CN108520258A - 字符编码标志 - Google Patents
字符编码标志 Download PDFInfo
- Publication number
- CN108520258A CN108520258A CN201810300423.3A CN201810300423A CN108520258A CN 108520258 A CN108520258 A CN 108520258A CN 201810300423 A CN201810300423 A CN 201810300423A CN 108520258 A CN108520258 A CN 108520258A
- Authority
- CN
- China
- Prior art keywords
- character
- filled circles
- character code
- code mark
- foreground
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Classifications
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06V—IMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
- G06V30/00—Character recognition; Recognising digital ink; Document-oriented image-based pattern recognition
- G06V30/10—Character recognition
- G06V30/14—Image acquisition
- G06V30/148—Segmentation of character regions
- G06V30/153—Segmentation of character regions using recognition of characters or words
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T7/00—Image analysis
- G06T7/10—Segmentation; Edge detection
- G06T7/11—Region-based segmentation
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T7/00—Image analysis
- G06T7/10—Segmentation; Edge detection
- G06T7/136—Segmentation; Edge detection involving thresholding
-
- H—ELECTRICITY
- H03—ELECTRONIC CIRCUITRY
- H03M—CODING; DECODING; CODE CONVERSION IN GENERAL
- H03M7/00—Conversion of a code where information is represented by a given sequence or number of digits to a code where the same, similar or subset of information is represented by a different sequence or number of digits
- H03M7/30—Compression; Expansion; Suppression of unnecessary data, e.g. redundancy reduction
- H03M7/70—Type of the data to be coded, other than image and sound
- H03M7/705—Unicode
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06V—IMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
- G06V30/00—Character recognition; Recognising digital ink; Document-oriented image-based pattern recognition
- G06V30/10—Character recognition
Landscapes
- Engineering & Computer Science (AREA)
- Theoretical Computer Science (AREA)
- Computer Vision & Pattern Recognition (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Multimedia (AREA)
- Character Input (AREA)
Abstract
本发明公开了一种字符编码标志,所述编码标志由实心圆和设置在实心圆上的字符组成,所述实心圆部分取背景色,所述字符部分取前景色,背景色与前景色具有对比灰度值,不同的编码字符对应设定有唯一的编码值。本发明提供的字符编码标志以字符形状与实心圆叠加组合构成,通过对字符编码标志上的字符进行识别,可实现快速精确解码,圆形标志易于精确定位,适用于动态匹配以及大视场拼接等场合。
Description
技术领域
本发明属于数字近景摄影测量技术领域,具体涉及一种适用于大尺寸结构和动态测量对象的字符编码标志。
背景技术
对大视场范围内的大尺寸结构进行动态测量时,结构表面往往缺乏清晰可辨识度高的纹理特征,不便于直接快速、准确地提取结构表面的特征信息,不能满足实验要求。目前,通常采用在被测结构上人工布设合作标志的方式产生特征点用于识别、追踪,因此,具有唯一编码值的人工合作标志的设计与应用受到广泛研究与关注,如何设计出结构简单,具有唯一编码值且数量丰富的方案且识别定位快速精准的方法成为行业研究的热点。
现有的编码合作标志主要有环形编码合作标志和点状分布编码合作标志两种,如范生宏于2006年在工业数字摄影测量中人工标志的研究与应用中提出的环型编码标志采用了同心圆环形编码方法,编码圆环被等角度分为n等分,每一等分的编码位采用0或1二进制,其设计原理简单,编码数量随着n值增大而增加,但当n增加到一定数量时,每一个编码位的区域变小。当目标物振动比较大或者摄像机成像畸变较大时,被测物表面上的编码标志图案成像也会发生失真,容易导致编码区识别错误而出现误判的现象。此外,现有的环形编码合作标志和点状分布编码合作标志的解码原理相对复杂,对印刷精度要求较高,且光照变化和镜头畸变会引起图像特征提取误差,进一步容易导致编码区识别错误而误匹配的现象。
因此,提供一种简易可靠的合作编码标志及相应的高精度定位和准确的解码识别方法是大尺寸动态测量领域的迫切需求。
发明内容
本发明的目的在于避免现有技术中的不足而提供一种字符编码标志,其可实现丰富数量的唯一编码,且能够快速、稳定地识别出合作编码标志并进行精确的定位。
本发明的目的通过以下技术方案实现:
本发明提供一种字符编码标志,所述编码标志由实心圆和设置在实心圆上的字符组成,所述实心圆部分取背景色,所述字符部分取前景色,背景色与前景色具有对比灰度值,不同的编码字符对应设定有唯一的编码值。
作为进一步的改进,所述字符的边界位于实心圆内。
作为进一步的改进,所述字符为数字、字母、汉字中的一种或多种。
作为进一步的改进,所述背景色为黑色,所述前景色为白色。
本发明提供的字符编码标志,所述编码标志由实心圆和设置在实心圆上的字符组成,所述实心圆部分取背景色,所述字符部分取前景色,背景色与前景色具有对比灰度值,不同的编码字符对应设定有唯一的编码值。本发明提供的字符编码标志以字符形状与实心圆叠加组合构成,通过对字符编码标志上的字符进行识别,可实现快速精确解码,圆形标志易于精确定位,适用于动态匹配以及大视场拼接等场合。
附图说明
利用附图对本发明作进一步说明,但附图中的实施例不构成对本发明的任何限制,对于本领域的普通技术人员,在不付出创造性劳动的前提下,还可以根据以下附图获得其它的附图。
图1为字符编码标志实施例一的示意图。
图2为字符编码标志实施例二的示意图。
图3为字符编码标志实施例三的示意图。
图4为字符编码标志对应的编码值索引表。
图5为字符编码标志区域分割示意图。
图6为字符编码标志识别定位方法的流程图。
图7为三层BP神经网络模型。
具体实施方式
为了使本领域的技术人员更好地理解本发明的技术方案,下面结合附图和具体实施例对本发明作进一步详细的描述,需要说明的是,在不冲突的情况下,本申请的实施例及实施例中的特征可以相互组合。
如图1至图3所示,本发明实施例提供的字符编码标志,所述编码标志由实心圆和设置在实心圆上的字符组成,所述字符为图1中所示的数字,或图2中所示的字母,或图3中所示的汉字,所述字符的边界位于实心圆内。所述实心圆部分取背景色,所述字符部分取前景色,背景色与前景色具有对比灰度值,所述背景色为黑色,所述前景色为白色。不同的编码字符对应设定有唯一的编码值。
本发明实施例共提供三种不同形式的字符编码标志,从图1中可知,数字字符“2”、“5”、“9”、“8”、“1”、“7”、“3”为白色,分别叠加在一个黑色实心圆上面,数字字符大小不超过圆的外轮廓,且字符的形状和颜色覆盖掉实心圆上的相应部分,两者叠加组合得到了基于数字字符编码的合作标志。又一实施例如图2所示,字母字符“B”、“Z”、“F”、“C”、“A”、“E”为白色,分别叠加在一个黑色实心圆上面,字母字符大小不超过圆的外轮廓,且字符的形状和颜色覆盖掉实心圆上的相应部分,两者叠加组合得到了基于字母字符编码的合作标志。再一实施例如图3所示,汉字字符“王”、“开”、“尔”、“中”、“十”、“又”为白色,分别叠加在一个黑色实心圆上面,字母字符大小不超过圆的外轮廓,且字符的形状和颜色覆盖掉实心圆上的相应部分,两者叠加组合得到了基于汉字字符编码的合作标志。
本发明实施例提供的字符编码标志以字符形状与实心圆叠加组合构成,通过对字符编码标志上的字符进行识别,可实现快速精确解码,圆形标志易于精确定位,适用于动态匹配以及大视场拼接等场合。
以上实施例的编码标志基于字符形状特征具有唯一编码,可依据一定规则建立不同字符编码值索引表。将所有编码字符形成一个索引表,以其序号作为每个编码标志的编码值,如图4所示的编码值索引表。可知,图1中包含字符“8”的圆形编码标志的编码值为108;图2中包含字符“F”的圆形编码标志的编码值为6,实施例中列举的编码标志都可以通过索引表进行解码。
本发明实施例还提供一种基于上述字符编码标志的识别定位方法,该方法包括识别和定位两大步骤,结合图5和图6所示,所述识别步骤包括如下子步骤:
S11、读入含有编码标志的图像;
S12、对含有编码标志的图像进行中值滤波,中值滤波法是一种非线性平滑技术,它将每一像素点的灰度值设置为该点某邻域窗口内的所有像素点灰度值的中值。原理是把数字图像或数字序列中一点的值用该点的一个邻域中各点值的中值代替,让周围的像素值接近的真实值,从而消除孤立的噪声点。方法是采用二维滑动模板,将板内像素按照像素值的大小进行排序,生成单调上升或下降二维数据序列:
g(x,y)=med{f(x-k,y-l),(k,l∈W)} (1)
其中,f(x,y),g(x,y)分别为原始图像和滤波后图像,x为像素点在图像坐标系中X轴方向的坐标,y为像素点在图像坐标系中Y轴方向的坐标,W为二维滑动模板;k、l是由二维滑动模板的尺寸所决定的变量,取整数,例如模板为3*3,那么k、l取-3~3之间的整数,例如模板为5*5,那么k、l取-5~5之间的整数。
S13、采用阈值分割法对滤波后的图像进行分割二值化,获取前景色的字符特征区域Achar,阈值分割法采用两个阈值(T1,T2):
其中,B(x,y)为二值化分割后的图像;
上述步骤实现了自动最优选取双阈值,对灰度直方图呈现三峰特性的字符编码标志图像进行分割,可以获得良好的二值化效果。
在步骤S13中,阈值分割法为Otsu双阈值法(日本学者Otsu提出的一种算法,也叫最大类间方差法)分割,对图像含有噪声和光照发生变化等情况都具有很好的鲁棒性。Otsu双阈值法具体为:
设一幅图像的灰度值分为0~255级,灰度值为i的像素数为ni,则总像素数N为:
各灰度值出现的概率Pi为:
Pi=ni/N (4)
整幅图像的灰度平均值m为:
将全部灰度值分为三类:
C0={0~T1},C1={T1+1~T2},C2={T2+1~255}
设C0出现的概率为ω0,其灰度平均值为m0;C1出现的概率为ω1,其灰度平均值为m1。C2出现的概率为ω2,其灰度平均值为m2,则:
Otsu双阈值法求取公式为:
根据式(12)求出每次对应的f(T1,T2),其中的最大值对应的(T1,T2)即为Otsu双阈值法求取的最佳阈值。
S14、对分割后的字符区域进行分类识别,通过查表法获取该编码标志对应的编码值。具体的,对字符特征区域Achar采用多层感知神经网络分类器(MLP,Multi-layerPerceptron)训练的模型进行分类识别,采用多层感知神经网络分类器训练的模型训练字符模板,建立字符分类器。编码字符的训练样本包括数字、字母以及汉字,对任一形状的字符生成相应的旋转、倾斜、噪声、局部变形、径向变形、笔画宽度变化、放大、缩小后的变体样本库,大量的变形样本可大大提高分类器的正确识别率。
下面对多层感知神经网络分类器(MLP)训练模型进行说明:
图7给出了一个三层神经网络模型结构。输入向量为X=(x1,x2,...xi,...xn)T,将字符图像归一化到a×a(本实施例中a=8)个网格大小,将其分割成8×8块,则n=8×8=64,x1代表字符相应像素点的灰度值,隐层(中间层)的输入向量为S=(s1,s2,...sj,...sp)T,隐层(中间层)的输出向量为B=(b1,b2,...bj,...bp)T,输出层的输入向量为C=(c1,c2,...ck,...ct)T,输出层的输出向量为Y=(y1,y2,...,yk,...yt)T(其中yk=0或1代表输入图像对应某字符的可能性)。
其中,输入层至隐层的连接权为隐层至输出层的连接权为隐层的阀值为H=(h1,h2,...hj,...hp)T,输出层的阀值为R=(r1,r2,...rk,...rt)T,激活神经元的传递函数为f(·),多采用非线性变换函数—Sigmoid函数(又称S函数),本实施例中采用
则有以下关系式:
中间层的输入向量:S=WX-H;
中间层的输出向量:B=f(S);
输出层的输入向量:C=VB-R;
输出层的输出向量:Y=f(C);
输出误差为:ek=dk-yk;
输出误差的能量总和为:
对模型的训练过程即为找到最佳的权值和阀值,使得输出误差能量总和最小。本实施例中,我们采用梯度下降法获得模型参数的更新规律,即:
Δvjk=-β(dk-yk)yk(1-yk)bj
Δrk=λ(dk-yk)yk(1-yk)
以上公式中,λ、β∈(0~1),dk为模型的理想输出值。
训练好之后就可以利用该MLP模型识别编码字符。
结合图5、图6所示,所述定位步骤包括如下子步骤:
S21、读入含有编码标志的图像;
S22、对含有编码标志的图像进行中值滤波,通过灰度阈值分割二值化获取编码标志的背景色的实心圆特征区域Acircle和前景色的字符特征区域Achar,对图像含有噪声和光照发生变化等情况都具有很好的鲁棒性。
S23、对实心圆特征区域Acircle内部缺失部分进行填充修复,得到完整的圆形区域Atotal;
S24、对整体编码标志的圆形区域Atotal进行灰度平滑:
进行灰度平滑时,先获取原图像中编码标志圆区域的灰度均值T,再将字符特征区域Achar对应的像素点灰度值Ichar减去均值T,实心圆特征区域Acircle对应的像素点灰度值Icircle加上均值T。
S25、对平滑后的圆形区域采用灰度质心法求取该编码标志的亚像素定位坐标:
其中,(xi,yi)表示区域中第i点的像素坐标,Pi表示区域中第i点的灰度值。
采用灰度质心方法求取编码标志的坐标,可以达到亚像素定位精度。
作为进一步优选的实施方式,在上述步骤S4中,进行灰度平滑时,先获取原图像中编码标志圆区域的灰度均值T,再将字符特征区域Achar对应的像素点灰度值Ichar减去均值T,实心圆特征区域Acircle对应的像素点灰度值Icircle加上灰度均值T,灰度均值T计算公式如下:
其中,Ichar(x,y),Icircle(x,y)分别为字符特征区域和实心圆特征区域的图像灰度值,m,n分别为字符区域和实心圆特征区域的像素个数。
作为进一步优选的实施方式,在上述步骤S2中,阈值分割采用Otsu双阈值法。
上面的描述中阐述了很多具体细节以便于充分理解本发明,但是,本发明还可以采用其他不同于在此描述的其他方式来实施,因此,不能理解为对本发明保护范围的限制。
总之,本发明虽然列举了上述优选实施方式,但是应该说明,虽然本领域的技术人员可以进行各种变化和改型,除非这样的变化和改型偏离了本发明的范围,否则都应该包括在本发明的保护范围内。
Claims (4)
1.一种字符编码标志,其特征在于,所述编码标志由实心圆和设置在实心圆上的字符组成,所述实心圆部分取背景色,所述字符部分取前景色,背景色与前景色具有对比灰度值,不同的编码字符对应设定有唯一的编码值。
2.根据权利要求1所述的字符编码标志,其特征在于:所述字符的边界位于实心圆内。
3.根据权利要求1或2所述的字符编码标志,其特征在于:所述字符为数字、字母、汉字中的一种或多种。
4.根据权利要求1或2所述的字符编码标志,其特征在于:所述背景色为黑色,所述前景色为白色。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201810300423.3A CN108520258A (zh) | 2018-04-04 | 2018-04-04 | 字符编码标志 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201810300423.3A CN108520258A (zh) | 2018-04-04 | 2018-04-04 | 字符编码标志 |
Publications (1)
Publication Number | Publication Date |
---|---|
CN108520258A true CN108520258A (zh) | 2018-09-11 |
Family
ID=63432026
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201810300423.3A Pending CN108520258A (zh) | 2018-04-04 | 2018-04-04 | 字符编码标志 |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN108520258A (zh) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN110442680A (zh) * | 2019-08-05 | 2019-11-12 | 西南财经大学 | 基于视觉的表意文字嵌入式向量生成方法 |
Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101706873A (zh) * | 2009-11-27 | 2010-05-12 | 东软集团股份有限公司 | 数字类限制标志的识别方法和装置 |
CN103049731A (zh) * | 2013-01-04 | 2013-04-17 | 中国人民解放军信息工程大学 | 一种点分布型彩色编码标志的解码方法 |
CN103593653A (zh) * | 2013-11-01 | 2014-02-19 | 浙江工业大学 | 基于扫描枪的字符二维条码识别方法 |
CN104331689A (zh) * | 2014-11-13 | 2015-02-04 | 清华大学 | 一种合作标识及多智能个体身份与位姿的识别方法 |
US20160034753A1 (en) * | 2014-07-30 | 2016-02-04 | Kyocera Document Solutions | Image processing apparatus and non-transitory computer readable recording medium storing an image processing program |
CN106767502A (zh) * | 2016-12-06 | 2017-05-31 | 合肥工业大学 | 一种具有起始信息的圆形编码标志点 |
CN106989812A (zh) * | 2017-05-03 | 2017-07-28 | 湖南科技大学 | 基于摄影测量技术的大型风机叶片模态测试方法 |
CN107256404A (zh) * | 2017-06-09 | 2017-10-17 | 王翔宇 | 一种涉案枪支枪号识别方法 |
-
2018
- 2018-04-04 CN CN201810300423.3A patent/CN108520258A/zh active Pending
Patent Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101706873A (zh) * | 2009-11-27 | 2010-05-12 | 东软集团股份有限公司 | 数字类限制标志的识别方法和装置 |
CN103049731A (zh) * | 2013-01-04 | 2013-04-17 | 中国人民解放军信息工程大学 | 一种点分布型彩色编码标志的解码方法 |
CN103593653A (zh) * | 2013-11-01 | 2014-02-19 | 浙江工业大学 | 基于扫描枪的字符二维条码识别方法 |
US20160034753A1 (en) * | 2014-07-30 | 2016-02-04 | Kyocera Document Solutions | Image processing apparatus and non-transitory computer readable recording medium storing an image processing program |
CN104331689A (zh) * | 2014-11-13 | 2015-02-04 | 清华大学 | 一种合作标识及多智能个体身份与位姿的识别方法 |
CN106767502A (zh) * | 2016-12-06 | 2017-05-31 | 合肥工业大学 | 一种具有起始信息的圆形编码标志点 |
CN106989812A (zh) * | 2017-05-03 | 2017-07-28 | 湖南科技大学 | 基于摄影测量技术的大型风机叶片模态测试方法 |
CN107256404A (zh) * | 2017-06-09 | 2017-10-17 | 王翔宇 | 一种涉案枪支枪号识别方法 |
Non-Patent Citations (1)
Title |
---|
苟中魁 等: "一种Otsu阈值法的推广——Otsu双阈值法", 《机械》 * |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN110442680A (zh) * | 2019-08-05 | 2019-11-12 | 西南财经大学 | 基于视觉的表意文字嵌入式向量生成方法 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN108537217A (zh) | 基于字符编码标志的识别及定位方法 | |
KR100914515B1 (ko) | 색상 기반 이미지 코드의 색상 판별 방법 | |
CN111401384B (zh) | 一种变电设备缺陷图像匹配方法 | |
CN107392968B (zh) | 融合颜色对比图和颜色空间分布图的图像显著性检测方法 | |
CN109903331A (zh) | 一种基于rgb-d相机的卷积神经网络目标检测方法 | |
CN104778701A (zh) | 一种基于rgb-d传感器的局部图像描述方法 | |
CN105913070B (zh) | 一种基于光场相机的多线索显著性提取方法 | |
CN111882586B (zh) | 一种面向剧场环境的多演员目标跟踪方法 | |
CN108921120B (zh) | 一种适应广泛零售场景下的香烟识别方法 | |
CN103049731B (zh) | 一种点分布型彩色编码标志的解码方法 | |
CN103400384A (zh) | 结合区域匹配和点匹配的大视角图像匹配方法 | |
CN107122713B (zh) | 一种基于深度学习的似物性检测方法 | |
CN105678318B (zh) | 交通标牌的匹配方法及装置 | |
CN112906550B (zh) | 一种基于分水岭变换的静态手势识别方法 | |
CN110400278A (zh) | 一种图像颜色和几何畸变的全自动校正方法、装置及设备 | |
CN115830335A (zh) | 一种基于自适应阈值算法的orb图像特征提取方法 | |
CN109325434A (zh) | 一种多特征的概率主题模型的图像场景分类方法 | |
CN108520258A (zh) | 字符编码标志 | |
CN111080754A (zh) | 一种头部肢体特征点连线的人物动画制作方法及装置 | |
CN110634142A (zh) | 一种复杂车路图像边界优化方法 | |
CN113095309A (zh) | 一种基于点云的道路场景地面标识物的提取方法 | |
CN117474028A (zh) | 一种基于mr的智能检修操作方法 | |
CN116935073A (zh) | 一种基于粗精特征筛选的视觉图像定位方法 | |
CN113537154B (zh) | 无人机建筑航拍图神经网络自动校色方法 | |
CN115410184A (zh) | 一种基于深度神经网络的目标检测车牌识别方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination |