CN108533525B - Calculation method of enthalpy rise coefficient of pre-swirling air intake of centrifugal impeller based on maximum flow coefficient - Google Patents
Calculation method of enthalpy rise coefficient of pre-swirling air intake of centrifugal impeller based on maximum flow coefficient Download PDFInfo
- Publication number
- CN108533525B CN108533525B CN201810053399.8A CN201810053399A CN108533525B CN 108533525 B CN108533525 B CN 108533525B CN 201810053399 A CN201810053399 A CN 201810053399A CN 108533525 B CN108533525 B CN 108533525B
- Authority
- CN
- China
- Prior art keywords
- centrifugal impeller
- coefficient
- enthalpy
- inlet
- mach number
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 238000004364 calculation method Methods 0.000 title claims abstract description 13
- 239000012530 fluid Substances 0.000 claims abstract description 7
- 238000000034 method Methods 0.000 claims description 28
- 230000000630 rising effect Effects 0.000 claims 1
- 238000011156 evaluation Methods 0.000 description 2
- 230000009286 beneficial effect Effects 0.000 description 1
- 239000008358 core component Substances 0.000 description 1
- 230000007123 defense Effects 0.000 description 1
- 238000012938 design process Methods 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 230000014509 gene expression Effects 0.000 description 1
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F04—POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
- F04D—NON-POSITIVE-DISPLACEMENT PUMPS
- F04D29/00—Details, component parts, or accessories
- F04D29/26—Rotors specially for elastic fluids
- F04D29/28—Rotors specially for elastic fluids for centrifugal or helico-centrifugal pumps for radial-flow or helico-centrifugal pumps
- F04D29/284—Rotors specially for elastic fluids for centrifugal or helico-centrifugal pumps for radial-flow or helico-centrifugal pumps for compressors
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F30/00—Computer-aided design [CAD]
- G06F30/10—Geometric CAD
- G06F30/17—Mechanical parametric or variational design
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Geometry (AREA)
- Theoretical Computer Science (AREA)
- General Physics & Mathematics (AREA)
- General Engineering & Computer Science (AREA)
- Pure & Applied Mathematics (AREA)
- Mathematical Optimization (AREA)
- Computer Hardware Design (AREA)
- Evolutionary Computation (AREA)
- Mathematical Analysis (AREA)
- Computational Mathematics (AREA)
- Mechanical Engineering (AREA)
- Structures Of Non-Positive Displacement Pumps (AREA)
Abstract
一种基于最大流量系数的离心叶轮预旋进气焓升系数计算方法:确定离心叶轮的设计要求;给定流体介质的特性常数和离心叶轮的几何常数;计算离心叶轮的出口切向速度比;设定初始焓升系数;计算机器马赫数;设定初始离心叶轮进口轮盖相对马赫数;计算离心叶轮进口轮盖相对轴向气流角;计算离心叶轮进口轮盖相对马赫数;判断离心叶轮进口轮盖相对马赫数与设定的初始离心叶轮进口轮盖相对马赫数的相对误差是否小于设定值;计算离心叶轮进口轮盖直径与离心叶轮出口直径的比;计算焓升系数;判断焓升系数与设定的初始焓升系数的相对误差是否小于设定值。本发明可以准确快速计算出任意预旋进气角下的大流量离心叶轮的焓升系数,制作出的离心叶轮流量大、结构紧凑。A calculation method of pre-swirling air enthalpy coefficient of centrifugal impeller based on the maximum flow coefficient: determine the design requirements of the centrifugal impeller; given the characteristic constant of the fluid medium and the geometric constant of the centrifugal impeller; calculate the outlet tangential velocity ratio of the centrifugal impeller; Set the initial enthalpy coefficient; calculate the Mach number of the machine; set the initial relative Mach number of the centrifugal impeller inlet cover; calculate the relative axial flow angle of the centrifugal impeller inlet cover; calculate the relative Mach number of the centrifugal impeller inlet cover; judge the centrifugal impeller inlet Whether the relative error between the relative Mach number of the wheel cover and the set initial centrifugal impeller inlet wheel cover relative Mach number is less than the set value; calculate the ratio of the diameter of the centrifugal impeller inlet wheel cover to the centrifugal impeller outlet diameter; calculate the enthalpy coefficient; judge the enthalpy Whether the relative error between the coefficient and the set initial enthalpy rise coefficient is smaller than the set value. The invention can accurately and quickly calculate the enthalpy rise coefficient of the large-flow centrifugal impeller under any pre-swirl inlet angle, and the produced centrifugal impeller has large flow and compact structure.
Description
技术领域technical field
本发明涉及一种离心叶轮任意预旋进气角焓升系数计算方法。特别是涉及一种基于最大流量系数的离心叶轮预旋进气焓升系数计算方法。The invention relates to a method for calculating the enthalpy-rise coefficient of an arbitrary pre-rotation inlet angle of a centrifugal impeller. In particular, it relates to a method for calculating the enthalpy rise coefficient of the pre-swirled air of a centrifugal impeller based on the maximum flow coefficient.
背景技术Background technique
离心压气机广泛应用于航空发动机、地面燃气轮机、汽车船舶涡轮增压器、石油化工压缩机,在国防、民用工业等领域发挥着不可替代的作用。离心叶轮作为离心压气机核心部件,其准确的热力计算和设计方法是一项关键技术。离心叶轮焓升系数的准确计算是突破这一关键技术的基础。对给定机器马赫数的离心叶轮来说,焓升系数与总压比及等熵效率之间有定量的关系,准确估算焓升系数对离心叶轮设计至关重要。目前,大多数离心叶轮热力计算与设计中,焓升系数被指定为常数,或者仅考虑叶轮出口几何影响(滑移因子),这导致了焓升系数计算结果与实际值偏差较大。而且已有研究仅针对轴向进气条件,不考虑任意预旋进气,同对未考虑几何约束对焓升系数的影响。事实上,对于给定叶轮转速来说,轴向进气条件下,它主要由叶轮出口几何(叶片后掠角等)决定,对于预旋进气条件,它还与叶轮进口几何(叶片前缘形状因子,气动喉口面积等)有关。因此提出一种全面考虑各种影响因素的焓升系数计算方法,获得准确的焓升系数是离心叶轮热力计算和设计技术的当务之急。Centrifugal compressors are widely used in aero-engines, ground gas turbines, automobile and ship turbochargers, petrochemical compressors, and play an irreplaceable role in the fields of national defense and civil industry. Centrifugal impeller is the core component of centrifugal compressor, and its accurate thermodynamic calculation and design method is a key technology. Accurate calculation of centrifugal impeller enthalpy coefficient is the basis for breaking through this key technology. For a centrifugal impeller with a given machine Mach number, there is a quantitative relationship between the enthalpy rise coefficient and the total pressure ratio and isentropic efficiency. Accurate estimation of the enthalpy rise coefficient is crucial to the design of the centrifugal impeller. At present, in most thermal calculations and designs of centrifugal impellers, the enthalpy rise coefficient is specified as a constant, or only the geometric influence of the impeller outlet (slip factor) is considered, which leads to a large deviation between the calculated enthalpy rise coefficient and the actual value. Moreover, the existing studies only focus on the condition of axial intake, without considering any pre-swirl intake, and the influence of geometric constraints on the enthalpy rise coefficient is also not considered. In fact, for a given impeller speed, it is mainly determined by the geometry of the impeller outlet (blade sweep angle, etc.) under the condition of axial intake, and it is also related to the geometry of the impeller inlet (blade leading edge shape factor, aerodynamic throat area, etc.). Therefore, a method for calculating the enthalpy-rise coefficient that fully considers various influencing factors is proposed. Obtaining an accurate enthalpy-rise coefficient is an urgent task in the thermodynamic calculation and design technology of centrifugal impellers.
发明内容Contents of the invention
本发明所要解决的技术问题是,提供一种能够准确计算离心叶轮的热力性质(等熵效率,总压比等)及初始设计的基于最大流量系数的离心叶轮预旋进气焓升系数计算方法。The technical problem to be solved by the present invention is to provide a method for calculating the thermal properties of the centrifugal impeller (isentropic efficiency, total pressure ratio, etc.) .
本发明所采用的技术方案是:一种基于最大流量系数的离心叶轮预旋进气焓升系数计算方法,包括如下步骤:The technical solution adopted in the present invention is: a method for calculating the enthalpy rise coefficient of the pre-rotation air intake of the centrifugal impeller based on the maximum flow coefficient, comprising the following steps:
1)确定离心叶轮的设计要求,包括:等熵效率η,总压比ε,流量系数φ;1) Determine the design requirements of the centrifugal impeller, including: isentropic efficiency η, total pressure ratio ε, flow coefficient φ;
2)分别给定流体介质的特性常数和离心叶轮的几何常数;2) The characteristic constants of the fluid medium and the geometric constants of the centrifugal impeller are given respectively;
3)计算离心叶轮的出口切向速度比 3) Calculate the outlet tangential velocity ratio of the centrifugal impeller
4)设定初始焓升系数μ0;4) Set the initial enthalpy rise coefficient μ 0 ;
5)计算机器马赫数Mu2;5) Calculate the Mach number M u2 of the machine;
6)设定初始离心叶轮进口轮盖相对马赫数Mw1,0;6) Set the relative Mach number M w1,0 of the initial centrifugal impeller inlet cover;
7)计算离心叶轮进口轮盖相对轴向气流角β1s;7) Calculate the relative axial flow angle β 1s of the centrifugal impeller inlet wheel cover;
8)计算离心叶轮进口轮盖相对马赫数Mw1;8) Calculate the relative Mach number M w1 of the centrifugal impeller inlet wheel cover;
9)判断离心叶轮进口轮盖相对马赫数Mw1与设定的初始离心叶轮进口轮盖相对马赫数Mw1,0的相对误差是否小于1%,是则执行下一步,否则返回步骤6),采用二分法重新设定初始离心叶轮进口轮盖相对马赫数Mw1,0;9) Determine whether the relative error between the relative Mach number Mw1 of the centrifugal impeller inlet wheel cover and the set initial centrifugal impeller inlet wheel cover relative Mach number Mw1,0 is less than 1%, if yes, execute the next step, otherwise return to step 6), Use the dichotomy method to reset the relative Mach number M w1,0 of the initial centrifugal impeller inlet cover;
10)计算离心叶轮进口轮盖直径D1s与离心叶轮出口直径D2的比: 10) Calculate the ratio of the centrifugal impeller inlet wheel cover diameter D 1s to the centrifugal impeller outlet diameter D 2 :
11)计算焓升系数μ;11) Calculate the enthalpy coefficient μ;
12)判断焓升系数μ与设定的初始焓升系数μ0的相对误差是否小于1%,是则μ为所求焓升系数,结束;否则返回步骤4)采用二分法重新设定初始焓升系数μ0。12) Determine whether the relative error between the enthalpy rise coefficient μ and the set initial enthalpy rise coefficient μ 0 is less than 1%, if yes, μ is the desired enthalpy rise coefficient, and end; otherwise return to step 4) adopt the dichotomy method to reset the initial enthalpy Lifting coefficient μ 0 .
步骤2)所述的流体介质的特性常数是:气体常数R和绝热指数γ;所述的离心叶轮的几何常数;包括:形状因子k,离心叶轮出口径向速度比离心叶轮出口径向气流角β2,离心叶轮进口预旋角α1,叶片数z,以及比焓比σ。Step 2) The characteristic constants of the fluid medium are: gas constant R and adiabatic index γ; the geometric constants of the centrifugal impeller; including: shape factor k, centrifugal impeller outlet radial velocity ratio Radial flow angle β 2 at the outlet of the centrifugal impeller, pre-rotation angle α 1 at the inlet of the centrifugal impeller, number of blades z, and specific enthalpy ratio σ.
所述的形状因子k的计算公式为:其中,D1h是离心叶轮进口轮毂直径,D1s是离心叶轮进口轮盖直径。The formula for calculating the shape factor k is: Among them, D 1h is the diameter of the centrifugal impeller inlet hub, and D 1s is the diameter of the centrifugal impeller inlet hub.
所述的比焓比σ的计算公式为:其中,htot是离心叶轮总功,hth是离心叶轮轮缘功。The formula for calculating the specific enthalpy ratio σ is: Among them, h tot is the total work of the centrifugal impeller, and h th is the work of the rim of the centrifugal impeller.
步骤3)是使用斯陀道拉公式计算离心叶轮的出口切向速度比如下:Step 3) is to calculate the outlet tangential velocity ratio of the centrifugal impeller using the Stodola formula as follows:
式中,是离心叶轮出口径向速度比,β2是离心叶轮出口径向气流角。In the formula, is the radial velocity ratio at the exit of the centrifugal impeller, and β2 is the radial airflow angle at the exit of the centrifugal impeller.
步骤5)是采用如下公式计算机器马赫数Mu2:Step 5) is to use the following formula to calculate the Mach number M u2 of the machine:
式中,γ是绝热指数,η是等熵效率,ε是总压比,μ0是初始焓升系数。In the formula, γ is the adiabatic exponent, η is the isentropic efficiency, ε is the total pressure ratio, and μ 0 is the initial enthalpy rise coefficient.
步骤7)是采用如下公式计算离心叶轮进口轮盖相对轴向气流角β1s Step 7) is to use the following formula to calculate the relative axial flow angle β 1s of the centrifugal impeller inlet wheel cover
式中,α1是离心叶轮进口预旋角,Mw1,0是初始离心叶轮进口轮盖相对马赫数,γ是绝热指数。In the formula, α 1 is the pre-rotation angle of the centrifugal impeller inlet, M w1,0 is the relative Mach number of the initial centrifugal impeller inlet cover, and γ is the adiabatic index.
步骤8)是采用如下公式计算离心叶轮进口轮盖相对马赫数Mw1 Step 8) is to use the following formula to calculate the relative Mach number M w1 of the centrifugal impeller inlet wheel cover
式中,Mu2是机器马赫数,γ是绝热指数,Mw1,0是初始离心叶轮进口轮盖相对马赫数,β1s是离心叶轮进口轮盖相对轴向气流角,α1是离心叶轮进口预旋角,k是形状因子,φ是流量系数。In the formula, M u2 is the Mach number of the machine, γ is the adiabatic index, M w1,0 is the relative Mach number of the initial centrifugal impeller inlet cover, β 1s is the relative axial flow angle of the centrifugal impeller inlet cover, and α 1 is the centrifugal impeller inlet Pre-rotation angle, k is the shape factor, φ is the flow coefficient.
步骤10)离心叶轮进口轮盖直径与离心叶轮出口直径比如下:Step 10) The ratio of the diameter of the centrifugal impeller inlet wheel cover to the diameter of the centrifugal impeller outlet is as follows:
式中,Mw1是离心叶轮进口轮盖相对马赫数,β1s是离心叶轮进口轮盖相对轴向气流角,α1是离心叶轮进口预旋角,η是等熵效率,μ0是初始焓升系数,γ是绝热指数,ε是总压比。In the formula, Mw1 is the relative Mach number of the centrifugal impeller inlet cover, β1s is the relative axial flow angle of the centrifugal impeller inlet cover, α1 is the pre-rotation angle of the centrifugal impeller inlet, η is the isentropic efficiency, and μ0 is the initial enthalpy Lift coefficient, γ is the adiabatic index, and ε is the total pressure ratio.
步骤11)是采用如下公式计算焓升系数μStep 11) is to adopt the following formula to calculate the enthalpy coefficient μ
式中,σ是比焓比,是离心叶轮的出口切向速度比,γ是绝热指数,Mw1是离心叶轮进口轮盖相对马赫数,β1s是离心叶轮进口轮盖相对轴向气流角,α1是离心叶轮进口预旋角,k是形状因子,是离心叶轮进口轮盖直径与离心叶轮出口直径的比,Mu2是机器马赫数。where σ is the specific enthalpy ratio, is the outlet tangential velocity ratio of the centrifugal impeller, γ is the adiabatic index, M w1 is the relative Mach number of the centrifugal impeller inlet cover, β 1s is the relative axial flow angle of the centrifugal impeller inlet cover, and α 1 is the centrifugal impeller inlet pre-rotation angle , k is the shape factor, is the ratio of the diameter of the centrifugal impeller inlet wheel cover to the diameter of the centrifugal impeller outlet, and M u2 is the Mach number of the machine.
本发明的基于最大流量系数的离心叶轮预旋进气焓升系数计算方法,考虑了任意预旋进气角度,推广了只包括轴向进气的传统方法;同时,本发明的方法包含最大流量系数假设,设计出来的离心叶轮具有流量大、结构紧凑等优点;计算表达式均为无量纲形式,具有普适性。本发明的方法产生的有益效果是,可以准确快速计算出任意预旋进气角下的大流量离心叶轮的焓升系数,为已有叶轮性能的评估或者新叶轮的开发奠定基础。The method for calculating the enthalpy-rise coefficient of pre-swirling air intake of the centrifugal impeller based on the maximum flow coefficient of the present invention considers any pre-swirling intake angle, and popularizes the traditional method that only includes axial air intake; at the same time, the method of the present invention includes the maximum flow rate Coefficient assumptions, the designed centrifugal impeller has the advantages of large flow and compact structure; the calculation expressions are all dimensionless and universal. The beneficial effect produced by the method of the present invention is that the enthalpy rise coefficient of the large-flow centrifugal impeller under any pre-swirl inlet angle can be accurately and quickly calculated, which lays a foundation for the evaluation of the performance of the existing impeller or the development of a new impeller.
具体实施方式Detailed ways
下面结合实施例对本发明的基于最大流量系数的离心叶轮预旋进气焓升系数计算方法做出详细说明,需要说明的是本实施例是叙述性的,不以此限定本发明的保护范围。The method for calculating the pre-rotation enthalpy rise coefficient of the centrifugal impeller based on the maximum flow coefficient of the present invention will be described in detail below in conjunction with the embodiments. It should be noted that this embodiment is descriptive and does not limit the protection scope of the present invention.
本发明的基于最大流量系数的离心叶轮预旋进气焓升系数计算方法,考虑任意预旋进气角度,引入最大流量系数设计理念,给出了无量纲形式的焓升系数计算方法;最后根据离心叶轮设计条件,给出了焓升系数计算的具体步骤。The method for calculating the enthalpy-rise coefficient of pre-swirling intake air of the centrifugal impeller based on the maximum flow coefficient of the present invention considers any pre-swirl intake angle, introduces the design concept of the maximum flow coefficient, and provides a calculation method of the enthalpy-rise coefficient in a dimensionless form; finally according to Centrifugal impeller design conditions, given the specific steps of calculation of enthalpy coefficient.
本发明的基于最大流量系数的离心叶轮预旋进气焓升系数计算方法,具体包括如下步骤:The method for calculating the enthalpy rise coefficient of pre-swirled intake air of the centrifugal impeller based on the maximum flow coefficient of the present invention specifically includes the following steps:
1)确定离心叶轮的设计要求,包括:等熵效率η,总压比ε,流量系数φ;1) Determine the design requirements of the centrifugal impeller, including: isentropic efficiency η, total pressure ratio ε, flow coefficient φ;
2)分别给定流体介质的特性常数和离心叶轮的几何常数;其中,2) The characteristic constants of the fluid medium and the geometric constants of the centrifugal impeller are respectively given; where,
所述的流体介质的特性常数是:气体常数R和绝热指数γ;所述的离心叶轮的几何常数;包括:形状因子k,离心叶轮出口径向速度比离心叶轮出口径向气流角β2,离心叶轮进口预旋角α1,叶片数z,以及比焓比σ。The characteristic constants of the fluid medium are: gas constant R and adiabatic index γ; the geometric constants of the centrifugal impeller; including: shape factor k, centrifugal impeller outlet radial velocity ratio Radial flow angle β 2 at the outlet of the centrifugal impeller, pre-rotation angle α 1 at the inlet of the centrifugal impeller, number of blades z, and specific enthalpy ratio σ.
所述的形状因子k的计算公式为:其中,D1h是离心叶轮进口轮毂直径,D1s是离心叶轮进口轮盖直径。The formula for calculating the shape factor k is: Among them, D 1h is the diameter of the centrifugal impeller inlet hub, and D 1s is the diameter of the centrifugal impeller inlet hub.
所述的比焓比σ的计算公式为:其中,htot是离心叶轮总功,hth是离心叶轮轮缘功。The formula for calculating the specific enthalpy ratio σ is: Among them, h tot is the total work of the centrifugal impeller, and h th is the work of the rim of the centrifugal impeller.
3)计算离心叶轮的出口切向速度比是使用斯陀道拉公式计算离心叶轮的出口切向速度比如下:3) Calculate the outlet tangential velocity ratio of the centrifugal impeller is to use the Stodola formula to calculate the outlet tangential velocity ratio of the centrifugal impeller as follows:
式中,是离心叶轮出口径向速度比,β2是离心叶轮出口径向气流角。In the formula, is the radial velocity ratio at the exit of the centrifugal impeller, and β2 is the radial airflow angle at the exit of the centrifugal impeller.
4)设定初始焓升系数μ0;4) Set the initial enthalpy rise coefficient μ 0 ;
5)计算机器马赫数Mu2;是采用如下公式计算机器马赫数Mu2:5) Calculate the Mach number M u2 of the machine; the following formula is used to calculate the Mach number M u2 of the machine:
式中,γ是绝热指数,η是等熵效率,ε是总压比,μ0是初始焓升系数。In the formula, γ is the adiabatic exponent, η is the isentropic efficiency, ε is the total pressure ratio, and μ 0 is the initial enthalpy rise coefficient.
6)设定初始离心叶轮进口轮盖相对马赫数Mw1,0;6) Set the relative Mach number M w1,0 of the initial centrifugal impeller inlet cover;
7)计算离心叶轮进口轮盖相对轴向气流角β1s;是基于最大流量系数假设获得的最佳β1s;具体是采用如下公式计算离心叶轮进口轮盖相对轴向气流角β1s,其是隐式格式,采用迭代计算:7) Calculate the relative axial flow angle β 1s of the centrifugal impeller inlet wheel cover; it is the best β 1s obtained based on the assumption of the maximum flow coefficient; specifically, the following formula is used to calculate the relative axial flow angle β 1s of the centrifugal impeller inlet wheel cover, which is Implicit format, using iterative evaluation:
式中,α1是离心叶轮进口预旋角,Mw1,0是初始离心叶轮进口轮盖相对马赫数,γ是绝热指数。In the formula, α 1 is the pre-rotation angle of the centrifugal impeller inlet, M w1,0 is the relative Mach number of the initial centrifugal impeller inlet cover, and γ is the adiabatic index.
8)计算离心叶轮进口轮盖相对马赫数Mw1;是采用如下公式计算离心叶轮进口轮盖相对马赫数Mw1:8) Calculate the relative Mach number M w1 of the centrifugal impeller inlet wheel cover; the relative Mach number M w1 of the centrifugal impeller inlet wheel cover is calculated by the following formula:
式中,Mu2是机器马赫数,γ是绝热指数,Mw1,0是初始离心叶轮进口轮盖相对马赫数,β1s是离心叶轮进口轮盖相对轴向气流角,α1是离心叶轮进口预旋角,k是形状因子,φ是流量系数。In the formula, M u2 is the Mach number of the machine, γ is the adiabatic index, M w1,0 is the relative Mach number of the initial centrifugal impeller inlet cover, β 1s is the relative axial flow angle of the centrifugal impeller inlet cover, and α 1 is the centrifugal impeller inlet Pre-rotation angle, k is the shape factor, φ is the flow coefficient.
9)判断离心叶轮进口轮盖相对马赫数Mw1与设定的初始离心叶轮进口轮盖相对马赫数Mw1,0的相对误差是否小于1%,是则执行下一步;否则返回步骤6)采用二分法重新设定初始离心叶轮进口轮盖相对马赫数Mw1,0;9) Determine whether the relative error between the relative Mach number Mw1 of the inlet wheel cover of the centrifugal impeller and the set initial Mach number Mw1,0 of the inlet wheel cover of the centrifugal impeller is less than 1%. The dichotomy resets the relative Mach number M w1,0 of the initial centrifugal impeller inlet cover;
10)计算离心叶轮进口轮盖直径D1s与离心叶轮出口直径D2之比:所述离心叶轮进口轮盖直径与离心叶轮出口直径比如下:10) Calculate the ratio of the centrifugal impeller inlet wheel cover diameter D 1s to the centrifugal impeller outlet diameter D 2 : The ratio of the centrifugal impeller inlet wheel cover diameter to the centrifugal impeller outlet diameter is as follows:
式中,Mw1是离心叶轮进口轮盖相对马赫数,β1s是离心叶轮进口轮盖相对轴向气流角,α1是离心叶轮进口预旋角,η是等熵效率,μ0是初始焓升系数,γ是绝热指数,ε是总压比。In the formula, Mw1 is the relative Mach number of the centrifugal impeller inlet cover, β1s is the relative axial flow angle of the centrifugal impeller inlet cover, α1 is the pre-rotation angle of the centrifugal impeller inlet, η is the isentropic efficiency, and μ0 is the initial enthalpy Lift coefficient, γ is the adiabatic index, and ε is the total pressure ratio.
11)计算焓升系数μ;是采用如下公式计算焓升系数μ11) Calculate the enthalpy rise coefficient μ; the following formula is used to calculate the enthalpy rise coefficient μ
12)判断焓升系数μ与设定的初始焓升系数μ0的相对误差是否小于1%,是则μ为所求焓升系数,结束;否则返回步骤4)采用二分法重新设定初始焓升系数μ0。12) Determine whether the relative error between the enthalpy rise coefficient μ and the set initial enthalpy rise coefficient μ 0 is less than 1%, if yes, μ is the desired enthalpy rise coefficient, and end; otherwise return to step 4) adopt the dichotomy method to reset the initial enthalpy Lifting coefficient μ 0 .
下面给出具体实例:Specific examples are given below:
本实施例结合某工业跨声速离心叶轮设计过程演示计算焓升系数的方法,其中按照斯陀道拉公式计算,即式(1)。通过以下12个步骤计算焓升系数:This example demonstrates the method of calculating the enthalpy coefficient in combination with the design process of an industrial transonic centrifugal impeller, wherein It is calculated according to the Stodola formula, that is, formula (1). The enthalpy coefficient is calculated by the following 12 steps:
1)确定离心叶轮设计要求:等熵效率η=0.87,总压比ε=6,流量系数φ=0.151) Determine the design requirements of the centrifugal impeller: isentropic efficiency η = 0.87, total pressure ratio ε = 6, flow coefficient φ = 0.15
2)给定常数k=0.85,R=287,γ=1.4,β2=38,z=13,σ=1.07,α1=30deg2) given constant k=0.85, R=287, γ=1.4, β 2 =38, z=13, σ=1.07, α 1 =30deg
3)根据式(1)计算 3) Calculate according to formula (1)
4)假设初始焓升系数μ0=0.74) Assume that the initial enthalpy rise coefficient μ 0 =0.7
5)根据式(2)计算机器马赫数Mu2=1.656595) Calculate the Mach number M u2 of the machine according to formula (2) = 1.65659
6)假设初始Mw1,0=1.16) Suppose the initial M w1,0 = 1.1
7)根据式(3)计算β1s,最后结果β1s=45.337) Calculate β 1s according to formula (3), the final result β 1s =45.33
8)根据式(4)计算Mw1,最后结果Mw1=1.2045288) Calculate M w1 according to formula (4), and the final result M w1 = 1.204528
9)校核Mw1,满足迭代精度则执行下一步,否则返回6)修正Mw1,0 9) Check M w1 , and execute the next step if the iteration accuracy is satisfied, otherwise return 6) Correct M w1,0
10)根据式(5)计算最后结果 10) Calculate according to formula (5) final result
11)根据式(6)计算焓升系数μ,最后结果μ=0.54174511) Calculate the enthalpy coefficient μ according to formula (6), and the final result μ=0.541745
12)校核焓升系数μ,如果满足迭代精度,则计算完毕,否则返回4)修正μ0。12) Check the enthalpy rise coefficient μ, if it satisfies the iteration precision, the calculation is completed, otherwise return to 4) Correct μ 0 .
至此,已经计算出最大流量系数设计离心叶轮任意预旋进气角焓升系数,可作为离心叶轮热力计算或全新设计的基础。So far, the maximum flow coefficient design centrifugal impeller arbitrary pre-rotation inlet angle enthalpy coefficient has been calculated, which can be used as the basis for the thermal calculation or new design of the centrifugal impeller.
Claims (10)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201810053399.8A CN108533525B (en) | 2018-01-19 | 2018-01-19 | Calculation method of enthalpy rise coefficient of pre-swirling air intake of centrifugal impeller based on maximum flow coefficient |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201810053399.8A CN108533525B (en) | 2018-01-19 | 2018-01-19 | Calculation method of enthalpy rise coefficient of pre-swirling air intake of centrifugal impeller based on maximum flow coefficient |
Publications (2)
Publication Number | Publication Date |
---|---|
CN108533525A CN108533525A (en) | 2018-09-14 |
CN108533525B true CN108533525B (en) | 2019-11-08 |
Family
ID=63485488
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201810053399.8A Active CN108533525B (en) | 2018-01-19 | 2018-01-19 | Calculation method of enthalpy rise coefficient of pre-swirling air intake of centrifugal impeller based on maximum flow coefficient |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN108533525B (en) |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN109635512B (en) * | 2019-01-17 | 2022-11-25 | 德燃(浙江)动力科技有限公司 | Centrifugal impeller inlet design method based on correction control equation |
CN110005635B (en) * | 2019-01-28 | 2020-08-28 | 天津大学 | Design method of impeller |
CN118622747B (en) * | 2024-06-28 | 2025-03-18 | 天津大学 | Method for determining fan speed of modified air-cooled diesel engine |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1595069A (en) * | 2004-07-12 | 2005-03-16 | 天津市第五机床厂 | Impeller apparatus and turbine gas flow measurement device equipped with the same |
CN101980230A (en) * | 2010-11-03 | 2011-02-23 | 天津大学 | Process simulation optimization model of catalytic cracking reaction system and its solution method |
CN103244292A (en) * | 2012-02-02 | 2013-08-14 | 福特环球技术公司 | Method for influencing the thermal balance of an internal combustion engine |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7668704B2 (en) * | 2006-01-27 | 2010-02-23 | Ricardo, Inc. | Apparatus and method for compressor and turbine performance simulation |
-
2018
- 2018-01-19 CN CN201810053399.8A patent/CN108533525B/en active Active
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1595069A (en) * | 2004-07-12 | 2005-03-16 | 天津市第五机床厂 | Impeller apparatus and turbine gas flow measurement device equipped with the same |
CN101980230A (en) * | 2010-11-03 | 2011-02-23 | 天津大学 | Process simulation optimization model of catalytic cracking reaction system and its solution method |
CN103244292A (en) * | 2012-02-02 | 2013-08-14 | 福特环球技术公司 | Method for influencing the thermal balance of an internal combustion engine |
Non-Patent Citations (1)
Title |
---|
目标优化算法在叶片参数化设计中的应用;刘正先等;《天津大学学报》;20170131;第50卷(第1期);第19-27 * |
Also Published As
Publication number | Publication date |
---|---|
CN108533525A (en) | 2018-09-14 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN108533525B (en) | Calculation method of enthalpy rise coefficient of pre-swirling air intake of centrifugal impeller based on maximum flow coefficient | |
US10474787B2 (en) | Method for designing centrifugal pump and mixed flow pump having specific speed of 150-1200 | |
CN109871595B (en) | A design method of volute | |
Klausner et al. | Evaluation and enhancement of a one-dimensional performance analysis method for centrifugal compressors | |
CN110005635B (en) | Design method of impeller | |
Kim et al. | Steady and unsteady flow characteristics of a multi-stage centrifugal pump under design and off-design conditions | |
CN111368372B (en) | A method for calculating the axial force of a semi-open impeller of a centrifugal compressor | |
Sheets | The flow through centrifugal compressors and pumps | |
Numakura et al. | Effect of a recirculation device on the performance of transonic mixed flow compressors | |
Xu et al. | Development of a low flow coefficient single stage centrifugal compressor | |
Xu et al. | Study of the flow in centrifugal compressor | |
CN111680372B (en) | One-Dimensional Calculation Method of Working Capacity of Centrifugal Fan Impeller Considering Natural Pre-rotation | |
Hazby et al. | Design and testing of a high flow coefficient mixed flow impeller | |
Abel et al. | 3D computational analysis of a compressor for heavy duty truck engine turbochargers | |
Casey et al. | Some properties of the exit velocity triangle of a radial compressor impeller | |
Horlock | Some recent research in turbo-machinery | |
Moore et al. | On three-dimensional flow in centrifugal impellers | |
Kramer et al. | Nonviscous flow through a pump impeller on a blade-to-blade surface of revolution | |
Zheng et al. | Extension of operating range of a centrifugal compressor by use of a non-axisymmetric diffuser | |
Waesker et al. | Analysis of slip factors in CFD calculations–Assessment of literature models | |
CN108595776B (en) | Matching calculation method for centrifugal impeller and diffuser under pre-swirl air inlet | |
Kano et al. | Development of high specific speed mixed flow compressors | |
Mischo et al. | Experimental investigation for enhanced control of rotating unsteady flow instabilities in an unshrouded centrifugal compressor impeller | |
Miller et al. | Detailed performance of a radial-bladed centrifugal pump impeller in water | |
Wright et al. | Flow in a centrifugal fan impeller at off-design conditions |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |