CN108521248A - 一种实现分布式mppt的可移动柜式光伏水泵 - Google Patents

一种实现分布式mppt的可移动柜式光伏水泵 Download PDF

Info

Publication number
CN108521248A
CN108521248A CN201810398266.4A CN201810398266A CN108521248A CN 108521248 A CN108521248 A CN 108521248A CN 201810398266 A CN201810398266 A CN 201810398266A CN 108521248 A CN108521248 A CN 108521248A
Authority
CN
China
Prior art keywords
voltage
water pump
photovoltaic
bridge
converters
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201810398266.4A
Other languages
English (en)
Other versions
CN108521248B (zh
Inventor
李彬
刘海明
孟佳阳
宋成法
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yangzhou University
Original Assignee
Yangzhou University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yangzhou University filed Critical Yangzhou University
Priority to CN201810398266.4A priority Critical patent/CN108521248B/zh
Publication of CN108521248A publication Critical patent/CN108521248A/zh
Application granted granted Critical
Publication of CN108521248B publication Critical patent/CN108521248B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02SGENERATION OF ELECTRIC POWER BY CONVERSION OF INFRARED RADIATION, VISIBLE LIGHT OR ULTRAVIOLET LIGHT, e.g. USING PHOTOVOLTAIC [PV] MODULES
    • H02S10/00PV power plants; Combinations of PV energy systems with other systems for the generation of electric power
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05FSYSTEMS FOR REGULATING ELECTRIC OR MAGNETIC VARIABLES
    • G05F1/00Automatic systems in which deviations of an electric quantity from one or more predetermined values are detected at the output of the system and fed back to a device within the system to restore the detected quantity to its predetermined value or values, i.e. retroactive systems
    • G05F1/66Regulating electric power
    • G05F1/67Regulating electric power to the maximum power available from a generator, e.g. from solar cell
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/22Conversion of dc power input into dc power output with intermediate conversion into ac
    • H02M3/24Conversion of dc power input into dc power output with intermediate conversion into ac by static converters
    • H02M3/28Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac
    • H02M3/325Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal
    • H02M3/335Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M3/3353Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only having at least two simultaneously operating switches on the input side, e.g. "double forward" or "double (switched) flyback" converter
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/22Conversion of dc power input into dc power output with intermediate conversion into ac
    • H02M3/24Conversion of dc power input into dc power output with intermediate conversion into ac by static converters
    • H02M3/28Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac
    • H02M3/325Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal
    • H02M3/335Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M3/33569Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only having several active switching elements
    • H02M3/33576Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only having several active switching elements having at least one active switching element at the secondary side of an isolation transformer
    • H02M3/33584Bidirectional converters
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/22Conversion of dc power input into dc power output with intermediate conversion into ac
    • H02M3/24Conversion of dc power input into dc power output with intermediate conversion into ac by static converters
    • H02M3/28Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac
    • H02M3/325Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal
    • H02M3/335Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M3/33569Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only having several active switching elements
    • H02M3/33576Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only having several active switching elements having at least one active switching element at the secondary side of an isolation transformer
    • H02M3/33592Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only having several active switching elements having at least one active switching element at the secondary side of an isolation transformer having a synchronous rectifier circuit or a synchronous freewheeling circuit at the secondary side of an isolation transformer
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02SGENERATION OF ELECTRIC POWER BY CONVERSION OF INFRARED RADIATION, VISIBLE LIGHT OR ULTRAVIOLET LIGHT, e.g. USING PHOTOVOLTAIC [PV] MODULES
    • H02S40/00Components or accessories in combination with PV modules, not provided for in groups H02S10/00 - H02S30/00
    • H02S40/30Electrical components
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P27/00Arrangements or methods for the control of AC motors characterised by the kind of supply voltage
    • H02P27/04Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage
    • H02P27/06Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage using dc to ac converters or inverters
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/56Power conversion systems, e.g. maximum power point trackers

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Automation & Control Theory (AREA)
  • Dc-Dc Converters (AREA)
  • Control Of Electrical Variables (AREA)

Abstract

本发明公开了光伏应用领域内的一种实现分布式MPPT的可移动柜式光伏水泵,包括光伏组件和电气组件;光伏组件包括环绕在柜体外周的光伏板和设置在柜体顶部的光伏板;电气组件包括对应连接在每个光伏板上的可实现最大功率追踪的DC/DC控制电路,每个DC/DC控制电路的输出端串联后形成直流母线连接水泵控制单元,每个DC/DC控制电路的输出端还连接有双向隔离型半桥DC/DC变换器,双向隔离型半桥DC/DC变换器的原边连接DC/DC控制电路的输出端,双向隔离型半桥DC/DC变换器的副边接有均压电容,双向隔离型半桥DC/DC变换器对应的均压电容均并联在一起,水泵控制单元用以控制水泵工作,本发明解决了失配的问题,克服了因环境变化而导致系统整体效率降低的问题,可用于水泵控制中。

Description

一种实现分布式MPPT的可移动柜式光伏水泵
技术领域
本发明涉及一种水泵,特别涉及一种光伏水泵。
背景技术
光伏水泵系统就是典型的独立光伏发电系统。光伏水泵系统是由光伏阵列、变换器和电机水泵组成,光伏阵列将太阳能转化成直流电,经过变换器驱动电机水泵抽水,可以用在人畜饮水、浇灌等。这种光伏水泵系统简单而高效,早期的光伏水泵系统由简单直流电机驱动水泵,直流水泵系统不带最大功率跟踪功能,水泵输出功率并不随光伏阵列最大输出功率变化而变化,系统的效率并不高。随着电力电子技术发展,开关器件日趋成熟,控制理论等相关学科的发展也推动了光伏水泵的发展,相继产生了交流水泵系统和无刷直流水泵系统。越来越多的光伏水泵制造商倾向于采用无刷直流电动机作为水泵电机,尤其是离心式潜水泵。直流无刷电机用电子换向器替代传统的换向器,中间省去了换向电刷,降低了维护成本,同时也带来了复杂的控制保护电路。
光伏系统会因为光照情况的不匹配问题损失大量的能量,通常称之为光伏系统的失配问题。失配问题通常由于以下原因造成:光伏系统周围物体阴影的遮挡,太阳能板之间制造特性的不一致,太阳能板的具体安装朝向不同等。光照失配问题会给整个光伏系统带来不可忽视的能量损失,而且会使得部分光伏板的反并联的旁路二极管导通,从而使其整体的输出静态特性曲线呈现出“多个最大功率点”的现象,这对传统最大功率跟踪的算法也提出了挑战,也会使得整个光伏并网系统的输出功率出现震荡。因此人们提出了“分布式最大功率跟踪(distributed MPPT)”的概念,将每块光伏太阳能板与一块独立的、用于实现最大功率跟踪DC/DC变换器相连,将太阳能板和与之相连的DC/DC变换器称为一个智能光伏模块或光伏集成模块(MIC),然后在此基础上对多个模块进行串并联组建整个太阳能系统。
针对各种不同型号、不同功率的光伏组件需要互联组成更大功率的光伏发电系统,为克服上述问题,需要实现组件输出的均压控制。这就需要在各集成组件之间有相互的功率传递,实现整个系统中的每个集成光伏组件输出的电压都相同,从而解决失配问题,同时这种方法还可以让光伏集成组件实现独立完成MPPT的优化过程,克服了因环境变化而导致系统整体效率降低的问题。
发明内容
本发明的目的是提供一种实现分布式MPPT的可移动柜式光伏水泵,解决现有技术中失配问题,使得光伏组件实现独立实现MPPT优化过程,提高光伏的工作效率。
本发明的目的是这样实现的:一种实现分布式MPPT的可移动柜式光伏水泵,其特征在于,包括设置在电气柜表面的光伏组件以及设置在电气柜内部的电气组件;
所述光伏组件包括环绕在柜体外周的光伏板和设置在柜体顶部的光伏板;
所述电气组件包括对应连接在每个光伏板上的可实现最大功率追踪的DC/DC控制电路,每个DC/DC控制电路的输出端串联后形成直流母线连接水泵控制单元,每个所述DC/DC控制电路的输出端还连接有双向隔离型半桥DC/DC变换器,双向隔离型半桥DC/DC变换器的原边连接DC/DC控制电路的输出端,双向隔离型半桥DC/DC变换器的副边接有均压电容,所述双向隔离型半桥DC/DC变换器对应的均压电容均并联在一起,水泵控制单元用以控制水泵工作。
作为本发明的进一步限定,所述水泵控制单元包括用以供电的隔离电压电路、用以控制电机的变频器、光伏组件输出电压电流检测电路、直流母线电压电流检测电路、水位传感器、信号调理电路、CPU、隔离电压器以及驱动电路,所述变频器连接在直流母线的输出端上,所述光伏组件输出电压电流检测电路、直流母线电压电流检测电路经信号调理电路与CPU的输入端相连,CPU的输出端经隔离电压器与驱动电路相连,所述驱动电路驱动变频器、DC/DC控制电路工作。使得水泵、DC/DC控制电路的控制更加方便,精度更高。
作为本发明的进一步限定,所述双向隔离型半桥DC/DC变换器通过移相控制能够实现能量从高电压一侧传递到低电压一侧,直至双向隔离型半桥DC/DC控制电路输入和输出电压相等。通过该方式实现整个系统中的每个集成光伏组件输出的电压都相同,调节更加方便。
作为本发明的进一步限定,所述电气组件的启动策略为:
1)实现MPPT的DC/DC控制电路限压电压模式,输出端串联后的总电压为额定运行电压的1.2倍,以维持电机控制器所需要的直流电压;
2)双向隔离型半桥DC/DC变换器工作,使实现MPPT的DC/DC控制电路输出电压相等;
3)水泵电机控制器检测到1.2倍的额定电压后,通过控制电机转速,从而控制水泵的输出功率,维持级联总电压在设计的最优工作值,进行能量的传输。因水泵控制单元不能进行预充电,通过该策略使水泵电机控制器工作在合适的工作电压,预充电工作由光伏组件实现,从而保证了水泵工作的稳定性和可靠性。
与现有技术相比,本发明的有益效果在于,本发明实现了不同功率、不用型号的光伏组件的均压控制,从而解决了失配的问题,同时本发明还可以让光伏集成组件实现独立完成MPPT的优化过程,克服了因环境变化而导致系统整体效率降低的问题。本发明可用于水泵控制中。
附图说明
图1为本发明的光伏组件外部布置示意图。
图2为本发明的系统原理框图。
图3为本发明中Ibus-Voi集成光伏组件特性曲线。
图4为本发明中Pi-Voi特性曲线集成光伏组件。
图5为本发明中Pall-Vbus特性曲线。
图6为本发明中均压控制结构图。
图7为本发明中双向隔离型半桥DC/DC变换器原理图。
具体实施方式
下面结合附图和具体实施例,对本发明作进一步详细说明。
如图1-2所示的一种实现分布式MPPT的可移动柜式光伏水泵,包括设置在电气柜表面的光伏组件以及设置在电气柜内部的电气组件;
所述光伏组件包括环绕在柜体13外周的光伏板1和设置在柜体13顶部的光伏板1;
所述电气组件包括对应连接在每个光伏板1上的可实现最大功率追踪的DC/DC控制电路2,每个DC/DC控制电路2的输出端串联后形成直流母线并连接水泵控制单元,每个所述DC/DC控制电路2的输出端还连接有双向隔离型半桥DC/DC变换器12,双向隔离型半桥DC/DC变换器12的原边连接DC/DC控制电路2的输出端,双向隔离型半桥DC/DC变换器12的副边接有均压电容,所述双向隔离型半桥DC/DC变换器12对应的均压电容均并联在一起,所述双向隔离型半桥DC/DC变换器12通过移相控制能够实现能量从高电压一侧传递到低电压一侧,直至双向隔离型半桥DC/DC控制电路2输入和输出电压相等,水泵控制单元用以控制水泵工作,所述水泵控制单元包括用以供电的隔离电源电路5、用以控制电机4的变频器3、光伏组件输出电压电流检测电路9、直流母线电压电流检测电路10、水位传感器11、信号调理电路7、CPU6、隔离电压器以及驱动电路8,所述变频器3连接在直流母线的输出端上,所述光伏组件输出电压电流检测电路9、直流母线电压电流检测电路10经信号调理电路7与CPU6的输入端相连,CPU6的输出端经隔离电压器与驱动电路8相连,所述驱动电路8驱动变频器3、DC/DC控制电路2工作;
所述电气组件的启动策略为:
1)实现MPPT的DC/DC控制电路2限压电压模式,输出端串联后的总电压为额定运行电压的1.2倍,以维持电机4控制器所需要的直流电压;
2)双向隔离型半桥DC/DC变换器12工作,使实现MPPT的DC/DC控制电路2输出电压相等;
3)水泵电机4控制器检测到1.2倍的额定电压后,通过控制电机4转速,从而控制水泵的输出功率,维持级联总电压在设计的最优工作值,进行能量的传输。
光伏组件的布置基于电气柜结构,在电气柜的前后左右以及柜顶部布置5块光伏组件,这样将光伏组件和电气柜合二为一,既减小了布置空间,也便于运输和安装,可以形成移动式光伏水泵系统。
光伏组件经DC/DC控制电路实现MPPT后,工作在功率恒定的最大功率点,具有恒功率特性;DC/DC控制电路的MPPT控制器输出端串联,形成了串联运行总线,总线上的电压和电流定义为串联运行电压、电流;光伏组件控制器输出端电压Voi与输出功率Pi成正比,辐照度低的组件因为Pi较低,Voi也较低,相反,辐照度高的组件,其Voi相应较高。当光强不变,组件在MPPT控制下工作时,Pi数值稳定不变,并且Pi大小与光强成正比。由恒功率电源外特性可知,Voi下降将使得串联支路电流Ibus上升,但当电流上升到限流值时,系统将进行限流保护控制。
以四块光伏组件为例,已知各自的最大功率值,给定光伏组件控制器输出端电压、电流限定值;Ibus-Voi特性曲线如图3所示。图3中Voi和Ibus相乘即得各组件输出功率Pi,可得Pi-Voi特性曲线,如图4所示。
当Vbus从0逐渐增大时,Voi也将逐渐从0逐渐上升至限压值,从图4中可以看出,总功率在一段区间内线性上升,并在一段运行电压区间内功率值保持不变,当Voi上升至限压值时,DC/DC控制电路将进行限压保护控制,使总功率发生损失;串联支路上总输出功率Pall与运行母线电压Vbus的关系如图5所示,可见使5个组件都工作在最大功率点的母线运行电压范围变大。
参考图6,光伏板连接DC/DC控制电路的输入端,DC/DC控制电路通过电流环PI控制DC/DC控制电路开关管的通断实现光伏电路的MPPT功能,光伏板和DC/DC控制电路之间并联前置电容,在DC/DC控制电路后串接双向隔离型半桥DC/DC变换器,在DC/DC控制电路与双向隔离型半桥DC/DC变换器之间并联输出滤波电容,实现能量的双向流动,同时双向隔离型半桥DC/DC变换器输出端引出两个端子与均压电容并联,同时引出两个端子与上一级的均压电容相并联,保证相邻两个双向隔离型半桥DC/DC变换器的副边电压一致,以图6为例,假设光伏组件1的功率大,光伏组件2的功率小,那么组件2的DC/DC控制电路输出电压低于均压电容上的电压,通过移相控制,功率从均压电容流向组件2的DC/DC控制电路输出滤波电容,给组件2的DC/DC控制电路电路的输出滤波电容充电,组件2的DC/DC控制电路的输出滤波电容电压升高,这也使得均压电容电压下降,此时组件1的DC/DC控制电路的输出滤波电容电压大于均压电容电压,通过移相控制,功率从均压电容流向组件1的DC/DC控制电路输出滤波电容流向均压电容,均压电容电压升高,同时组件1的DC/DC控制电路输出滤波电容电压下降;通过组件1和组件2的均压电路,实现了组件1的DC/DC控制电路电路的输出滤波电容给组件2的DC/DC控制电路电路的输出滤波电容充电,最终达到两个组件的DC/DC控制电路电路的输出滤波电容电压相等;电压高的一端向电压低的一端进行功率传递,直到相邻DC/DC控制电路电路输出电压相等;能量通过控制变换器移向进行双向传递,由能量高的一级传向低的一级,最终实现变换器的原边电压一致,即DC/DC控制电路的输出电压一致。
其中DC/DC控制电路采用电流内环、MPPT外环的双环反馈控制方式,MPPT控制策略选用经典的扰动观察法;DC/DC控制电路输出电压与光伏板最大功率成正比,功率不同,输出电压也不同;为实现均压目的,采用双向隔离型半桥DC/DC变换器将DC/DC控制电路输出端功率进行重新分配。电压高的一端向电压低的一端进行功率传递,直到满足Uoi=kcUC。又由于
其中Uoi是单个光伏板DC/DC控制电路输出电压,Ubus是光伏系统输出电压,结合上面2式,可以得到:为了消除相邻光伏板间功率传递连接通路对原电路连接的影响,均压电路采用隔离式结构。
实现光伏集成光伏板的均压电路的基本要求是各光伏板间的联络应尽量减少,但这样会导致各个光伏板不知道级联支路中的其它光伏板的输出电压值;本发明中的双向隔离型半桥DC/DC变换器的输出端通过均压电容并联,利用了并联的均压电容的电压值相等,且并联均压电容之间的能量传递具有快速性的特点,通过控制DC/DC控制电路的输出端与均压电容的电压值具有线性关系来实现DC/DC控制电路输出端的均压;同时为实现DC/DC控制电路输出端串联,均压电路的输出并联,需要将均压电路输入输出隔离,因此选用具有对称结构的隔离式半桥双向DC/DC,如图7所示。Uoi是双向隔离型半桥DC/DC变换器原边电压,即该串联DC/DC控制电路的输出端,Uc是双向隔离型半桥DC/DC变换器副边电压,在没有均压控制的光伏系统中,为防止某一光伏板两端电压过大损坏电路,一般程序中会有限压控制,相比较本发明提出的均压策略下的光伏系统,前者的光伏系统总功率小于后者的总功率;本发明提出的并联均压电容拓扑结构,可以有效地使得各级双向隔离型半桥DC/DC变换器副边电压保持一致,通过移相控制达到Uoi=kcUC目的,即双向DC/DC变换器原副边电压一致,也就是各级DC/DC控制电路的输出端电压一致,最终使得光伏系统在较短的时间内达到各级输出电压均衡。
因驱动水泵电机的控制器不能给串联母线电容进行预充电,为使水泵电机控制器工作在合适的工作电压,预充电工作由光伏板控制器实现。系统的启动时序为:1)实现MPPT的DC/DC控制电路限压电压模式,级联后的总电压为额定运行电压的1.2倍,以维持电机控制器所需要的直流电压;2)双向隔离型半桥DC/DC变换器工作,使实现MPPT的DC/DC控制电路输出电压相等;3)水泵电机控制器检测到1.2倍的额定电压后,通过控制电机转速,从而控制水泵的输出功率,维持级联总电压在设计的最优工作值,进行能量的传输。
本发明并不局限于上述实施例,在本发明公开的技术方案的基础上,本领域的技术人员根据所公开的技术内容,不需要创造性的劳动就可以对其中的一些技术特征作出一些替换和变形,这些替换和变形均在本发明的保护范围内。

Claims (4)

1.一种实现分布式MPPT的可移动柜式光伏水泵,其特征在于,包括设置在电气柜表面的光伏组件以及设置在电气柜内部的电气组件;
所述光伏组件包括环绕在柜体外周的光伏板和设置在柜体顶部的光伏板;
所述电气组件包括对应连接在每个光伏板上的可实现最大功率追踪的DC/DC控制电路,每个DC/DC控制电路的输出端串联后形成直流母线连接水泵控制单元,每个所述DC/DC控制电路的输出端还连接有双向隔离型半桥DC/DC变换器,双向隔离型半桥DC/DC变换器的原边连接DC/DC控制电路的输出端,双向隔离型半桥DC/DC变换器的副边接有均压电容,所述双向隔离型半桥DC/DC变换器对应的均压电容均并联在一起,水泵控制单元用以控制水泵工作。
2.根据权利要求1所述的一种实现分布式MPPT的可移动柜式光伏水泵,其特征在于,所述水泵控制单元包括用以供电的隔离电压电路、用以控制电机的变频器、光伏组件输出电压电流检测电路、直流母线电压电流检测电路、水位传感器、信号调理电路、CPU、隔离电压器以及驱动电路,所述变频器连接在直流母线的输出端上,所述光伏组件输出电压电流检测电路、直流母线电压电流检测电路经信号调理电路与CPU的输入端相连,CPU的输出端经隔离电压器与驱动电路相连,所述驱动电路驱动变频器、DC/DC控制电路工作。
3.根据权利要求1或2所述的一种实现分布式MPPT的可移动柜式光伏水泵,其特征在于,所述双向隔离型半桥DC/DC变换器通过移相控制能够实现能量从高电压一侧传递到低电压一侧,直至双向隔离型半桥DC/DC控制电路输入和输出电压相等。
4.根据权利要求1或2所述的一种实现分布式MPPT的可移动柜式光伏水泵,其特征在于,所述电气组件的启动策略为:
1)实现MPPT的DC/DC控制电路限压电压模式,输出端串联后的总电压为额定运行电压的1.2倍,以维持电机控制器所需要的直流电压;
2)双向隔离型半桥DC/DC变换器工作,使实现MPPT的DC/DC控制电路输出电压相等;
3)水泵电机控制器检测到1.2倍的额定电压后,通过控制电机转速,从而控制水泵的输出功率,维持级联总电压在设计的最优工作值,进行能量的传输。
CN201810398266.4A 2018-04-28 2018-04-28 一种实现分布式mppt的可移动柜式光伏水泵 Active CN108521248B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201810398266.4A CN108521248B (zh) 2018-04-28 2018-04-28 一种实现分布式mppt的可移动柜式光伏水泵

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201810398266.4A CN108521248B (zh) 2018-04-28 2018-04-28 一种实现分布式mppt的可移动柜式光伏水泵

Publications (2)

Publication Number Publication Date
CN108521248A true CN108521248A (zh) 2018-09-11
CN108521248B CN108521248B (zh) 2019-12-06

Family

ID=63429512

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201810398266.4A Active CN108521248B (zh) 2018-04-28 2018-04-28 一种实现分布式mppt的可移动柜式光伏水泵

Country Status (1)

Country Link
CN (1) CN108521248B (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110651692A (zh) * 2019-09-03 2020-01-07 张家港市水务局 一种农业智能节水灌溉系统中的一体化阀门控制器

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005045922A (ja) * 2003-07-22 2005-02-17 Ebara Corp ポンプ制御方法及びポンプ制御装置
US20150381064A1 (en) * 2013-07-11 2015-12-31 Fuji Electric Co., Ltd. Bidirectional dc/dc converter
CN106712643A (zh) * 2016-12-29 2017-05-24 上海新时达电气股份有限公司 光伏水泵控制方法及装置
CN107612405A (zh) * 2017-10-30 2018-01-19 阳光电源股份有限公司 一种光伏固态变压器
CN107882746A (zh) * 2017-12-21 2018-04-06 云南聚诚科技有限公司 一种光伏水泵系统及设计方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005045922A (ja) * 2003-07-22 2005-02-17 Ebara Corp ポンプ制御方法及びポンプ制御装置
US20150381064A1 (en) * 2013-07-11 2015-12-31 Fuji Electric Co., Ltd. Bidirectional dc/dc converter
CN106712643A (zh) * 2016-12-29 2017-05-24 上海新时达电气股份有限公司 光伏水泵控制方法及装置
CN107612405A (zh) * 2017-10-30 2018-01-19 阳光电源股份有限公司 一种光伏固态变压器
CN107882746A (zh) * 2017-12-21 2018-04-06 云南聚诚科技有限公司 一种光伏水泵系统及设计方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110651692A (zh) * 2019-09-03 2020-01-07 张家港市水务局 一种农业智能节水灌溉系统中的一体化阀门控制器

Also Published As

Publication number Publication date
CN108521248B (zh) 2019-12-06

Similar Documents

Publication Publication Date Title
CN103227577A (zh) 功率转换装置和光伏模块
CN106253330A (zh) 一种光伏功率优化系统
CN101867291A (zh) 户用太阳能光伏逆变器
CN203313097U (zh) 一种大功率光伏发电系统
CN108448633A (zh) 一种适合不同功率组件级联的光伏集成组件控制器
CN101938136A (zh) 光伏组件直流并网控制器
CN102611355A (zh) 一种光伏阵列汇流箱
CN103117650A (zh) 一种准z源逆变器
CN102420437A (zh) 一种多重滤波的单相光伏并网发电系统
CN204392098U (zh) 一种单相电力电子变压器及其应用系统
CN108521248A (zh) 一种实现分布式mppt的可移动柜式光伏水泵
CN203707804U (zh) 三相级联多电平光伏逆变器及其控制系统
CN107925361A (zh) 多电平逆变器拓扑电路
CN206628991U (zh) 五电平低共模漏电流单相光伏并网逆变器及光伏并网系统
CN202713181U (zh) 光伏逆变器及使用该光伏逆变器的逆变器并柜装置
CN202696465U (zh) 多电平变换器的功率器件驱动电源及高压变频器
CN203537259U (zh) 五电平单相光伏并网逆变器
Nisha et al. DC link embedded impedance source inverter for photovoltaic system
CN203537261U (zh) 七电平单相光伏并网逆变器
CN103312161A (zh) 一种并网光伏逆变器Boost电路
CN111490561A (zh) 一种船舶光伏发电并网系统
CN207098966U (zh) 一种基于电荷泵电路的pv并网逆变器
CN201054549Y (zh) 一种基于igbt模块的通用换流器平台
CN103633869A (zh) 七电平单相光伏并网逆变器
CN208597060U (zh) 一种最大优化能量的智能光伏模块

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant