CN108528434B - 终止状态受约束的行星式混合动力系统全局优化方法 - Google Patents

终止状态受约束的行星式混合动力系统全局优化方法 Download PDF

Info

Publication number
CN108528434B
CN108528434B CN201810285019.3A CN201810285019A CN108528434B CN 108528434 B CN108528434 B CN 108528434B CN 201810285019 A CN201810285019 A CN 201810285019A CN 108528434 B CN108528434 B CN 108528434B
Authority
CN
China
Prior art keywords
state
formula
moment
variable
follows
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201810285019.3A
Other languages
English (en)
Other versions
CN108528434A (zh
Inventor
曾小华
王越
宋大凤
杨南南
朱丽燕
张学义
黄海瑞
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Jilin University
Original Assignee
Jilin University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jilin University filed Critical Jilin University
Priority to CN201810285019.3A priority Critical patent/CN108528434B/zh
Publication of CN108528434A publication Critical patent/CN108528434A/zh
Application granted granted Critical
Publication of CN108528434B publication Critical patent/CN108528434B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/80Technologies aiming to reduce greenhouse gasses emissions common to all road transportation technologies
    • Y02T10/84Data processing systems or methods, management, administration

Abstract

本发明提供一种终止状态受约束的行星式混合动力系统全局优化方法,属于新能源汽车技术领域,该方法在DP后向运寻优前,首先开展系统边界计算,获取每一时刻状态变量的边界约束,进而在后向迭代寻优过程中考虑边界约束,实现系统的电量平衡。通过边界约束的求解而不再需要罚函数,避免了为实现电量平衡所进行的大量调试工作,同时算法的鲁棒性不再受到模型参数、运行工况的影响,运算量和时间成本降低,显著提升了优化算法的效率。

Description

终止状态受约束的行星式混合动力系统全局优化方法
技术领域
本发明提供一种终止状态受约束的行星式混合动力系统全局优化方法,属于新能源汽车技术领域。
背景技术
混合动力具有电量平衡的要求,当前基于DP全局优化的能量管理策略优化通常采用罚函数来满足系统的终止状态约束条件。然而,多数研究中的罚函数都需要研究人员凭借经验进行多次调试,这样将带来更为庞大的运算量,增加数倍的运算时间这将不利于全局优化算法的自动化实施。此外,由于用于优化的模型参数将随着时间的推移或车辆状态的变化而变化,而全局优化的目标工况也将随着历史运行数据的变化而变化,这些因素都将导致研究人员出示标定的罚函数不具有良好鲁棒性,进一步降低罚函数方法的应用价值。如2016年6月8日申请公布的发明专利:申请公布号:CN 105644548 A,混合动力汽车的能量控制方法及装置,该方法基于随机模型预测控制和神经元动态规划算法来实现混合动力汽车的能量管理控制,神经元动态规划算法进行全局优化求解时,通过设置奖惩函数将系统电量保持平衡,需要进行不断调试奖惩函数的因子,存在调试工作量庞大,运算时间长,全局优化求解效率较低等问题。
发明内容
本发明的目的是提供一种能克服上述缺陷,有效实现电量平衡,同时能显著提升DP算法运行效率的终止状态受约束的行星式混合动力系统全局优化方法,其技术内容为:
第一步,确定行星式混合动力系统全局优化目标函数及约束条件:行星式混合动力系统的全局优化问题表述为:
式(1)中,J(u(t))为系统的成本函数,针对混合动力系统可表示为全工况中每一时刻瞬时成本L(x(t),u(t),t)的积分,加上基于终止状态的惩罚函数G(x(tf)),如下:
第二步,采用动态规划算法离散全局优化目标函数:将式(1)、(2)所表示的优化问题转化为多阶段离散问题,如下:
xk+1=Fk(xk,uk),k=0,1,...,N-1 (4)
式(4)中,xk为离散状态变量,xk∈[xmin,xmax],uk为离散控制变量,uk∈[umin,umax],k为离散采样时间,将系统的控制率为π={μ01,....μN-1},那么以π为控制率,初始状态x(0)=x0时,离散系统的总成本表示为:
式(5)中,lk(xk,uk)是第k时刻采用控制变量uk,状态变量为xk时的系统瞬时成本,gk(xk)为第k时基于状态变量xk的惩罚量,表示为gk(xk)=α(xf-xk)2,xf为系统终止时刻的目标状态,α为大于零的惩罚函数系数,lN(xN,uN)+gN(xN)是系统在终止时刻的瞬时成本,代表0~N–1时刻的总成本;
基于上述离散系统的成本函数,进一步得到离散系统的最优化问题为:
式(6)中,Π代表在目标工况下,所有可行控制规则的集合;
第三步,开展系统状态变量边界约束的计算:步骤1,采用等效内阻模型作为电池模型,可以得到电池电流和电池功率之间的关系:
式(7)中,电池开路电压E=fU(SOC),是关于SOC的函数,根据SOC与电池容量、电流的关系:
式(8)中,E为电池开路电压,Ibat为电流,rint为等效内阻,Qbat为电容真实容量,Qmax为电池最大容量,SOC为电池荷电状态,由式(8)可以得到混合动力系统容量与电流的关系:
Qbat(k+1)=Qbat(k)+IbatΔt (9)
步骤2,确定系统状态变量与控制变量的关系:根据式(9)可以得到系统状态变量与控制变量的关系,如下:
由式(10)系统状态变量与控制变量之间的关系可以表示为:
xk+1=fk(xk,uk)+xk (11)
步骤3,系统下边界求解方法:定义k时刻能够允许系统达到终止状态下边界的最小状态变量值为该时刻的下边界约束xk,low,根据混合动力系统的电量平衡要求,系统终止状态的范围为控制目标是已知量,即:xN,low=xf,min,xf,min为终止状态的下边界值,k=N-1到k=0时刻的系统状态下边界可以用后向迭代计算进行求解,如下:
考虑本系统的状态变量为SOC,为[0,1]之间的正数,式(12)可以进一步改写为:
在后向迭代计算中,xk+1,low为已知量,初始值为xf,min,仅xk,low和uk为未知变量,可以利用不动点迭代方法进行求解xk,low,k时刻的下边界求解流程如下:
①初始化:其中j为k时刻计算状态量下边界的迭代次数索引;
②开始迭代计算,直到达到特定的容差:如下:
考虑状态变量SOC的数量级,取容差ξ=10-5,在完成k时刻的下边界求解后,重复上述①②,继续求解得到k-1时刻的下边界,直到k=0;
步骤4,系统上边界计算方法:用步骤3求解系统下边界的相同方法计算系统上边界;
第四步,动态规划算法向后寻优迭代计算:根据DP算法优化原理,结合式(5)的目标函数表达形式,系统的全局最优解转化为后向的优化序列,如下:
系统最终时刻N的成本为如式(15),表示在约束范围内,各系统状态对应的瞬时成本及惩罚,
JN(xi)=lN(xi)+gN(xi) (15)
根据DP算法的后向优化原理,从k=N-1到0的迭代计算可表示式(16),
得到初始时刻各状态变量对应的最优控制路径后,从目标初始状态x0出发,根据各时刻状态变量与最优控制变量的对应关系,进行前向计算,即可确定的最优解。
本发明与现有技术相比,有益效果如下:
该方法在DP后向运寻优前,首先开展系统边界计算,获取每一时刻状态变量的边界约束,进而在后向迭代寻优过程中考虑边界约束,实现系统的电量平衡。通过边界约束的求解而不再需要罚函数,避免了为实现电量平衡所进行的大量调试工作,同时算法的鲁棒性不再受到模型参数、运行工况的影响,运算量和时间成本降低,显著提升了优化算法的效率。
附图说明
图1是本发明的优化方法流程图。
图2是本发明实施例的行星式混合动力系统构型图。
图3是本发明系统状态变量边界约束的计算流程图。
具体实施方式
下面结合附图对本发明作进一步说明:
如图1所示,终止状态受约束的行星式混合动力系统全局优化方法,其特征在于:
第一步,确定行星式混合动力系统全局优化目标函数及约束条件:行星式混合动力系统的全局优化问题表述为:
式(1)中,J(u(t))为系统的成本函数,针对混合动力系统可表示为全工况中每一时刻瞬时成本L(x(t),u(t),t)的积分,加上基于终止状态的惩罚函数G(x(tf)),如下:
本实施例的行星式混合动力系统的构型如图2所示,由此得到行星式混合动力系统的成本函数和约束条件,如下:
式中,SOCN为目标SOC值;SOCk(k)为当前时刻SOC值,Lfuel(k)为行星式混合动力系统的瞬时油耗,β为惩罚系数,ne_min与ne_max分别为发动机最小、最大转速,ng_min ng_max分别为电机MG1的最小、最大转速,nm_min与nm_max分别为电机MG的最小、最大转速,Te_min与Te_max分别为,发动机最小、最大转矩,Tg_min与Tg_max分别为电机MG1的最小、最大转矩,Tm_min与Tm_max分别为电机MG2的最小、最大转矩,SOCmin与SOCmax分别为SOC可行域的下限与上限;
第二步,采用动态规划算法离散全局优化目标函数:将式(1)、(2)所表示的优化问题转化为多阶段离散问题,如下:
xk+1=Fk(xk,uk), k=0,1,...,N-1 (6)
式(6)中,xk为离散状态变量,xk∈[xmin,xmax],uk为离散控制变量,uk∈[umin,umax],k为离散采样时间,将系统的控制率为π={μ01,....μN-1},那么以π为控制率,初始状态x(0)=x0时,离散系统的总成本表示为:
式(7)中,lk(xk,uk)是第k时刻采用控制变量uk,状态变量为xk时的系统瞬时成本,gk(xk)为第k时基于状态变量xk的惩罚量,表示为gk(xk)=α(xf-xk)2,xf为系统终止时刻的目标状态,α为大于零的惩罚函数系数,lN(xN,uN)+gN(xN)是系统在终止时刻的瞬时成本,代表0~N–1时刻的总成本;
基于上述离散系统的成本函数,进一步得到离散系统的最优化问题为:
式(8)中,Π代表在目标工况下,所有可行控制规则的集合;
第三步,开展系统状态变量边界约束的计算:如图2所示,步骤1,采用等效内阻模型作为电池模型,可以得到电池电流和电池功率之间的关系:
式(9)中,电池开路电压E=fU(SOC),是关于SOC的函数,根据SOC与电池容量、电流的关系:
式(10)中,E为电池开路电压,Ibat为电流,rint为等效内阻,Qbat为电容真实容量,Qmax为电池最大容量,SOC为电池荷电状态,由式(10)可以得到混合动力系统容量与电流的关系:
Qbat(k+1)=Qbat(k)+IbatΔt (11)
步骤2,确定系统状态变量与控制变量的关系:根据式(11)可以得到系统状态变量与控制变量的关系,如下:
由式(12)系统状态变量与控制变量之间的关系可以表示为:
xk+1=fk(xk,uk)+xk (13)
步骤3,系统下边界求解方法:定义k时刻能够允许系统达到终止状态下边界的最小状态变量值为该时刻的下边界约束xk,low,根据混合动力系统的电量平衡要求,系统终止状态的范围为控制目标是已知量,即:xN,low=xf,min,xf,min为终止状态的下边界值,k=N-1到k=0时刻的系统状态下边界可以用后向迭代计算进行求解,如下:
考虑本系统的状态变量为SOC,为[0,1]之间的正数,式(14)可以进一步改写为:
在后向迭代计算中,xk+1,low为已知量,初始值为xf,min,仅xk,low和uk为未知变量,可以利用不动点迭代方法进行求解xk,low,k时刻的下边界求解流程如下:
①初始化:其中j为k时刻计算状态量下边界的迭代次数索引;
②开始迭代计算,直到达到特定的容差:如下:
考虑状态变量SOC的数量级,取容差ξ=10-5,在完成k时刻的下边界求解后,重复上述①②,继续求解得到k-1时刻的下边界,直到k=0;
步骤4,系统上边界计算方法:用步骤3求解系统下边界的相同方法计算系统上边界;
第四步,动态规划算法向后寻优迭代计算:根据DP算法优化原理,结合式(7)的目标函数表达形式,系统的全局最优解转化为后向的优化序列,如下:
系统最终时刻N的成本为如式(17),表示在约束范围内,各系统状态对应的瞬时成本及惩罚,
JN(xi)=lN(xi)+gN(xi) (17)
根据DP算法的后向优化原理,从k=N-1到0的迭代计算可表示式(18),
得到初始时刻各状态变量对应的最优控制路径后,从目标初始状态x0出发,根据各时刻状态变量与最优控制变量的对应关系,进行前向计算,即可确定的最优解。

Claims (1)

1.一种终止状态受约束的行星式混合动力系统全局优化方法,其特征在于:
第一步,确定行星式混合动力系统全局优化目标函数及约束条件:行星式混合动力系统的全局优化问题表述为:
式(1)中,x(t)为状态变量,u(t)为控制变量,t为时间变量,x0初始时刻的状态变量,tf为终止时刻,xf,min为终止时刻状态变量的下边界,xf,max为终止时刻状态变量的上边界,J(u(t))为系统的成本函数,针对混合动力系统可表示为全工况中每一时刻瞬时成本L(x(t),u(t),t)的积分,加上基于终止状态的惩罚函数G(x(tf)),如下:
第二步,采用动态规划算法离散全局优化目标函数:将式(1)、(2)所表示的优化问题转化为多阶段离散问题,如下:
xk+1=Fk(xk,uk),k=0,1,...,N-1 (4)
式(4)中,xk为离散状态变量,xk∈[xmin,xmax],uk为离散控制变量,uk∈[umin,umax],k为离散采样时间,将系统的控制率为π={μ01,....μN-1},那么以π为控制率,初始状态x(0)=x0时,离散系统的总成本表示为:
式(5)中,lk(xk,uk)是第k时刻采用控制变量uk,状态变量为xk时的系统瞬时成本,gk(xk)为第k时基于状态变量xk的惩罚量,表示为gk(xk)=α(xf-xk)2,xf为系统终止时刻的目标状态,α为大于零的惩罚函数系数,lN(xN,uN)+gN(xN)是系统在终止时刻的瞬时成本,代表0~N–1时刻的总成本;
基于上述离散系统的成本函数,进一步得到离散系统的最优化问题为:
式(6)中,Π代表在目标工况下,所有可行控制规则的集合;
第三步,开展系统状态变量边界约束的计算:步骤1,采用等效内阻模型作为电池模型,可以得到电池电流和电池功率之间的关系:
式(7)中,Pbat为电池功率,电池开路电压E=fU(SOC),是关于SOC的函数,根据SOC与电池容量、电流的关系:
式(8)中,E为电池开路电压,Ibat为电流,rint为等效内阻,Qbat为电容真实容量,Qmax为电池最大容量,SOC为电池荷电状态,由式(8)可以得到混合动力系统容量与电流的关系:
Qbat(k+1)=Qbat(k)+IbatΔt (9)
式(9)中,Δt为计算步长的时间,
步骤2,确定系统状态变量与控制变量的关系:根据式(9)可以得到系统状态变量与控制变量的关系,如下:
由式(10)系统状态变量与控制变量之间的关系可以表示为:
xk+1=fk(xk,uk)+xk (11)
步骤3,系统状态下边界求解方法:定义k时刻能够允许系统达到终止状态下边界的最小状态变量值为该时刻的下边界约束xk,low,根据混合动力系统的电量平衡要求,系统终止状态的范围为控制目标是已知量,即:xN,low=xf,min,xf,min为终止状态的下边界值,k=N-1到k=0时刻的系统状态下边界可以用后向迭代计算进行求解,如下:
考虑本系统的状态变量为SOC,为[0,1]之间的正数,式(12)可以进一步改写为:
在后向迭代计算中,xk+1,low为已知量,初始值为xf,min,仅xk,low和uk为未知变量,可以利用不动点迭代方法进行求解xk,low,k时刻的下边界求解流程如下:
①初始化:其中j为k时刻计算状态量下边界的迭代次数索引;
②开始迭代计算,直到达到特定的容差:如下:
考虑状态变量SOC的数量级,取容差ξ=10-5,在完成k时刻的下边界求解后,重复上述①②,继续求解得到k-1时刻的下边界,直到k=0;
步骤4,系统状态上边界计算方法:用步骤3求解系统下边界的相同方法计算系统上边界;
第四步,动态规划算法向后寻优迭代计算:根据DP算法优化原理,结合式(5)的目标函数表达形式,系统的全局最优解转化为后向的优化序列,如下:
系统最终时刻N的成本为如式(15),表示在约束范围内,各系统状态对应的瞬时成本及惩罚,
JN(xi)=lN(xi)+gN(xi) (15)
式(15)中,xi为当前时刻的状态变量,
根据DP算法的后向优化原理,从k=N-1到0的迭代计算可表示式(16),
得到初始时刻各状态变量对应的最优控制路径后,从目标初始状态x0出发,根据各时刻状态变量与最优控制变量的对应关系,进行前向计算,即可确定的最优解。
CN201810285019.3A 2018-04-02 2018-04-02 终止状态受约束的行星式混合动力系统全局优化方法 Active CN108528434B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201810285019.3A CN108528434B (zh) 2018-04-02 2018-04-02 终止状态受约束的行星式混合动力系统全局优化方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201810285019.3A CN108528434B (zh) 2018-04-02 2018-04-02 终止状态受约束的行星式混合动力系统全局优化方法

Publications (2)

Publication Number Publication Date
CN108528434A CN108528434A (zh) 2018-09-14
CN108528434B true CN108528434B (zh) 2019-07-26

Family

ID=63482813

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201810285019.3A Active CN108528434B (zh) 2018-04-02 2018-04-02 终止状态受约束的行星式混合动力系统全局优化方法

Country Status (1)

Country Link
CN (1) CN108528434B (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110155034B (zh) * 2019-05-31 2020-12-04 吉林大学 一种输入分配式混合动力系统行星排特征参数的匹配方法
CN111038478B (zh) * 2019-12-06 2021-05-18 苏州智加科技有限公司 车辆行驶速度确定方法和装置

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20130128659A (ko) * 2012-05-17 2013-11-27 한국에너지기술연구원 복합 신재생에너지시스템 최적설계용량 산정방법

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100872800B1 (ko) * 2007-07-30 2008-12-09 연세대학교 산학협력단 하이브리드 시스템 모델링에 기반한 전력 시스템 안정기의파라미터 최적화 방법
US8676415B2 (en) * 2008-07-21 2014-03-18 Ford Global Technologies, Llc Engine power demand load-leveling for a hybrid electric vehicle
CN103402809B (zh) * 2011-01-13 2016-11-09 卡明斯公司 用于控制混合动力传动系中的功率输出分布的系统、方法和装置
US10065628B2 (en) * 2011-05-09 2018-09-04 Ford Global Technologies, Llc Location enhanced distance until charge (DUC) estimation for a plug-in hybrid electric vehicle (PHEV)
CN103770779A (zh) * 2014-01-25 2014-05-07 江苏大学 一种双行星排式混合动力汽车能量管理混杂模型控制方法

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20130128659A (ko) * 2012-05-17 2013-11-27 한국에너지기술연구원 복합 신재생에너지시스템 최적설계용량 산정방법

Also Published As

Publication number Publication date
CN108528434A (zh) 2018-09-14

Similar Documents

Publication Publication Date Title
Xiong et al. Towards a smarter hybrid energy storage system based on battery and ultracapacitor-A critical review on topology and energy management
Panday et al. Energy management strategy for hybrid electric vehicles using genetic algorithm
CN108528436B (zh) 一种内外层嵌套的ecms多目标双层优化方法
Zhu et al. A four-step method to design an energy management strategy for hybrid vehicles
CN109921504B (zh) 车载混合储能系统及其非线性鲁棒自适应功率控制方法
CN108528434B (zh) 终止状态受约束的行星式混合动力系统全局优化方法
CN108382556B (zh) 一种基于模糊控制理论的混合动力船舶电池组均衡管理方法
CN106786492A (zh) 含有变系数负载观测器的混合储能控制系统及其设计方法
Liu et al. Multi-objective optimization of energy management strategy on hybrid energy storage system based on radau pseudospectral method
CN111301397B (zh) 一种插电混合动力汽车变时域模型预测能量管理方法
Zhao et al. Equivalent series resistance-based real-time control of battery-ultracapacitor hybrid energy storage systems
CN107491571A (zh) 一种整车性能仿真的方法及系统
CN111823883A (zh) 一种纯电动汽车的功率分配方法
CN103770779A (zh) 一种双行星排式混合动力汽车能量管理混杂模型控制方法
Chen et al. Power reserve predictive control strategy for hybrid electric vehicle using recognition-based long short-term memory network
Silva et al. An integrated fuzzy logic energy management for a dual-source electric vehicle
Zheng et al. Variable universe fuzzy control for battery equalization
Zhang et al. Vehicle speed optimized fuzzy energy management for hybrid energy storage system in electric vehicles
CN113460026A (zh) 一种功率分配方法、装置、设备及汽车
Liu et al. Prescribed-performance-based adaptive control for hybrid energy storage systems of battery and supercapacitor in electric vehicles
Liu et al. Power distribution strategy based on state of charge balance for hybrid energy storage systems in all-electric ships
CN102750422A (zh) 一种电动车驱动系统的设计方法
Kim et al. Hydrone: Reconfigurable energy storage for UAV applications
Schmitt et al. Real-time nonlinear model predictive control for the energy management of hybrid electric vehicles in a hierarchical framework
CN115257697B (zh) 一种混动车辆能量管理及协同控制方法、系统及应用

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant