CN108549085A - A kind of transmitting camera lens, face battle array laser radar and mobile platform - Google Patents

A kind of transmitting camera lens, face battle array laser radar and mobile platform Download PDF

Info

Publication number
CN108549085A
CN108549085A CN201810327372.3A CN201810327372A CN108549085A CN 108549085 A CN108549085 A CN 108549085A CN 201810327372 A CN201810327372 A CN 201810327372A CN 108549085 A CN108549085 A CN 108549085A
Authority
CN
China
Prior art keywords
transmitting
battle array
light beam
angle
cylindrical lenses
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201810327372.3A
Other languages
Chinese (zh)
Other versions
CN108549085B (en
Inventor
张东虎
疏达
李�远
王婷
王瑞
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Benewake Beijing Co Ltd
Original Assignee
Benewake Beijing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Benewake Beijing Co Ltd filed Critical Benewake Beijing Co Ltd
Priority to CN201810327372.3A priority Critical patent/CN108549085B/en
Publication of CN108549085A publication Critical patent/CN108549085A/en
Application granted granted Critical
Publication of CN108549085B publication Critical patent/CN108549085B/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S17/00Systems using the reflection or reradiation of electromagnetic waves other than radio waves, e.g. lidar systems
    • G01S17/02Systems using the reflection of electromagnetic waves other than radio waves
    • G01S17/06Systems determining position data of a target
    • G01S17/08Systems determining position data of a target for measuring distance only
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S17/00Systems using the reflection or reradiation of electromagnetic waves other than radio waves, e.g. lidar systems
    • G01S17/02Systems using the reflection of electromagnetic waves other than radio waves
    • G01S17/06Systems determining position data of a target
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/48Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S17/00
    • G01S7/481Constructional features, e.g. arrangements of optical elements

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Electromagnetism (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • General Physics & Mathematics (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Optical Radar Systems And Details Thereof (AREA)

Abstract

The present invention relates to a kind of transmitting camera lens, face battle array laser radar and mobile platforms.A kind of transmitting camera lens, including:Along the optical shaping structure of the light direction of the launch setting of transmitting light source, the optical shaping structure includes at least one cylindrical lenses, length direction on the cylindrical lenses close to the columnar projections of the side setting of transmitting light source is vertical with the diverging direction of light beam is emitted, and the transmitting light beam is after optical shaping structure in the uniform beam of the setting angle of divergence and setting shape.A kind of face battle array laser radar, including face battle array light trigger mechanism are additionally provided, Mian Zhen light receivers mechanism, master control borad, the face battle array light trigger mechanism includes transmitting light source, driving radiating circuit and the transmitting camera lens.Additionally provide a kind of moveable platform.It solves the problems, such as that the emission system transmitting light beam of common face battle array laser radar is non-uniform, improves safety and the accuracy of test and operation.

Description

A kind of transmitting camera lens, face battle array laser radar and mobile platform
Technical field
The present invention relates to field of artificial intelligence more particularly to a kind of transmitting camera lens, face battle array laser radar and movement are flat Platform.
Background technology
LiDAR (Light Detection and Ranging), is the abbreviation of optical detection and range-measurement system, laser radar It is that transmitting light source is used as using laser or LED, using the active object detecting apparatus of detecting technique means.Laser thunder Up to the advanced detection mode that be laser technology combined with modern detecting technique.Mainly by emission system, reception system, information The part such as processing forms.Emission system includes various forms of lasers or LED;Reception system is using receiving lens and various The photodetector of form.
Common transmitting module is all Line beam in machinery rotating type laser radar, is swept using machinery rotation realization face battle array It retouches.This proposes very high requirement to the precision of design and the ray machine assembly of sweep mechanism, and then leads to the production of volume production link Efficiency is relatively low, and cost is high.Solid-state laser radar reduces mechanical rotation relative to traditional machinery rotating type laser radar Rotating function component and encoding device, structure are simplified, and assembling difficulty is reduced, and performance is stablized, and range frequency is high.
The one kind of face battle array laser radar as solid-state laser radar, is conducive to efficient volume production, and significantly reduce system Cause this.Existing face battle array laser radar, transmitter are difficult to realize the homogenizer transmitting of big search coverage.
Invention content
The purpose of the embodiment of the present invention is to propose that a kind of transmitting camera lens is solved by the structure setting of cylindrical lenses The light scanning of mechanical laser radar is complicated, the low problem of refreshing frequency, and the commonly transmitting of face battle array laser radar System emits the non-uniform problem of light beam.
The purpose of the embodiment of the present invention, which also resides in, proposes a kind of face battle array laser radar, by emitting camera lens knead dough battle array photoelectricity core Piece is equipped with, solve the light beam that sends out of prior art transmitting light source after emit camera lens with face gust photoelectric chip not The problem of matching, being unable to uniform fold measured zone.
The purpose of the embodiment of the present invention additionally provides a kind of platform of movement, by the transmitting camera lens or with hair Penetrate the face battle array laser radar of camera lens so that face battle array laser radar is more accurate to the barrier positioning in measured zone, improves The safety of the operation of mobile platform and accuracy.
For this purpose, the embodiment of the present invention uses following technical scheme:
A kind of transmitting camera lens, including:Along the optical shaping structure of the light direction of the launch setting of transmitting light source, the optical shaping Structure includes at least one cylindrical lenses, the length for the columnar projections being arranged close to the side of transmitting light source on the cylindrical lenses Direction is vertical with the transmitting diverging direction of light beam, each adjacent two column on the side of close transmitting light source on the cylindrical lenses Link slot it has been smoothly connected between protrusion, the transmitting light beam is after optical shaping structure in the uniform of the setting angle of divergence and shape Light beam.
As one of the preferred embodiments of the present invention, the angle of divergence of the transmitting light beam is P °, the transmitting light beam warp It is in M ° of horizontal divergence angle, the uniform beam of N ° of vertical divergence angle after optical shaping structure, wherein 0 < M <, 180,0 < N < 180, 0 < P < 180;
As P > M or P > N, convergent lens is additionally provided between transmitting light source and the cylindrical lenses.
As one of the preferred embodiments of the present invention, the surface of the columnar projections is even aspheric surface, the even Aspherical surface equation is, wherein R is the radius of curvature on the vertex of even aspheric surface, and the Y is continuous value variable, and the k is circular cone coefficient, wherein R's Value is normal number, and the value of k is constant, A2、A4、A6、A8Value be normal number.
As one of the preferred embodiments of the present invention, the value range of the R is:0 R≤4 <;The value model of the k Enclose for:- 2≤k≤- 0.5, the A2、A4、A6And A8Value range be:0≤A2≤ 7,0≤A4≤ 7,0≤A6≤ 7,0≤A8≤ 7。
As one of the preferred embodiments of the present invention, R=1.5, the k=- 0.7, A2=0.323, the A4 =0.103, A6=0.085, A8=0.
As one of the preferred embodiments of the present invention, the optical shaping structure includes being arranged along the light direction of the launch One cylindrical lenses, as P=M, it is described transmitting light source transmitting light beam after cylindrical lenses become horizontal divergence angle be P °, The rectangular light beam that the vertical angle of divergence is N °;
As P=N, it is M °, the vertical angle of divergence that the transmitting light beam of the transmitting light source becomes horizontal divergence angle after cylindrical lenses For P ° of rectangular light beam.
As one of the preferred embodiments of the present invention, the optical shaping structure includes being arranged along the light direction of the launch Two cylindrical lenses, as P < M, P < N, the transmitting light beam of the transmitting light source becomes horizontal hair after the first cylindrical lenses The rectangular light beam that scattered angle is P °, the vertical angle of divergence is N ° becomes horizontal divergence angle after the second cylindrical lenses and is M °, sends out vertically Dissipate the rectangular light beam that angle is N °;
It is M °, dissipates vertically alternatively, the transmitting light beam of the transmitting light source becomes horizontal divergence angle after the first cylindrical lenses The rectangular light beam that angle is P ° becomes the rectangular light that horizontal divergence angle is M °, the vertical angle of divergence is N ° after the second cylindrical lenses Beam.
As one of the preferred embodiments of the present invention, as P > M > N, alternatively, when M < P < N, the optical shaping knot Structure includes the convergent lens being arranged along the light direction of the launch and a cylindrical lenses, and the transmitting light beam of the transmitting light source is concentrated It is N ° of light beam to become the angle of divergence after lens, as horizontal divergence angle is M ° after cylindrical lenses, the vertical angle of divergence is N ° Light beam.
As one of the preferred embodiments of the present invention, the concentrated lens post-concentration of transmitting light beam is horizontal divergence angle S °, the light beam of s ° of vertical divergence angle.
A kind of face battle array laser radar, including face battle array light trigger mechanism, Mian Zhen light receivers mechanism, master control borad, the face Battle array light trigger mechanism includes transmitting light source, driving radiating circuit and above-mentioned transmitting camera lens, Mian Zhen light receivers mechanism Including face battle array photoelectric chip and camera lens is received, the master control borad joint face battle array photoelectric chip, the face battle array photoelectric chip connection is driven Dynamic radiating circuit.
The present invention also provides a kind of moveable platform, the moveable platform includes the transmitting camera lens stated and/or institute The face battle array laser radar stated.
Advantageous effect:The embodiment of the present invention is realized by the setting of cylindrical lenses at transmitting light beam uniform intensity Reason, and reliably collimate and spread, the integration of adaptability has been carried out to the shape of light beam, transmitting light beam is adequately utilized Luminous energy, the light scanning for solving mechanical laser radar is complicated, the low problem of refreshing frequency, and common face battle array swashs The emission system of optical radar emits the non-uniform problem of light beam, improves the measurement accuracy and measurement efficiency of product, improves production The stability of product reduces assembling difficulty, is convenient for product scale of mass production.
The embodiment of the present invention is by emitting being equipped with for camera lens knead dough battle array photoelectric chip so that the light that transmitting light source is sent out Beam becomes the uniform divergent beams to match with face battle array photoelectric chip after emitting camera lens, and uniform fold measured zone is passed through It is corresponded to after barrier reflection in measured zone even into face battle array photoelectric chip so that the optical telecommunications of face battle array photoelectric chip output It is number relatively sharp accurate so that face battle array laser radar is more accurate to the barrier positioning in measured zone, improves laser thunder The ranging stability reached, reduces assembling product difficulty, suitable for volume production.
Description of the drawings
Fig. 1 is the horizontal direction vertical view for the transmitting camera lens that the embodiment of the present invention 1 provides.
Fig. 2 is the vertical direction side view for the transmitting camera lens that the embodiment of the present invention 1 provides.
Fig. 3 is the structure chart for the cylindrical lenses that the embodiment of the present invention 1 provides.
Fig. 4 is columnar projections and connecting groove structure schematic diagram in the cylindrical lenses that the embodiment of the present invention 1 provides.
Fig. 5 is the structural schematic diagram for the face battle array laser radar that the embodiment of the present invention 1 provides.
Fig. 6 is the explosive view for the face battle array laser radar that the embodiment of the present invention 1 supplies.
Fig. 7 is the sectional view for the face battle array laser radar that the embodiment of the present invention 1 supplies.
In figure:
1, emit camera lens;2, radiating circuit plate;3, emit light source;4, master control borad;5, face battle array photoelectric chip;6, camera lens is received;7、 Air plug plate;8, protecgulum;9, rear cover;11, cylindrical lenses;12, convergent lens;21, installation through-hole;22, cooling fin;61, lens barrel; 62, receiving lens;63, diaphragm is received;81, receiving panel;82, frame is pressed;101, upper radiating fin;102, lower radiating fin; 111, columnar projections;112, link slot.
Specific implementation mode
Technical solution to further illustrate the present invention below with reference to the accompanying drawings and specific embodiments.
It should be noted that in the absence of conflict, the features in the embodiments and the embodiments of the present application can phase Mutually combination.The present invention will be described in detail below with reference to the accompanying drawings and embodiments.
In order to make those skilled in the art more fully understand application scheme, below in conjunction in the embodiment of the present application Attached drawing, technical solutions in the embodiments of the present application are clearly and completely described, it is clear that described embodiment is only The embodiment of the application part, instead of all the embodiments.Based on the embodiment in the application, ordinary skill people The every other embodiment that member is obtained without making creative work should all belong to the model of the application protection It encloses.
It should be noted that term " first " in the description and claims of this application and above-mentioned attached drawing, " Two " etc. be for distinguishing similar object, without being used to describe specific sequence or precedence.It should be appreciated that using in this way Data can be interchanged in the appropriate case, so as to embodiments herein described herein.In addition, term " comprising " and " tool Have " and their any deformation, it is intended that cover it is non-exclusive include, for example, containing series of steps or unit Process, method, system, product or equipment those of are not necessarily limited to clearly to list step or unit, but may include without clear It is listing to Chu or for these processes, method, product or equipment intrinsic other steps or unit.
An embodiment of the present invention provides a kind of transmitting camera lenses, as shown in Figure 1, including:Along the light launch party of transmitting light source 3 To the optical shaping structure of setting, the optical shaping structure includes at least one cylindrical lenses 11, as shown in figure 4, the column Close to the diverging direction of the length direction and transmitting light beam of the columnar projections 111 of the side setting of transmitting light source 3 on shape lens 11 Vertically, it is smoothly connected between each adjacent two columnar projections 111 on the side of collimation lens 12 on the cylindrical lenses 11 There is link slot 112, the transmitting light beam is after optical shaping structure in the uniform beam of the setting angle of divergence and shape.
By the setting of cylindrical lenses 11, the transmitting light beam light intensity uniform for sending out transmitting light source is realized, reliably Collimation and diffusion, and the integration of adaptability has been carried out to the shape of light beam, the luminous energy of transmitting light beam is adequately utilized, solves The light scanning of mechanical laser radar is complicated, the low problem of refreshing frequency, and the commonly transmitting of face battle array laser radar Light beam light intensity is uneven, and the problem of cannot reaching the setting angle of divergence and set launch spot shape, the measurement for improving product is accurate Degree and measurement efficiency, improve the stability of product, reduce assembling difficulty, are convenient for product scale of mass production.
The angle of divergence of the transmitting light beam is P °, and the transmitting light beam of the transmitting light source 3 is in water after optical shaping structure M ° of the flat angle of divergence, the uniform beam of N ° of vertical divergence angle.Wherein, 0 < M <, 180,0 < N <, 180,0 < P < 180.Such as Fig. 2-3 It is shown, as P > M or P > N, convergent lens 12 is additionally provided between the transmitting light source 3 and cylindrical lenses 11.As P < M Or when P < N, the optical shaping structure includes the 1 or 2 different cylindrical lenses 11 in diverging shaping direction.
Uniform intensity is being realized after cylindrical lenses 11 in order to ensure to emit the transmitting light beam that sends out of light source, and according to setting For fixed angle into being diffused, the surface of the columnar projections 111 is even aspheric surface, the surface equation of the even aspheric surface For, wherein R is even aspheric The radius of curvature on the vertex in face, the Y are continuous value variable, and the k is circular cone coefficient, wherein the value of R is normal The value of number, k is constant, A2、A4、A6、A8Value be normal number.The structure setting of the columnar projections 111 of even aspheric surface, So that the light intensity of transmitting light beam is uniformly distributed after cylindrical lenses 11, and the transmitting light beam of cone becomes square after shaping Shaped light beam is more adapted to face battle array photoelectric chip 5.
In order to enable the beam divergence after cylindrical lenses 11 is more uniformly distributed, and light intensity is more uniformly spread, preferably , the value range of the R is:0 R≤4 <;The value range of the k is:- 2≤k≤- 0.5, the A2、A4、A6And A8's Value range is:0≤A2≤ 7,0≤A4≤ 7,0≤A6≤ 7,0≤A8≤7.As one of optimal option, R=1.5, institute State k=- 0.7, the A2=0.323, the A4=0.103, the A6=0.085, the A8=0。
In order to obtain by the transmitting camera lens 1 in M ° of horizontal divergence angle, the uniform beam of N ° of vertical divergence angle, according to M, The numerical value of N and P is different, and the quantity of cylindrical lenses 11 and set-up mode used by the transmitting camera lens 1 are also different.It is sent out in selection When penetrating light source, in order to reduce the space hold of laser radar, preferably the angle of divergence is smaller or is closer to the setting angle of divergence and light intensity More uniformly therefore transmitting light source in the measurement process of the face of progress battle array laser radar, emits the transmitting light beam of light source 3 When the angle of divergence is equal to horizontal divergence angle or the vertical divergence angle of the transmitting light beam after the shaping of setting, as shown in Figure 1, the light It includes a cylindrical lenses 11 along light transmitting setting to learn reshaping structure, as P=M, the transmitting light beam of the transmitting light source 3 Become the rectangular light beam that horizontal divergence angle is P °, the vertical angle of divergence is N ° after cylindrical lenses 11;As P=N, the transmitting The transmitting light beam of light source 3 becomes the rectangular light beam that horizontal divergence angle is M °, the vertical angle of divergence is P ° after cylindrical lenses 11.
Emit light source 3 transmitting light beam the angle of divergence be less than setting shaping after transmitting light beam horizontal divergence angle or When vertical divergence angle, the optical shaping structure includes two cylindrical lenses being arranged along the light direction of the launch, as P < M, P < N When, the transmitting light beam of the transmitting light source 3 is P ° as horizontal divergence angle after the first cylindrical lenses 11, the vertical angle of divergence is N ° of rectangular light beam becomes the rectangular light beam that horizontal divergence angle is M °, the vertical angle of divergence is N ° after the second cylindrical lenses 11;
It is M °, sends out vertically alternatively, the transmitting light beam in 3 source of the transmitting light becomes horizontal divergence angle after the first cylindrical lenses 11 The rectangular light beam that angle is P ° is dissipated, becomes the square that horizontal divergence angle is M °, the vertical angle of divergence is N ° after the second cylindrical lenses 11 Shaped light beam.
Emit light source 3 transmitting light beam the angle of divergence be more than setting shaping after transmitting light beam horizontal divergence angle or It when vertical divergence angle, needs before shaping, the transmitting light beam to emitting light source 3 carries out angle of divergence adjustment, therefore, the transmitting light Convergent lens 12 is additionally provided between source 3 and cylindrical lenses 11.As P > M >=N, alternatively, when M < P < N, as Figure 2-3, institute It includes the convergent lens 12 being arranged along the light direction of the launch and a cylindrical lenses 11, the transmitting light source to state optical shaping structure Become the light beam that the angle of divergence is N ° after the 3 concentrated lens of transmitting light beam 12, becomes horizontal divergence angle after cylindrical lenses 11 For M °, the vertical angle of divergence be N ° rectangular light beam.
Certainly, in the specific implementation, even if the angle of divergence of the transmitting light beam of transmitting light source 3 is less than the hair after the shaping of setting The horizontal divergence angle of irradiating light beam or vertical divergence angle, still can by convergent lens 12 into after line convergence through by cylindrical lenses 11 pairs of transmitting light beams carry out optical shaping and make its optical power detection.
When it is implemented, 3 preferred VCSEL laser emitters of the transmitting light source, the transmitting of the VCSEL laser emitters The angle of divergence of light beam is 25 °, the cooperation based on the needs and photoelectric chip for being applicable in scene, it is preferred that the M is 60, and the N is 4, the transmitting camera lens 1 includes the convergent lens 12 set gradually along the light direction of the launch and a cylindrical lenses 11, the hair Concentrated 12 post-concentration of lens of transmitting light beam for penetrating light source 3 is the conical light that horizontal divergence angle and the vertical angle of divergence are 4 ° Beam is 60 ° becoming horizontal divergence angle after cylindrical lenses 11, the rectangular light beam for the uniform light intensity that the vertical angle of divergence is 4 °. The length direction of the columnar projections 111 of the cylindrical lenses 11 is vertical with horizontal direction.
The present invention also provides a kind of face battle array laser radars, as illustrated in figs. 5-7, including face battle array light trigger mechanism, face battle array Light receiver mechanism, master control borad 4, the face battle array light trigger mechanism include transmitting light source 3, driving radiating circuit and the transmitting Camera lens 1, Mian Zhen light receivers mechanism include face battle array photoelectric chip 5 and reception camera lens 6,4 joint face battle array light of the master control borad Electrical chip 5, the face battle array photoelectric chip 5 connection driving radiating circuit.The face battle array photoelectric chip 5 can pass through its test zone Selection adjustment driving radiating circuit transmission power, the parameters such as tranmitting frequency and launch time.The driving radiating circuit exists According to the infrared light of the frequency transmitting setting wave band of setting under the instruction of face battle array photoelectric chip, it is preferred that the infrared light For the infrared ray of 850nm wavelength, the transmitting light source 3 is preferably VCSEL vertical cavity surface emitting lasers, relative to LED light source With small, the high advantage of energy efficiency.The quantity of the transmitting light source 3 is at least one, according to different range and hair The power selection of light source 3 is penetrated, the quantity of transmitting light source 3 can be adjusted correspondingly, it is preferred that the transmitting light source 3 is eight It is a, centered on the battle array photoelectric chip 5 of face, each 4 of left and right.
By emitting being equipped with for 1 knead dough battle array photoelectric chip 5 of camera lens so that the light beam that transmitting light source 3 is sent out is by hair The uniform rectangular light beam for becoming and matching with face 5 field of view of receiver angle of battle array photoelectric chip penetrated after camera lens 1, uniform fold measured zone, It is corresponded to after the barrier reflection in measured zone even into face battle array photoelectric chip 5 so that face battle array photoelectric chip 5 exports Photosignal is relatively sharp accurate so that face battle array laser radar is more accurate to the barrier positioning in measured zone, improves The ranging stability of laser radar, reduces assembling product difficulty, suitable for volume production.
It is described transmitting light source 3 transmitting light beam send out after through in test zone barrier reflect after, part the reflected beams It is incident on face battle array photoelectric chip 5, in order to preferably filter the spuious light beam for being incident on face battle array photoelectric chip 5 so that be incident on face Collimated stray light is not depleted after multiple reflections in the reflected beams on battle array photoelectric chip 5, reduces stray light Interference improves the utilization ratio for receiving light beam, reduces computational load, and the reception camera lens 6 includes lens barrel 61 and is arranged in lens barrel Receiving lens 62 on 61, the outside of the receiving lens 62, which is also sealedly connected with, receives diaphragm 63, and the reception diaphragm 63 supports It is connected in receiving panel 81.The reception diaphragm 63 includes being received successively on 5 direction of battle array photoelectric chip along from receiving lens 62 to face The diaphragm ontology of contracting, the diaphragm body interior are arranged with the spuious photo structure that disappears, the spuious photo structure that disappears be optics step or Diffusing reflection face.Further, the surface of the optics step is provided with diffusing reflection surface layer.
In order to eliminate and emit the incident ray of 3 different-waveband of light source, the noise of face battle array photoelectric chip 5, the mirror are reduced 61 sealed bottoms of cylinder are connected with the first optical filter, and first optical filter is band pass filter, and the bandpass filter is only allowed Light of the wavelength in 850 ± 30nm passes through;It is connected with the second optical filter in the receiving panel 81 or is coated with filter coating, described Either filter coating only allows dominant wavelength station to pass through alternatively, second optical filter or filter in the light of 700nm or more to two optical filters Light film only allows dominant wavelength station to pass through in 900nm light below.
It is occupied for the ease of the assembling and reduction structure space of Mian Zhen light receivers mechanism knead dough battle array light trigger mechanism, institute It states launch driving circuit to be arranged on radiating circuit plate 2, installation through-hole 21, the transmitting is offered on the radiating circuit plate 2 Transmitting light source 3 is also associated on circuit board 2, the face battle array photoelectric chip 5 is connected on master control borad 4, the face battle array photoelectric chip 5 It is tightly connected and receives camera lens 6, the reception camera lens 6 is passed through from installation through-hole 21 and is connected in receiving panel 81.The reception The structure that camera lens 6 is passed through from radiating circuit plate 2 both ensure that face battle array photoelectric chip 5 and transmitting light source 3 in the same plane, together When the space overlapping of 2 knead dough battle array photoelectric chip 5 of radiating circuit plate and master control borad 4, while each circuit are reasonably utilized again It is separated with heat-dissipating space between being gone back between plate, improves radiating efficiency.Preferably, at least one transmitting light source 3 and face battle array Photoelectric chip 5 is on same horizontal linear, and the transmitting light beam sent out with raising transmitting light source 3 is through the barrier in measured zone Reflection after be incident on face battle array photoelectric chip 5 probability.
In order to ensure that face battle array photoelectric chip 5 keeps a good operating status, the radiating circuit under temperature constant state It is also associated with cooling fin 22 on plate 2, and offers light source through holes on the cooling fin 22 respectively, the transmitting light source 3 is fixed on On radiating circuit plate 2, and stretched out from light source through holes.Preferably, the cooling fin 22 is graphite flake or graphene, and the heat dissipation Piece 22 is whole to be covered on radiating circuit plate 2 close to the side of protecgulum 8, so that heat caused by transmitting light source 3 is fast in time The export of speed prevents from, because heating is too fast inside the battle array laser radar of face, the photoelectric conversion efficiency of face battle array photoelectric chip 5 being caused to decline, Measurement data is caused therefore to generate error.
In order to further increase the radiating efficiency of face battle array laser radar, face battle array laser radar further include protecgulum 8 and with The rear cover 9 that protecgulum 8 is tightly connected, the protecgulum 8 and rear cover 9 are sealed connected together by sealing strip.The protecgulum 8 and rear cover 9 top is provided with radiating fin 101, and the upper radiating fin 101 is penetrated through along the front-rear direction of face battle array laser radar, Preferably, and the upper radiating fin 101 along the face battle array laser radar front-rear direction be in wavy perforation.Upper radiating fin 101 be in wavy structure, meets thermodynamics, improves the radiating efficiency of protecgulum 8 and rear cover 9.
The lower part of the protecgulum 8 and rear cover 9 is provided with lower radiating fin 102, and the lower radiating fin 102 is along face battle array The front-rear direction of laser radar penetrates through, it is preferred that the lower radiating fin 102 is in along the front-rear direction of face battle array laser radar Linear penetrates through, and is conducive to the rapid cooling of bottom.102 matched structure of upper radiating fin 101 and lower radiating fin so that face The heat that battle array laser radar generates can be exported quickly and uniformly, especially descend the structure of radiating fin 102, solved face battle array and swashed Optical radar is bonded with host computer and the heat of bottom is caused not shed quickly when mounted so that the entirety of face battle array laser radar It radiates uneven, affects the job stability of face battle array photoelectric chip 5.In order to adapt to a variety of measuring environments, protection face battle array laser The safety and stability of radar, the face battle array laser radar have the level of protection of IP65, IP67.
The receiving panel 81 and cylindrical lenses 11 are sealedly connected on protecgulum 8.For face battle array laser radar and host computer Plug and play, operation and use are more convenient, air plug plate 7 are also associated on the master control borad 4, the air plug plate 7 passes through setting Air plug interface on rear cover 9 connects host computer.
In order to further increase the radiating efficiency of face battle array laser radar, radiating block is additionally provided on the master control borad 4, it is described Thermal vias is offered on air plug plate 7, the radiating block is connected to across thermal vias on rear cover 9.It is connected to master control borad 4, boat Radiating block on plate 7 and rear cover 9, the heat that will be generated on master control borad 4 and air plug plate 7, conduction rapidly and efficiently to rear cover 9 Outside, and in heat conduction to air or other cooling mechanisms.
The present invention also provides a kind of moveable platform, the moveable platform includes the transmitting camera lens.
The present invention also provides a kind of moveable platform, the moveable platform includes the face battle array laser radar. The moveable platform can be the intelligent apparatus such as pilotless automobile, robot, unmanned plane.
In conclusion by the structure setting of cylindrical lenses, realize for emitting light beam uniform intensity, and carries out reliable Collimation and diffusion, the integration of adaptability has been carried out to the shape of light beam, be adequately utilized transmitting light beam luminous energy, solve The light scanning of mechanical laser radar is complicated, the low problem of refreshing frequency, and the commonly transmitting of face battle array laser radar System emits the uniform problem of light beam light intensity, improves the measurement accuracy and measurement efficiency of product, improves the stability of product, Assembling difficulty is reduced, product scale of mass production is convenient for.
By emitting being equipped with for camera lens knead dough battle array photoelectric chip so that the light beam that transmitting light source is sent out passes through transmitting mirror Become the uniform divergent beams to match with face battle array photoelectric chip, uniform fold measured zone, by measured zone after head It is corresponded to after barrier reflection even into face battle array photoelectric chip so that the relatively sharp standard of photosignal of face battle array photoelectric chip output Really so that face battle array laser radar is more accurate to the barrier positioning in measured zone, and the ranging for improving laser radar is stablized Property, assembling product difficulty is reduced, suitable for volume production.
The technical principle of the present invention is described above in association with specific embodiment.These descriptions are intended merely to explain the present invention's Principle, and it cannot be construed to limiting the scope of the invention in any way.Based on the explanation herein, the technology of this field Personnel would not require any inventive effort the other specific implementation modes that can associate the present invention, these modes are fallen within Within protection scope of the present invention.

Claims (10)

1. a kind of transmitting camera lens, which is characterized in that including:Along the optical shaping knot of the light direction of the launch setting of transmitting light source Structure, the optical shaping structure include at least one cylindrical lenses, are arranged close to the side of transmitting light source on the cylindrical lenses Columnar projections length direction with transmitting the diverging direction of light beam it is vertical, on the cylindrical lenses close to transmitting light source side Link slot is smoothly connected between upper each adjacent two columnar projections, the transmitting light beam is after optical shaping structure in setting hair Dissipate the uniform beam at angle and shape.
2. transmitting camera lens according to claim 1, which is characterized in that the angle of divergence of transmitting light beam that transmitting light source is sent out is P °, the transmitting light beam is in M ° of horizontal divergence angle, the uniform beam of N ° of vertical divergence angle, wherein 0 < after optical shaping structure 180,0 < N < of M <, 180,0 < P < 180;As P > M or P > N, also set up between transmitting light source and the cylindrical lenses There is convergent lens.
3. transmitting camera lens according to claim 1 or 2, which is characterized in that the surface of the columnar projections is even aspheric The surface equation in face, the even aspheric surface is, Wherein R is the radius of curvature on the vertex of even aspheric surface, and the Y is continuous value variable, and the k is circular cone coefficient, wherein The value of R is normal number, and the value of k is constant, A2、A4、A6、A8Value be normal number.
4. transmitting camera lens according to claim 3, which is characterized in that the value range of the R is:0 R≤4 <;The k Value range be:- 2≤k≤- 0.5, the A2、A4、A6And A8Value range be:0≤A2≤ 7,0≤A4≤ 7,0≤A6≤ 7,0≤A8≤7。
5. transmitting camera lens according to claim 4, which is characterized in that R=1.5, the k=- 0.7, the A2= 0.323, the A4=0.103, the A6=0.085, the A8=0。
6. transmitting camera lens according to claim 1, which is characterized in that the optical shaping structure includes along light launch party To a cylindrical lenses of setting, as P=M, the transmitting light beam of the transmitting light source becomes horizontal divergence after cylindrical lenses The rectangular light beam that angle is P °, the vertical angle of divergence is N °;
As P=N, it is M °, the vertical angle of divergence that the transmitting light beam of the transmitting light source becomes horizontal divergence angle after cylindrical lenses For P ° of rectangular light beam.
7. transmitting camera lens according to claim 1, which is characterized in that the optical shaping structure includes along light launch party To two cylindrical lenses of setting, as P < M, P < N, it is described transmitting light source transmitting light beam after the first cylindrical lenses at For the rectangular light beam that horizontal divergence angle is P °, the vertical angle of divergence is N °, it is as horizontal divergence angle after the second cylindrical lenses M °, the rectangular light beam that the vertical angle of divergence is N °;
It is M °, dissipates vertically alternatively, the transmitting light beam of the transmitting light source becomes horizontal divergence angle after the first cylindrical lenses The rectangular light beam that angle is P ° becomes the rectangular light that horizontal divergence angle is M °, the vertical angle of divergence is N ° after the second cylindrical lenses Beam.
8. transmitting camera lens according to claim 2, which is characterized in that as P > M >=N, alternatively, when M < P < N, the light It includes the convergent lens being arranged along the light direction of the launch and a cylindrical lenses, the transmitting light of the transmitting light source to learn reshaping structure Become the light beam that the angle of divergence is N ° after the concentrated lens of beam, becomes horizontal divergence angle after cylindrical lenses as M °, vertical diverging The rectangular light beam that angle is N °.
9. a kind of face battle array laser radar, which is characterized in that including face battle array light trigger mechanism, Mian Zhen light receivers mechanism, master control Plate, the face battle array light trigger mechanism includes transmitting light source, driving radiating circuit and such as claim 1-8 any one of them is sent out Camera lens is penetrated, Mian Zhen light receivers mechanism includes face battle array photoelectric chip and reception camera lens, the master control borad joint face battle array photoelectricity Chip, the face battle array photoelectric chip connection driving radiating circuit.
10. a kind of moveable platform, which is characterized in that the moveable platform includes as described in claim any one of 1-8 Transmitting camera lens;And/or battle array laser radar in face as claimed in claim 9.
CN201810327372.3A 2018-04-12 2018-04-12 Transmitting lens, area array laser radar and mobile platform Active CN108549085B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201810327372.3A CN108549085B (en) 2018-04-12 2018-04-12 Transmitting lens, area array laser radar and mobile platform

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201810327372.3A CN108549085B (en) 2018-04-12 2018-04-12 Transmitting lens, area array laser radar and mobile platform

Publications (2)

Publication Number Publication Date
CN108549085A true CN108549085A (en) 2018-09-18
CN108549085B CN108549085B (en) 2024-03-19

Family

ID=63514796

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201810327372.3A Active CN108549085B (en) 2018-04-12 2018-04-12 Transmitting lens, area array laser radar and mobile platform

Country Status (1)

Country Link
CN (1) CN108549085B (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109633675A (en) * 2019-01-25 2019-04-16 广州市慧建科技有限公司 A kind of laser beam emitting device
KR102092827B1 (en) * 2019-07-10 2020-03-24 주식회사 하이보 Apparatus for emitting laser whose energy density is adjusted according to projection angle and lens for controling energy density
CN111279212A (en) * 2019-01-09 2020-06-12 深圳市大疆创新科技有限公司 Scanning module, distance measuring device and mobile platform
CN111308441A (en) * 2018-12-12 2020-06-19 宁波舜宇车载光学技术有限公司 Laser radar transmitting device and assembling method
CN111615651A (en) * 2018-11-02 2020-09-01 伟摩有限责任公司 Parallax compensating spatial filter
CN112034478A (en) * 2019-06-03 2020-12-04 北醒(北京)光子科技有限公司 Laser radar and ranging method thereof
CN113589303A (en) * 2020-05-14 2021-11-02 北京一径科技有限公司 Laser radar
WO2021218265A1 (en) * 2020-04-30 2021-11-04 华域视觉科技(上海)有限公司 Optical lens, optical lens group, vehicle lamp system, and vehicle
KR102435908B1 (en) * 2022-02-07 2022-08-24 주식회사 하이보 Optical system for exposing 2d light sheet and 3d light diffusion
WO2023050398A1 (en) * 2021-09-30 2023-04-06 深圳市汇顶科技股份有限公司 Lidar transmitting apparatus, lidar apparatus and an electronic device

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102680379A (en) * 2012-05-31 2012-09-19 长春迪瑞医疗科技股份有限公司 Device for classifying and counting white cells by using even high-order aspherical laser shaping system
CN102809822A (en) * 2012-08-22 2012-12-05 温州泛波激光有限公司 Beam coupling and focusing device for laser diode array
CN104460202A (en) * 2013-09-18 2015-03-25 中强光电股份有限公司 Illumination system and projection apparatus
CN105102884A (en) * 2013-07-10 2015-11-25 松下知识产权经营株式会社 Lighting apparatus and automobile having lighting apparatus mounted therein
CN107462895A (en) * 2017-09-20 2017-12-12 北醒(北京)光子科技有限公司 A kind of infrared distance measuring device
CN208314203U (en) * 2018-04-12 2019-01-01 北醒(北京)光子科技有限公司 A kind of transmitting camera lens, face battle array laser radar and mobile platform

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102680379A (en) * 2012-05-31 2012-09-19 长春迪瑞医疗科技股份有限公司 Device for classifying and counting white cells by using even high-order aspherical laser shaping system
CN102809822A (en) * 2012-08-22 2012-12-05 温州泛波激光有限公司 Beam coupling and focusing device for laser diode array
CN105102884A (en) * 2013-07-10 2015-11-25 松下知识产权经营株式会社 Lighting apparatus and automobile having lighting apparatus mounted therein
CN104460202A (en) * 2013-09-18 2015-03-25 中强光电股份有限公司 Illumination system and projection apparatus
CN107462895A (en) * 2017-09-20 2017-12-12 北醒(北京)光子科技有限公司 A kind of infrared distance measuring device
CN208314203U (en) * 2018-04-12 2019-01-01 北醒(北京)光子科技有限公司 A kind of transmitting camera lens, face battle array laser radar and mobile platform

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
郑翔;赵柏秦;: "用于周向探测的均匀配光非球面柱透镜设计", 光学学报, vol. 37, no. 05 *

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11561284B2 (en) 2018-11-02 2023-01-24 Waymo Llc Parallax compensating spatial filters
CN111615651A (en) * 2018-11-02 2020-09-01 伟摩有限责任公司 Parallax compensating spatial filter
CN111308441B (en) * 2018-12-12 2024-06-18 宁波舜宇车载光学技术有限公司 Laser radar transmitting device and assembling method
CN111308441A (en) * 2018-12-12 2020-06-19 宁波舜宇车载光学技术有限公司 Laser radar transmitting device and assembling method
CN111279212A (en) * 2019-01-09 2020-06-12 深圳市大疆创新科技有限公司 Scanning module, distance measuring device and mobile platform
WO2020142966A1 (en) * 2019-01-09 2020-07-16 深圳市大疆创新科技有限公司 Scanning module, ranging device and mobile platform
CN111279212B (en) * 2019-01-09 2024-02-13 深圳市大疆创新科技有限公司 Scanning module, range unit and mobile platform
CN109633675A (en) * 2019-01-25 2019-04-16 广州市慧建科技有限公司 A kind of laser beam emitting device
CN112034478A (en) * 2019-06-03 2020-12-04 北醒(北京)光子科技有限公司 Laser radar and ranging method thereof
KR102092827B1 (en) * 2019-07-10 2020-03-24 주식회사 하이보 Apparatus for emitting laser whose energy density is adjusted according to projection angle and lens for controling energy density
WO2021218265A1 (en) * 2020-04-30 2021-11-04 华域视觉科技(上海)有限公司 Optical lens, optical lens group, vehicle lamp system, and vehicle
CN113589303A (en) * 2020-05-14 2021-11-02 北京一径科技有限公司 Laser radar
WO2023050398A1 (en) * 2021-09-30 2023-04-06 深圳市汇顶科技股份有限公司 Lidar transmitting apparatus, lidar apparatus and an electronic device
KR102435908B1 (en) * 2022-02-07 2022-08-24 주식회사 하이보 Optical system for exposing 2d light sheet and 3d light diffusion

Also Published As

Publication number Publication date
CN108549085B (en) 2024-03-19

Similar Documents

Publication Publication Date Title
CN108318874A (en) A kind of face battle array laser radar and mobile platform
CN108549085A (en) A kind of transmitting camera lens, face battle array laser radar and mobile platform
CN208314210U (en) laser radar system
CN208314203U (en) A kind of transmitting camera lens, face battle array laser radar and mobile platform
CN109798838A (en) A kind of ToF depth transducer and its distance measuring method based on laser speckle projection
WO2022042079A1 (en) Laser radar, transmitting module thereof, receiving module thereof and detection method therefor
CN106371101B (en) A kind of device of intelligent distance-measuring and avoidance
CN111492546A (en) Laser diode packaging module, distance detection device and electronic equipment
US20220390603A1 (en) Lidar, method for controlling the same, and apparatus including lidar
CN107845627A (en) More proximity detection optical sensors
CN113325391A (en) Wide-angle TOF module and application thereof
CN208125915U (en) A kind of face battle array laser radar and mobile platform
CN211653130U (en) Laser emission array, scanning device, laser radar, intelligent vehicle and unmanned aerial vehicle
CN108828559B (en) Laser radar device and laser radar system
US10969473B2 (en) Infrared range-measurement device and TIR lens
GB2573637A (en) Underwater laser light source
CN110174771A (en) A kind of light-source system and laser radar
CN112153184B (en) Mobile terminal
CN112346068A (en) Device and method for improving angular resolution of laser radar
US11679803B2 (en) Data transmission apparatus, LiDAR, and intelligent device
CN110596675A (en) Laser emission device and laser radar system
CN217112718U (en) Lens assembly and laser radar
CN116569060A (en) Laser radar probe and laser radar
CN111024626B (en) Light source module, imaging device and electronic equipment
CN209264958U (en) A kind of laser radar functional module

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant