CN108549123A - 一种基于硅超表面太赫兹反射镜 - Google Patents

一种基于硅超表面太赫兹反射镜 Download PDF

Info

Publication number
CN108549123A
CN108549123A CN201810332600.6A CN201810332600A CN108549123A CN 108549123 A CN108549123 A CN 108549123A CN 201810332600 A CN201810332600 A CN 201810332600A CN 108549123 A CN108549123 A CN 108549123A
Authority
CN
China
Prior art keywords
medium block
cube
silicon
incidence
super surface
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201810332600.6A
Other languages
English (en)
Inventor
宋争勇
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Xiamen University
Original Assignee
Xiamen University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Xiamen University filed Critical Xiamen University
Priority to CN201810332600.6A priority Critical patent/CN108549123A/zh
Publication of CN108549123A publication Critical patent/CN108549123A/zh
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/08Mirrors
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B1/00Optical elements characterised by the material of which they are made; Optical coatings for optical elements
    • G02B1/10Optical coatings produced by application to, or surface treatment of, optical elements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q15/00Devices for reflection, refraction, diffraction or polarisation of waves radiated from an antenna, e.g. quasi-optical devices
    • H01Q15/0006Devices acting selectively as reflecting surface, as diffracting or as refracting device, e.g. frequency filtering or angular spatial filtering devices
    • H01Q15/0086Devices acting selectively as reflecting surface, as diffracting or as refracting device, e.g. frequency filtering or angular spatial filtering devices said selective devices having materials with a synthesized negative refractive index, e.g. metamaterials or left-handed materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q15/00Devices for reflection, refraction, diffraction or polarisation of waves radiated from an antenna, e.g. quasi-optical devices
    • H01Q15/14Reflecting surfaces; Equivalent structures
    • H01Q15/145Reflecting surfaces; Equivalent structures comprising a plurality of reflecting particles, e.g. radar chaff

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Engineering & Computer Science (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Electromagnetism (AREA)
  • Optical Modulation, Optical Deflection, Nonlinear Optics, Optical Demodulation, Optical Logic Elements (AREA)

Abstract

一种基于硅超表面太赫兹反射镜,涉及光学元件。由介质块和二氧化硅衬底组成,所述介质块为立方体介质块,所述立方体介质块按周期性排列,每一立方体介质块的尺寸相同。所述立方体介质块宽度为170μm,周期为240μm。工作原理是入射波激发电介质米氏共振引起电场的强耦合效果,从而实现了宽带全部反射。对极化不敏感,TE和TM波入射均可达到相同的全反射效果,并且可以通过改变几何尺寸进行调整通过控制电磁波的传播实现对入射波全反射。结构简单,适用范围广泛,对入射波的极化方式不敏感,在光电器件设计等方面具有广泛的应用价值。

Description

一种基于硅超表面太赫兹反射镜
技术领域
本发明涉及宽带反射镜,尤其是涉及一种基于硅超表面太赫兹反射镜。
背景技术
传统的金属反射镜存在损耗较大、难以加工、价格昂贵等缺点,而人工超材料可以通过调节结构几何参数的方式使之实现自然材料所不具备的物理性质,并解决以上传统材料的问题,为宽带反射镜的设计提供了一个全新的方向。
目前,电磁超材料高效率反射镜主要有:
1、一种基于一维光子晶体反射器,有光子带隙结构,通过抑制某些频率电磁波的传播来实现在该频段上的全反射。
2、一种基于等离激元的布拉格反射器,依次按半导体-介质-半导体排列的亚波长结构,该结构所使用的半导体材料为锑化铟,介质材料则为交替出现的二氧化硅和多孔二氧化硅。根据相干相消的原理,实现太赫兹波段的全反射。
然而,这些反射镜存在难以制作、成本高、带宽窄、反射效率低等问题。
发明内容
本发明的目的在于克服上述反射镜的不足之处,提供与极化角不敏感的一种基于硅超表面太赫兹反射镜。
本发明由介质块和二氧化硅衬底组成,所述介质块为立方体介质块,所述立方体介质块按周期性排列,每一立方体介质块的尺寸相同。
所述立方体介质块可采用硅立方体介质块,所述立方体介质块的宽度、长度和厚度均为170μm,周期为240μm。
本发明的工作原理是:可以假设沿z方向传播的线极化入射波垂直照射表面,对于高介电常数介质谐振器,与入射电磁波的电场耦合可以被米氏共振激发,从电场分布可以看到,分别对应于0.5THz和0.585THz的磁共振和电共振的磁偶极子和电偶极子。磁共振可以形成数值较小的负的磁导率μeff,而电共振可形成数值较大的负的介电常数εeff,则在两个共振峰之间结构的特性阻抗几乎为0,即实现阻抗失配,从而实现全反射。
本发明的工作方法如下:
1)入射波:频率在0.5~0.585THz范围内的线极化波,正入射或斜入射到立方体介质块上。
2)反射波:由基于硅超表面太赫兹反射镜完全反射的入射波。
本发明所述基于硅超表面太赫兹反射镜可在滤波器、信号反射器等光电器件中有广泛应用。
本发明公开了一种基于硅超表面的太赫兹反射镜及其工作原理,本发明所述反射镜是由尺寸相同的硅介质块周期性排列构成;所述原理是入射波激发电介质米氏共振引起电场的强耦合效果,从而实现了宽带全部反射。本发明基于各向同性电磁超表面的太赫兹反射镜的反射对极化不敏感,TE和TM波入射均可达到相同的全反射效果,并且可以通过改变几何尺寸进行调整。本发明太赫兹反射镜通过控制电磁波的传播实现对入射波全反射。本发明结构简单,适用范围广泛,对入射波的极化方式不敏感,在光电器件设计等方面具有广泛的应用价值。
附图说明
图1是本发明实施例的结构示意图。
图2是本发明实施例的反射-频率曲线。
具体实施方式
下面结合附图对本发明的具体实施方式进行说明。
如图1所示,本发明实施例由介质块1和二氧化硅衬底2组成,所述介质块1为立方体介质块,所述立方体介质块按周期性排列,每一立方体介质块的尺寸相同,波从空气层入射到立方体介质块表面,产生全部反射。
所述立方体介质块采用硅立方体介质块,所述立方体介质块的宽度为170μm,周期为240μm。
图2所示反射镜的工作频率在0.5~0.585THz,在图1的实施方式下,线极化波垂直入射到单层介质表面,实现全反射。本发明基于各向同性电磁超表面的宽带反射镜在0.5~0.585THz左右都能实现接近于100%的全反射,本发明工作时,源处的电磁波正入射或以一定角度斜入射到结构上,经过反射镜作用后,完全被反射,俗称完美反射镜。

Claims (3)

1.一种基于硅超表面太赫兹反射镜,其特征在于由介质块和二氧化硅衬底组成,所述介质块为立方体介质块,所述立方体介质块按周期性排列,每一立方体介质块的尺寸相同。
2.如权利要求1所述一种基于硅超表面太赫兹反射镜,其特征在于所述立方体介质块可采用硅立方体介质块。
3.如权利要求1所述一种基于硅超表面太赫兹反射镜,其特征在于所述立方体介质块的宽度、长度和厚度均为170μm,周期为240μm。
CN201810332600.6A 2018-04-13 2018-04-13 一种基于硅超表面太赫兹反射镜 Pending CN108549123A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201810332600.6A CN108549123A (zh) 2018-04-13 2018-04-13 一种基于硅超表面太赫兹反射镜

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201810332600.6A CN108549123A (zh) 2018-04-13 2018-04-13 一种基于硅超表面太赫兹反射镜

Publications (1)

Publication Number Publication Date
CN108549123A true CN108549123A (zh) 2018-09-18

Family

ID=63515117

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201810332600.6A Pending CN108549123A (zh) 2018-04-13 2018-04-13 一种基于硅超表面太赫兹反射镜

Country Status (1)

Country Link
CN (1) CN108549123A (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111308582A (zh) * 2020-03-06 2020-06-19 中南民族大学 二维光子晶体平板、设计方法及利用此平板的光器件
CN114371521A (zh) * 2022-01-13 2022-04-19 天津山河光电科技有限公司 覆盖有反射层的超表面光学器件、光学设备及制造方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110261441A1 (en) * 2010-04-26 2011-10-27 University Of Southampton Spectral Filter
CN103575407A (zh) * 2012-07-18 2014-02-12 北京大学 一种太赫兹辐射探测器
CN104062774A (zh) * 2014-06-23 2014-09-24 上海理工大学 太赫兹波滤波器
US8958050B2 (en) * 2011-11-17 2015-02-17 Samsung Electronics Co., Ltd. Tunable terahertz metamaterial filter
US8987754B1 (en) * 2013-09-16 2015-03-24 Sandia Corporation Highly directional thermal emitter
CN107807416A (zh) * 2017-11-16 2018-03-16 厦门大学 一种基于各向同性陶瓷超构材料的高效率宽带反射镜

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110261441A1 (en) * 2010-04-26 2011-10-27 University Of Southampton Spectral Filter
US8958050B2 (en) * 2011-11-17 2015-02-17 Samsung Electronics Co., Ltd. Tunable terahertz metamaterial filter
CN103575407A (zh) * 2012-07-18 2014-02-12 北京大学 一种太赫兹辐射探测器
US8987754B1 (en) * 2013-09-16 2015-03-24 Sandia Corporation Highly directional thermal emitter
CN104062774A (zh) * 2014-06-23 2014-09-24 上海理工大学 太赫兹波滤波器
CN107807416A (zh) * 2017-11-16 2018-03-16 厦门大学 一种基于各向同性陶瓷超构材料的高效率宽带反射镜

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111308582A (zh) * 2020-03-06 2020-06-19 中南民族大学 二维光子晶体平板、设计方法及利用此平板的光器件
CN111308582B (zh) * 2020-03-06 2021-10-01 中南民族大学 二维光子晶体平板、设计方法及利用此平板的光器件
CN114371521A (zh) * 2022-01-13 2022-04-19 天津山河光电科技有限公司 覆盖有反射层的超表面光学器件、光学设备及制造方法

Similar Documents

Publication Publication Date Title
Belov et al. Canalization of subwavelength images by electromagnetic crystals
JP5671455B2 (ja) 光学的メタポラライザ・デバイス
CN107807416A (zh) 一种基于各向同性陶瓷超构材料的高效率宽带反射镜
Luo et al. Dual-band terahertz perfect metasurface absorber based on bi-layered all-dielectric resonator structure
CA2754556A1 (en) Optical metapolarizer device
JP6710633B2 (ja) メタマテリアルでできた要素を備える光ダイオード
Xia et al. Broadband linear polarization conversion based on the coupling of bilayer metamaterials in the terahertz region
Liu et al. Broadband and wide angle quarter-wave plate based on single-layered anisotropic terahertz metasurface
El-Amassi et al. Extension of energy band gap in ternary photonic crystal using left-handed materials
Almpanis et al. Designing photonic structures of nanosphere arrays on reflectors for total absorption
Bian et al. Multi-mode absorption in multi-cavity photonic crystal with two graphene monolayers
Pan et al. Design and analysis of a broadband terahertz polarization converter with significant asymmetric transmission enhancement
CN108549123A (zh) 一种基于硅超表面太赫兹反射镜
Xu et al. Carbon nanotube attached subwavelength grating for broadband terahertz polarization conversion and dispersion control
Hao et al. Manipulate light polarizations with metamaterials: From microwave to visible
Liu et al. The tunable single-/narrow-band terahertz metamaterial absorber through photoconductivity
Aisha et al. An efficient chiral polarization rotator with asymmetric transmission for large incidence angles
Sekhi et al. Ultra-broadband, wide-angle, and polarization-insensitive metamaterial perfect absorber for solar energy harvesting
Popov et al. Brewster effect when approaching exceptional points of degeneracy: Epsilon-near-zero behavior
Hanif et al. Polarization insensitive oblique incident angle stable ultra-thin nano ring resonator-based metamaterial absorber for visible and near-infrared region applications
Yue et al. A tunable dual-band graphene-based perfect absorber in the optical communication band
CN104810628A (zh) 一种叶片型太赫兹波宽带线极化器
CN112305659B (zh) 基于单层各向异性超材料的宽频带四分之一波片
Zhang et al. Planar symmetric normal and complementary three-resonance resonators in terahertz band
CN107015376B (zh) 一种基于等离激元纳米结构的偏振分束器

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication
RJ01 Rejection of invention patent application after publication

Application publication date: 20180918