有无人机的最大飞行时间为Zmax。Assuming that each UAV has D types of weapons, the probability that the l-th UAV uses the d-th weapon is The cost of the l-type UAV using the d-th weapon is δ l,d , where 1≤d≤D, 1≤l≤L. The lethality rate of the d-th weapon to the q-th task is Where 1≤d≤D, 1≤q≤Q, the damage probability matrix of the UAV is set P={P l,q,d |P l,q,d ∈[0,1]} L×Q×D , P l,q,d is the damage degree of the l-type UAV using the d-th weapon to the q-th task. The damage threshold of the qth task is W q , where 1≤q≤Q. Suppose the value of the qth task is V q , the number of the l-type UAVs is B l , the maximum number of formations of UAVs attacking the qth task is C q , and the maximum range of the l-type UAVs is is R l , the maximum range of all UAVs is O max , the flight speed of type l UAV is Z l , and the maximum flight time of all UAVs is Z max .
无人机任务分配模型可以由目标价值收益函数、飞行距离函数、耗弹量成本函数和目标覆盖率函数表示。The UAV task assignment model can be expressed by target value benefit function, flight distance function, ammunition consumption cost function and target coverage function.
(1)归一化目标价值收益函数为:其中A为任务分配矩阵,A={al,q|al,q∈{0,1}}L×Q,Pl,q,d为第l型无人机使用d种武器对第q个任务的毁伤概率,d为使用武器的种类,第l型的无人机使用的武器的类型需要提前设定。Vq为第q个任务的价值,N为任务分配中实际参与任务的无人机数目, 为最大任务价值,max为求取最大值函数。(1) The normalized target value benefit function is: Among them, A is the task assignment matrix, A={a l,q |a l,q ∈{0,1}} L×Q , P l,q,d is the type l UAV using d weapons to attack the qth The damage probability of a task, d is the type of weapon used, and the type of weapon used by the l-type UAV needs to be set in advance. V q is the value of the qth task, N is the number of UAVs that actually participate in the task in the task allocation, is the maximum task value, and max is the function to obtain the maximum value.
(2)归一化飞行距离函数为:其中λ1,λ2为两个因素的权重,λ1+λ2=1,λ1,λ2≥0,为最长路径的长度,Rl为第l型无人机的最大航程。(2) The normalized flight distance function is: Where λ 1 , λ 2 are the weights of the two factors, λ 1 + λ 2 = 1, λ 1 , λ 2 ≥ 0, is the length of the longest path, R l is the maximum range of type l UAV.
(3)归一化耗弹成本函数为:其中第l型的无人机使用的武器的类型需要提前设定,δmax为最大成本, (3) The normalized ammunition consumption cost function is: Among them, the type of weapon used by the l-type UAV needs to be set in advance, δ max is the maximum cost,
(4)归一化目标覆盖度函数为: (4) The normalized target coverage function is:
除此之外,还应满足如下的约束条件:In addition, the following constraints should also be met:
(1)任务兵力约束。即每一种类型的无人机出动数目不能超过拥有该类型无人机数目。 (1) Mission force constraints. That is, the number of dispatched drones of each type cannot exceed the number of owned drones of this type.
(2)无人机作战半径约束。即必须保证无人机的飞行距离在其作战半径之内。al,q×(Dl,q-Rl)≤0(l=1,2,...,L;q=1,2,...,Q)。(2) UAV combat radius constraints. That is, it is necessary to ensure that the flight distance of the UAV is within its combat radius. a l,q ×(D l,q −R l )≦0 (l=1,2,...,L; q=1,2,...,Q).
(3)对目标毁伤度的约束。即执行任务q的无人机对任务q的毁伤度应不小于该任务的毁伤度阈值。Pl,q,d为第l型无人机使用d种武器对第q个任务的毁伤概率,d为使用武器的种类,第l型的无人机使用的武器的类型需要提前设定。(3) Constraints on target damage. That is, the damage degree of the UAV performing the task q to the task q should not be less than the damage threshold of the task. P l, q, d are the damage probability of the qth mission using d weapons for the l-type UAV, and d is the type of weapon used. The type of weapon used by the l-type UAV needs to be set in advance.
(4)攻击目标的无人机数目的约束。对第q个任务攻击的无人机数目不超过其最大编队数目,即 (4) Constraints on the number of UAVs attacking the target. The number of UAVs attacking the qth task does not exceed its maximum formation number, that is,
(5)攻击目标的航程的约束。即攻击任务的航程不超过给定的最大航程。Omax为所有无人机的最大航程。(5) Constraints on the range of the attack target. That is, the range of the attack mission does not exceed the given maximum range. O max is the maximum range of all drones.
(6)攻击目标的时间的约束。即攻击任务的时间不超过给定的最大时间。Zmax为所有无人机的最大飞行时间。(6) Constraints on the time to attack the target. That is, the time of the attack task does not exceed the given maximum time. Z max is the maximum flight time of all drones.
然后,确定量子乌鸦群的种群规模K,优化问题的维数J=L×Q,按照l递增q递增的方式排列无人机群任务分配矩阵A={al,q|al,q∈{0,1}}L×Q中的元素,用对应记录无人机群任务分配矩阵A中的元素。Then, determine the population size K of the quantum crow group, the dimension of the optimization problem J=L×Q, and arrange the UAV group task assignment matrix A={a l,q |a l,q ∈{ 0,1}} The elements in L×Q , use Correspondingly record the elements in the UAV swarm task assignment matrix A.
步骤二:初始化量子乌鸦群。Step 2: Initialize the quantum crow group.
将第i只量子乌鸦的量子位置的每一维设为其中1≤i≤K,1≤j≤J,并对第i只量子乌鸦的量子位置进行测量得到第i只量子乌鸦的位置初始化第i只量子乌鸦的隐藏的食物位置为其中1≤i≤K。t为迭代次数,初时设t=0。Set the quantum position of the i-th quantum crow Each dimension of is set to Among them, 1≤i≤K, 1≤j≤J, and measure the quantum position of the i-th quantum crow to obtain the position of the i-th quantum crow Initialize the hidden food position of the i-th quantum crow as where 1≤i≤K. t is the number of iterations, initially set t = 0.
对第i只量子乌鸦的量子位置的第j维进行测量,得到第i只量子乌鸦的位置的第j维其中1≤i≤K,1≤j≤J,是满足均匀分布的随机数。For the j-th dimension of the quantum position of the i-th quantum crow Make a measurement to get the jth dimension of the position of the i-th quantum crow Where 1≤i≤K, 1≤j≤J, is a random number that satisfies a uniform distribution.
步骤三:根据适应度函数对每只量子乌鸦进行适应度计算,计算出的适应度函数最小值对应的量子乌鸦的位置存为全局最优食物位置 Step 3: Calculate the fitness of each quantum crow according to the fitness function, and store the position of the quantum crow corresponding to the minimum value of the calculated fitness function as the global optimal food position
适应度评价的过程如下:The fitness evaluation process is as follows:
首先将第t代第i只量子乌鸦的位置赋值给任务分配矩阵A,其中第t代第i只量子乌鸦的第j维赋值给al,q。按照进行适应度计算,其中First, the position of the i-th quantum crow in the t-th generation Assign a value to the task assignment matrix A, where the j-th dimension of the i-th quantum crow of the t-th generation Assigns to a l,q . according to Perform fitness calculations, where
c1,c2,c3,c4,c5,c6为惩罚系数,ω1,ω2,ω3,ω4为加权因子,ω1+ω2+ω3+ω4=1,0≤ω1,ω2,ω3,ω4≤1,max为求取最大值函数,min为求取最小值函数。c 1 , c 2 , c 3 , c 4 , c 5 , c 6 are penalty coefficients, ω 1 , ω 2 , ω 3 , ω 4 are weighting factors, ω 1 + ω 2 + ω 3 + ω 4 = 1, 0≤ω 1 ,ω 2 ,ω 3 ,ω 4 ≤1, max is the function to obtain the maximum value, and min is the function to obtain the minimum value.
步骤四:更新每只量子乌鸦的量子位置和位置。Step 4: Update the quantum position and location of each quantum crow.
如图2所示,第i只量子乌鸦随机选取量子乌鸦群中的另一个量子乌鸦s,然后跟随量子乌鸦s来发现被量子乌鸦s隐藏的食物位置。量子乌鸦s发现被跟随的感知概率为μ。若量子乌鸦i通过策略1进行量子位置的更新,否则量子乌鸦i通过策略2进行量子位置的更新。As shown in Figure 2, the i-th quantum crow randomly selects another quantum crow s in the quantum crow group, and then follows the quantum crow s to find the food position hidden by the quantum crow s. The quantum crow s finds that the perceived probability of being followed is μ. like Quantum crow i updates the quantum position through strategy 1, otherwise quantum crow i updates the quantum position through strategy 2.
策略1:第i只量子乌鸦根据量子乌鸦s隐藏的食物位置来进行位置的更新。第i只量子乌鸦的第j维的量子旋转角的更新方程为其中e1为常数,决定了指引该量子乌鸦的位置对该量子乌鸦演化的影响程度,H为飞行长度。Strategy 1: The i-th quantum crow updates its position according to the hidden food position of the quantum crow s. The update equation of the quantum rotation angle of the jth dimension of the i-th quantum crow is Among them, e 1 is a constant, which determines the influence degree of guiding the position of the quantum crow to the evolution of the quantum crow, and H is the flight length.
策略2:第i只量子乌鸦根据自身隐藏的食物位置和最优食物位置来进行位置的更新。第i只量子乌鸦的第j维的量子旋转角的更新方程为其中e2,e3为常数,决定了指引该量子乌鸦的位置对该量子乌鸦演化的影响程度。Strategy 2: The i-th quantum crow updates its position according to its hidden food position and the optimal food position. The update equation of the quantum rotation angle of the jth dimension of the i-th quantum crow is Among them, e 2 and e 3 are constants, which determine the influence degree of guiding the position of the quantum crow to the evolution of the quantum crow.
量子位置的演进过程如下:The evolution process of the quantum position is as follows:
其中ζ=0.15/J为变异概率,abs()为求取绝对值函数。Among them, ζ=0.15/J is the mutation probability, and abs() is the function for obtaining the absolute value.
对量子乌鸦量子位置测量得到量子乌鸦的位置。测量规则如下:The position of the quantum crow is obtained by measuring the quantum position of the quantum crow. The measurement rules are as follows:
其中1≤i≤K,1≤j≤J,是满足均匀分布的随机数。Where 1≤i≤K, 1≤j≤J, is a random number that satisfies a uniform distribution.
步骤五:根据适应度函数对每只量子乌鸦进行适应度计算,确定每只量子乌鸦的隐藏的食物位置,同时找到迄今为止的最优食物位置。Step 5: Calculate the fitness of each quantum crow according to the fitness function, determine the hidden food position of each quantum crow, and find the optimal food position so far.
将第i只量子乌鸦的位置赋值给任务分配矩阵A。按照进行适应度计算。Set the position of the i-th quantum crow Assign a value to the task assignment matrix A. according to Perform fitness calculations.
采用贪婪选择策略选取量子乌鸦的隐藏的食物位置,若则否则 Use the greedy selection strategy to select the hidden food position of the quantum crow, if but otherwise
步骤六:如果达到最大迭代代数,算法终止,执行步骤七;否则,令t=t+1,返回步骤四继续进行。Step 6: If the maximum number of iterations is reached, the algorithm is terminated and Step 7 is executed; otherwise, set t=t+1, and return to Step 4 to continue.
步骤七:输出全局最优食物位置,映射为任务分配矩阵。Step 7: Output the global optimal food position and map it into a task assignment matrix.
具体实施例如下:Specific examples are as follows:
其模型参数设置如下:Its model parameters are set as follows:
无人机的型号数U=4,无人机起点数M=3,起点的坐标为(368,319,150)、(264,44,264)和(296,242,347.5),无人机的任务数Q=10,第1个任务的坐标为(264,715,800),任务价值为5,毁伤度阈值都为0.5;第2个任务的坐标为(225,605,670),任务价值为5,毁伤度阈值都为0.5;第3个任务的坐标为(168,538,340),任务价值为2,毁伤度阈值都为0.5;第4个任务的坐标为(180,455,670),任务价值为1,毁伤度阈值都为0.5;第5个任务的坐标为(120,400,600),任务价值为2,毁伤度阈值都为0.5;第6个任务的坐标为(96,304,233),任务价值为5,毁伤度阈值都为0.5;第7个任务的坐标为(10,451,233),任务价值为5,毁伤度阈值都为0.5;第8个任务的坐标为(162,660,233),任务价值为5,毁伤度阈值都为0.5、第9个任务的坐标为(110,561,45),任务价值为5,毁伤度阈值都为0.5;第10个任务的坐标为(105,473,1830),任务价值为5,毁伤度阈值都为0.5。无人机武器种类D=2,其中第1种型号和第2种型号的无人机使用第2种武器,第3种型号和第4种型号的无人机使用第1种武器,第1种武器的造价为5个单位,第2种武器的造价为3个单位,第1种型号的无人机选择第1种武器的概率为0.67,选择第2种武器的概率为0.78;第2种型号的无人机选择第1种武器的概率为0.67,选择第2种武器的概率为0.78;第3种型号的无人机选择第1种武器的概率为0.92,选择第2种武器的概率为0.92;第4种型号的无人机选择第1种武器的概率为0.92,选择第2种武器的概率为0.92。第1种武器对第1个任务和第2个任务的杀伤率为0.92;第1种武器对第3个任务、第4个任务和第5个任务的杀伤率为0.8;第1种武器对第6个任务、第7个任务和第8个任务的杀伤率为0.94;第1种武器对第9个任务和第10个任务的杀伤率为0.6。第2种武器对第1个任务、第2个任务、第3个任务、第4个任务和第5个任务的杀伤率都为0.8;第2种武器对第6个任务、第7个任务和第8个任务的杀伤率为0.92;第2种武器对第9个任务的杀伤率为0.97;第2种武器对第10个任务的杀伤率为0.6。第1型无人机的数量为5,最大航程为300,第2型无人机的数量为6,最大航程为900。第3型无人机的数量为6,最大航程为900。第4型无人机的数量为15,最大航程为1700。第5型无人机的数量为3,最大航程为300。第6型无人机的数量为5,最大航程为900。第7型无人机的数量为6,最大航程为900。第8型无人机的数量为4,最大航程为1700。第9型无人机的数量为5,最大航程为300。第10型无人机的数量为10,最大航程为900。第11型无人机的数量为5,最大航程为900。第12型无人机的数量为10,最大航程为1700。对任务攻击的无人机最大编队数目都为8。权重λ1=1,λ2=0,目标函数权重ω1=0.322,ω2=0.214,ω3=0.1856,ω4=0.2784。惩罚系数c1=c2=c3=c6=50,c4=c5=0。上述坐标,航程的单位都为km。The number of UAV models U=4, the number of UAV starting points M=3, the coordinates of the starting points are (368,319,150), (264,44,264) and (296,242,347.5), the number of UAV missions Q=10, the first The coordinates of the task are (264,715,800), the task value is 5, and the damage threshold is 0.5; the coordinates of the second task are (225,605,670), the task value is 5, and the damage threshold is 0.5; the coordinates of the third task are (168,538,340), the task value is 2, and the damage threshold is 0.5; the coordinates of the fourth task are (180,455,670), the task value is 1, and the damage threshold is 0.5; the coordinates of the fifth task are (120,400,600), The task value is 2, and the damage threshold is 0.5; the coordinates of the sixth task are (96,304,233), the task value is 5, and the damage threshold is 0.5; the coordinates of the seventh task are (10,451,233), and the task value is 5 , the damage threshold is 0.5; the coordinates of the eighth task are (162,660,233), the task value is 5, the damage threshold is 0.5, the coordinates of the ninth task are (110,561,45), the task value is 5, the damage The degree thresholds are all 0.5; the coordinates of the 10th task are (105,473,1830), the task value is 5, and the damage thresholds are all 0.5. UAV weapon types D = 2, wherein the first type and the second type of UAV use the second type of weapon, the third type and the fourth type of UAV use the first type of weapon, the first The cost of the first type of weapon is 5 units, and the cost of the second type of weapon is 3 units. The probability of the first type of drone choosing the first type of weapon is 0.67, and the probability of choosing the second type of weapon is 0.78; The probability of choosing the first weapon for a type of drone is 0.67, and the probability of choosing the second weapon is 0.78; the probability of choosing the first weapon for the third type of drone is 0.92, and the probability of choosing the second weapon is 0.92. The probability is 0.92; the probability of choosing the first weapon for the fourth type of drone is 0.92, and the probability of choosing the second weapon is 0.92. The kill rate of the first weapon to the first task and the second task is 0.92; the kill rate of the first weapon to the third task, the fourth task and the fifth task is 0.8; The kill rate of the 6th task, the 7th task and the 8th task is 0.94; the kill rate of the 1st weapon to the 9th task and the 10th task is 0.6. The kill rate of the second weapon for the first task, the second task, the third task, the fourth task and the fifth task is 0.8; the second weapon is for the sixth task and the seventh task The kill rate of the 8th task and the 8th task is 0.92; the kill rate of the 2nd weapon to the 9th task is 0.97; the kill rate of the 2nd weapon to the 10th task is 0.6. The number of Type 1 drones is 5, and the maximum range is 300. The number of Type 2 drones is 6, and the maximum range is 900. The number of Type 3 drones is 6, and the maximum range is 900. The number of Type 4 drones is 15, and the maximum range is 1700. The number of Type 5 drones is 3, and the maximum range is 300. The number of Type 6 drones is 5, and the maximum range is 900. The number of Type 7 drones is 6 and the maximum range is 900. The number of Type 8 drones is 4 and the maximum range is 1700. The number of Type 9 drones is 5, and the maximum range is 300. The number of Type 10 drones is 10, and the maximum range is 900. The number of Type 11 drones is 5 and the maximum range is 900. The number of Type 12 drones is 10, and the maximum range is 1700. The maximum formation number of UAVs attacking missions is 8. Weights λ 1 =1, λ 2 =0, objective function weights ω 1 =0.322, ω 2 =0.214, ω 3 =0.1856, ω 4 =0.2784. Penalty coefficient c 1 =c 2 =c 3 =c 6 =50, c 4 =c 5 =0. For the above coordinates, the unit of the voyage is km.
基于量子乌鸦群搜索机制的无人机群任务分配方法的参数设置如下:种群规模K=20,最大迭代次数为200,感知概率μ=0.1,对该量子乌鸦演化的影响程度e1=0.06,e2=0.03,e3=0.01,飞行长度H=2。The parameters of the UAV swarm task assignment method based on the quantum crow swarm search mechanism are set as follows: the population size K=20, the maximum number of iterations is 200, the perception probability μ=0.1, the degree of influence on the evolution of the quantum crow e 1 =0.06, e 2 =0.03, e 3 =0.01, flight length H=2.
基于粒子群算法的无人机群任务分配方法的参数设置见李炜等在《控制与决策》(2010,Vol.25No.9,pp.1359–1364)上发表的“基于粒子群算法的多无人机任务分配方法”,其他参数与基于量子乌鸦群搜索机制的无人机群任务分配方法的相同。For the parameter setting of the UAV swarm task assignment method based on the particle swarm optimization algorithm, see "Multiple Unmanned Aerial Vehicles Based on Particle Swarm Optimization Algorithm" published in "Control and Decision" (2010, Vol. Man-Machine Task Allocation Method", other parameters are the same as those of the UAV swarm task allocation method based on the quantum crow swarm search mechanism.
如图3所示,在上述参数设置条件下,为两种方法实现多无人机任务分配的收敛曲线,本发明具有更快的收敛效果。As shown in Figure 3, under the above parameter setting conditions, the convergence curves for the two methods to achieve multi-UAV task allocation, the present invention has a faster convergence effect.
基于量子乌鸦群搜索机制的无人机群任务分配方法结果如表所示:The results of the UAV swarm task assignment method based on the quantum crow swarm search mechanism are shown in the table:
表1各起点的无人机对应任务的型号分配Table 1 Model allocation of UAVs corresponding to tasks at each starting point
其中M1表示第一个起点,M2表示第一个起点,M3表示第三个起点。Q1到Q10分别表示第1到10个任务。U1表示1型号无人机,U2表示2型号无人机,U3表示3型号无人机,U4表示4型号无人机,0表示无无人机从此起点执行该任务。Among them, M1 represents the first starting point, M2 represents the first starting point, and M3 represents the third starting point. Q1 to Q10 represent the 1st to 10th tasks respectively. U1 means UAV type 1, U2 means UAV type 2, U3 means UAV type 3, U4 means UAV type 4, and 0 means there is no UAV to perform the task from the starting point.
本发明解决了传统算法搜索速度慢且计算量大,很难找到无人机群的最优任务分配,而且现有的基于智能计算的无人机群任务分配设计很少综合考虑各种评价指标和约束,其应用范围受限。提出了一种考虑无人机群任务分配模型,同时提出了一种离散量子乌鸦群搜索机制用于求解无人机群的任务分配问题。需要该方法的步骤为:第一步,建立从多个起点到多个任务的无人机群任务分配模型,包括无人机型号数、起点终点和分配模型。第二步,初始化量子乌鸦群。第三步,根据适应度函数对每只量子乌鸦进行适应度计算,计算出的适应度函数最小值对应的量子乌鸦的位置存为全局最优食物位置。第四步,更新每只量子乌鸦的量子位置和位置。第五步,根据适应度函数对每只量子乌鸦进行适应度计算,确定每只量子乌鸦的隐藏的食物位置,同时找到迄今为止的最优食物位置,若达到最大迭代代数则输出全局最优食物位置,映射为任务分配矩阵。The invention solves the problem that the traditional algorithm has a slow search speed and a large amount of calculation, and it is difficult to find the optimal task assignment of the UAV group, and the existing UAV group task assignment design based on intelligent computing seldom considers various evaluation indicators and constraints comprehensively. , its scope of application is limited. A task assignment model considering UAV swarm is proposed, and a discrete quantum crow swarm search mechanism is proposed to solve the task assignment problem of UAV swarm. The steps required for this method are as follows: the first step is to establish a UAV swarm task allocation model from multiple starting points to multiple tasks, including the number of UAV models, starting point and ending point, and allocation model. The second step is to initialize the quantum crow group. The third step is to calculate the fitness of each quantum crow according to the fitness function, and store the position of the quantum crow corresponding to the minimum value of the calculated fitness function as the global optimal food position. The fourth step is to update the quantum position and location of each quantum crow. The fifth step is to calculate the fitness of each quantum crow according to the fitness function, determine the hidden food position of each quantum crow, and find the optimal food position so far, and output the global optimal food if it reaches the maximum iteration algebra location, mapped to a task assignment matrix.
Claims (2)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201810224721.9A CN108549402B (en) | 2018-03-19 | 2018-03-19 | UAV swarm task assignment method based on quantum crow swarm search mechanism |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201810224721.9A CN108549402B (en) | 2018-03-19 | 2018-03-19 | UAV swarm task assignment method based on quantum crow swarm search mechanism |
Publications (2)
Publication Number | Publication Date |
---|---|
CN108549402A true CN108549402A (en) | 2018-09-18 |
CN108549402B CN108549402B (en) | 2020-11-10 |
Family
ID=63516652
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201810224721.9A Active CN108549402B (en) | 2018-03-19 | 2018-03-19 | UAV swarm task assignment method based on quantum crow swarm search mechanism |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN108549402B (en) |
Cited By (18)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN109460056A (en) * | 2018-11-06 | 2019-03-12 | 哈尔滨工程大学 | Unmanned plane cluster fight game decision-making method based on quantum krill group's mechanism of Evolution |
CN109507891A (en) * | 2019-01-21 | 2019-03-22 | 闽江学院 | A kind of Semi-active fuzzy control method |
CN109656136A (en) * | 2018-12-14 | 2019-04-19 | 哈尔滨工程大学 | Underwater more AUV co-located formation topological structure optimization methods based on acoustic measurement network |
CN109740954A (en) * | 2019-01-10 | 2019-05-10 | 北京理工大学 | A rapid marshalling method for large-scale UAVs for disaster rescue missions |
CN110083173A (en) * | 2019-04-08 | 2019-08-02 | 合肥工业大学 | The optimization method of unmanned plane formation patrol task distribution |
CN111476965A (en) * | 2020-03-13 | 2020-07-31 | 深圳信息职业技术学院 | Method for constructing fire detection model, fire detection method and related equipment |
CN111766901A (en) * | 2020-07-22 | 2020-10-13 | 哈尔滨工程大学 | Multi-UAV cooperative target allocation attack method |
CN112046467A (en) * | 2020-09-03 | 2020-12-08 | 北京量子信息科学研究院 | Automatic driving control method and system based on quantum computing |
CN112596373A (en) * | 2020-10-27 | 2021-04-02 | 西北工业大学 | Unmanned aerial vehicle attitude control parameter intelligent setting method based on quantum firefly algorithm |
CN113009934A (en) * | 2021-03-24 | 2021-06-22 | 西北工业大学 | Multi-unmanned aerial vehicle task dynamic allocation method based on improved particle swarm optimization |
CN113077082A (en) * | 2021-03-26 | 2021-07-06 | 安徽理工大学 | Mining area mining subsidence prediction method based on improved crow search algorithm |
CN113608546A (en) * | 2021-07-12 | 2021-11-05 | 哈尔滨工程大学 | Quantum sea lion mechanism unmanned aerial vehicle group task allocation method |
CN113868932A (en) * | 2021-06-09 | 2021-12-31 | 南京大学 | A task assignment method based on bidding game under complete information |
CN114815896A (en) * | 2022-05-27 | 2022-07-29 | 哈尔滨工程大学 | Heterogeneous multi-unmanned aerial vehicle cooperative task allocation method |
CN114995492A (en) * | 2022-05-27 | 2022-09-02 | 哈尔滨工程大学 | Multi-unmanned aerial vehicle disaster rescue planning method |
CN115617071A (en) * | 2022-10-07 | 2023-01-17 | 哈尔滨工程大学 | A Multi-UAV Mission Planning Method Based on Quantum Snow Leopard Mechanism |
CN117556979A (en) * | 2024-01-11 | 2024-02-13 | 中国科学院工程热物理研究所 | Integrated design method of UAV platform and payload based on swarm intelligence search |
CN118504928A (en) * | 2024-07-10 | 2024-08-16 | 中国人民解放军国防科技大学 | A mission planning method based on multi-objective combination optimization |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101136081A (en) * | 2007-09-13 | 2008-03-05 | 北京航空航天大学 | Multi-aircraft cooperative task assignment method for unmanned combat aircraft based on ant colony intelligence |
CN104102791A (en) * | 2014-08-01 | 2014-10-15 | 哈尔滨工程大学 | Antenna array spare construction method based on quantum glowworm search mechanism |
CN105225003A (en) * | 2015-09-23 | 2016-01-06 | 西北工业大学 | A kind of cuckoo searching algorithm solves the method for UAV multitask investigation decision problem |
US20160304198A1 (en) * | 2014-12-03 | 2016-10-20 | Google Inc. | Systems and methods for reliable relative navigation and autonomous following between unmanned aerial vehicle and a target object |
CN107045458A (en) * | 2017-03-09 | 2017-08-15 | 西北工业大学 | Unmanned plane cotasking distribution method based on multi-target quantum particle cluster algorithm |
CN107622327A (en) * | 2017-09-15 | 2018-01-23 | 哈尔滨工程大学 | Multi-UAV trajectory planning method based on cultural ant colony search mechanism |
-
2018
- 2018-03-19 CN CN201810224721.9A patent/CN108549402B/en active Active
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101136081A (en) * | 2007-09-13 | 2008-03-05 | 北京航空航天大学 | Multi-aircraft cooperative task assignment method for unmanned combat aircraft based on ant colony intelligence |
CN104102791A (en) * | 2014-08-01 | 2014-10-15 | 哈尔滨工程大学 | Antenna array spare construction method based on quantum glowworm search mechanism |
US20160304198A1 (en) * | 2014-12-03 | 2016-10-20 | Google Inc. | Systems and methods for reliable relative navigation and autonomous following between unmanned aerial vehicle and a target object |
CN105225003A (en) * | 2015-09-23 | 2016-01-06 | 西北工业大学 | A kind of cuckoo searching algorithm solves the method for UAV multitask investigation decision problem |
CN107045458A (en) * | 2017-03-09 | 2017-08-15 | 西北工业大学 | Unmanned plane cotasking distribution method based on multi-target quantum particle cluster algorithm |
CN107622327A (en) * | 2017-09-15 | 2018-01-23 | 哈尔滨工程大学 | Multi-UAV trajectory planning method based on cultural ant colony search mechanism |
Non-Patent Citations (2)
Title |
---|
ASRI BEKTI PRATIWI: "A Hybrid Cat Swarm Optimization - Crow Search Algorithm for Vehicle Routing Problem with Time Windows", 《IEEE》 * |
王记丰 等: "基于量子粒子群优化算法的多机协同目标分配问题研究", 《船舶电子工程》 * |
Cited By (31)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN109460056A (en) * | 2018-11-06 | 2019-03-12 | 哈尔滨工程大学 | Unmanned plane cluster fight game decision-making method based on quantum krill group's mechanism of Evolution |
CN109460056B (en) * | 2018-11-06 | 2021-12-24 | 哈尔滨工程大学 | Unmanned aerial vehicle cluster combat game decision method based on quantum krill cluster evolution mechanism |
CN109656136A (en) * | 2018-12-14 | 2019-04-19 | 哈尔滨工程大学 | Underwater more AUV co-located formation topological structure optimization methods based on acoustic measurement network |
CN109656136B (en) * | 2018-12-14 | 2022-03-18 | 哈尔滨工程大学 | Underwater multi-AUV (autonomous underwater vehicle) co-location formation topological structure optimization method based on acoustic measurement network |
CN109740954A (en) * | 2019-01-10 | 2019-05-10 | 北京理工大学 | A rapid marshalling method for large-scale UAVs for disaster rescue missions |
CN109507891B (en) * | 2019-01-21 | 2021-07-27 | 闽江学院 | A semi-active fuzzy control method |
CN109507891A (en) * | 2019-01-21 | 2019-03-22 | 闽江学院 | A kind of Semi-active fuzzy control method |
CN110083173A (en) * | 2019-04-08 | 2019-08-02 | 合肥工业大学 | The optimization method of unmanned plane formation patrol task distribution |
CN110083173B (en) * | 2019-04-08 | 2022-01-11 | 合肥工业大学 | Optimization method for unmanned aerial vehicle formation inspection task allocation |
CN111476965A (en) * | 2020-03-13 | 2020-07-31 | 深圳信息职业技术学院 | Method for constructing fire detection model, fire detection method and related equipment |
CN111766901A (en) * | 2020-07-22 | 2020-10-13 | 哈尔滨工程大学 | Multi-UAV cooperative target allocation attack method |
CN111766901B (en) * | 2020-07-22 | 2022-10-04 | 哈尔滨工程大学 | Multi-unmanned aerial vehicle cooperative target distribution attack method |
CN112046467A (en) * | 2020-09-03 | 2020-12-08 | 北京量子信息科学研究院 | Automatic driving control method and system based on quantum computing |
CN112046467B (en) * | 2020-09-03 | 2021-06-04 | 北京量子信息科学研究院 | Automatic driving control method and system based on quantum computing |
CN112596373A (en) * | 2020-10-27 | 2021-04-02 | 西北工业大学 | Unmanned aerial vehicle attitude control parameter intelligent setting method based on quantum firefly algorithm |
CN112596373B (en) * | 2020-10-27 | 2023-05-23 | 西北工业大学 | Unmanned aerial vehicle attitude control parameter intelligent setting method based on quantum firefly algorithm |
CN113009934A (en) * | 2021-03-24 | 2021-06-22 | 西北工业大学 | Multi-unmanned aerial vehicle task dynamic allocation method based on improved particle swarm optimization |
CN113077082A (en) * | 2021-03-26 | 2021-07-06 | 安徽理工大学 | Mining area mining subsidence prediction method based on improved crow search algorithm |
CN113868932A (en) * | 2021-06-09 | 2021-12-31 | 南京大学 | A task assignment method based on bidding game under complete information |
CN113608546B (en) * | 2021-07-12 | 2022-11-18 | 哈尔滨工程大学 | Unmanned aerial vehicle group task distribution method based on quantum sea lion mechanism |
CN113608546A (en) * | 2021-07-12 | 2021-11-05 | 哈尔滨工程大学 | Quantum sea lion mechanism unmanned aerial vehicle group task allocation method |
CN114995492A (en) * | 2022-05-27 | 2022-09-02 | 哈尔滨工程大学 | Multi-unmanned aerial vehicle disaster rescue planning method |
CN114815896A (en) * | 2022-05-27 | 2022-07-29 | 哈尔滨工程大学 | Heterogeneous multi-unmanned aerial vehicle cooperative task allocation method |
CN114815896B (en) * | 2022-05-27 | 2024-09-13 | 哈尔滨工程大学 | Heterogeneous multi-unmanned aerial vehicle collaborative task allocation method |
CN114995492B (en) * | 2022-05-27 | 2024-11-08 | 哈尔滨工程大学 | A multi-UAV disaster rescue planning method |
CN115617071A (en) * | 2022-10-07 | 2023-01-17 | 哈尔滨工程大学 | A Multi-UAV Mission Planning Method Based on Quantum Snow Leopard Mechanism |
CN115617071B (en) * | 2022-10-07 | 2024-10-18 | 哈尔滨工程大学 | Multi-unmanned aerial vehicle task planning method based on quantum seal mechanism |
CN117556979A (en) * | 2024-01-11 | 2024-02-13 | 中国科学院工程热物理研究所 | Integrated design method of UAV platform and payload based on swarm intelligence search |
CN117556979B (en) * | 2024-01-11 | 2024-03-08 | 中国科学院工程热物理研究所 | Unmanned plane platform and load integrated design method based on group intelligent search |
CN118504928A (en) * | 2024-07-10 | 2024-08-16 | 中国人民解放军国防科技大学 | A mission planning method based on multi-objective combination optimization |
CN118504928B (en) * | 2024-07-10 | 2024-10-25 | 中国人民解放军国防科技大学 | Task planning method based on multi-objective combined optimization |
Also Published As
Publication number | Publication date |
---|---|
CN108549402B (en) | 2020-11-10 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN108549402B (en) | UAV swarm task assignment method based on quantum crow swarm search mechanism | |
CN110608743B (en) | Multi-unmanned aerial vehicle collaborative route planning method based on multi-population chaotic grayling algorithm | |
Zhen et al. | Improved contract network protocol algorithm based cooperative target allocation of heterogeneous UAV swarm | |
CN103744290B (en) | A kind of multiple no-manned plane formation layering target assignment method | |
CN107063255B (en) | A 3D Route Planning Method Based on Improved Drosophila Optimization Algorithm | |
CN109190978B (en) | Unmanned aerial vehicle resource allocation method based on quantum bird swarm evolution mechanism | |
CN108985549A (en) | Unmanned plane method for allocating tasks based on quantum dove group's mechanism | |
CN109460056B (en) | Unmanned aerial vehicle cluster combat game decision method based on quantum krill cluster evolution mechanism | |
CN111311049B (en) | Multi-agent cooperative task allocation method | |
CN108459616B (en) | A route planning method for UAV swarm cooperative coverage based on artificial bee colony algorithm | |
CN113848987B (en) | Dynamic path planning method and system in UAV swarm cooperative target search | |
CN113741508A (en) | Improved wolf colony algorithm-based unmanned aerial vehicle task allocation method | |
CN112733251B (en) | Collaborative flight path planning method for multiple unmanned aerial vehicles | |
CN111797966B (en) | Multi-machine collaborative global target distribution method based on improved flock algorithm | |
Lei et al. | Path planning for unmanned air vehicles using an improved artificial bee colony algorithm | |
CN114594794A (en) | Multi-machine collaborative task planning method considering subsystem execution capacity | |
CN113836803A (en) | UAV swarm resource scheduling method based on improved wolf swarm algorithm | |
CN104199788A (en) | Multi-target air-to-ground semi-supervised machine adaption independent decision-making real-time attack method | |
CN111121784B (en) | Unmanned reconnaissance aircraft route planning method | |
CN113887919B (en) | Multi-UAV collaborative task allocation method and system based on hybrid-discrete particle swarm algorithm | |
CN110986960A (en) | A UAV Track Planning Method Based on Improved Clustering Algorithm | |
CN116088576A (en) | Unmanned aerial vehicle three-dimensional path planning method based on improved whale algorithm | |
Qingwen et al. | Cooperative jamming resource allocation of UAV swarm based on multi-objective DPSO | |
CN113324545A (en) | Multi-unmanned aerial vehicle collaborative task planning method based on hybrid enhanced intelligence | |
CN113177583A (en) | An air target clustering method |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |