CN108504989A - 一种电子束熔丝沉积超细网状结构钛基复合材料的方法 - Google Patents

一种电子束熔丝沉积超细网状结构钛基复合材料的方法 Download PDF

Info

Publication number
CN108504989A
CN108504989A CN201810287780.0A CN201810287780A CN108504989A CN 108504989 A CN108504989 A CN 108504989A CN 201810287780 A CN201810287780 A CN 201810287780A CN 108504989 A CN108504989 A CN 108504989A
Authority
CN
China
Prior art keywords
electron beam
matrix composite
beam fuse
titanium
titanium matrix
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201810287780.0A
Other languages
English (en)
Other versions
CN108504989B (zh
Inventor
姚正军
陶学伟
张莎莎
刘莹莹
胥栋衡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nanjing University of Aeronautics and Astronautics
Original Assignee
Nanjing University of Aeronautics and Astronautics
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nanjing University of Aeronautics and Astronautics filed Critical Nanjing University of Aeronautics and Astronautics
Priority to CN201810287780.0A priority Critical patent/CN108504989B/zh
Publication of CN108504989A publication Critical patent/CN108504989A/zh
Application granted granted Critical
Publication of CN108504989B publication Critical patent/CN108504989B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C8/00Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C8/60Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using solids, e.g. powders, pastes
    • C23C8/62Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using solids, e.g. powders, pastes only one element being applied
    • C23C8/68Boronising
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F10/00Additive manufacturing of workpieces or articles from metallic powder
    • B22F10/30Process control
    • B22F10/36Process control of energy beam parameters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F10/00Additive manufacturing of workpieces or articles from metallic powder
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F10/00Additive manufacturing of workpieces or articles from metallic powder
    • B22F10/20Direct sintering or melting
    • B22F10/25Direct deposition of metal particles, e.g. direct metal deposition [DMD] or laser engineered net shaping [LENS]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y10/00Processes of additive manufacturing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y70/00Materials specially adapted for additive manufacturing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F10/00Additive manufacturing of workpieces or articles from metallic powder
    • B22F10/30Process control
    • B22F10/38Process control to achieve specific product aspects, e.g. surface smoothness, density, porosity or hollow structures
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/25Process efficiency

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Automation & Control Theory (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physical Vapour Deposition (AREA)
  • Powder Metallurgy (AREA)

Abstract

本发明涉及一种电子束熔丝沉积超细网状钛基复合材料的方法,包括以下步骤:首先对钛合金丝材表面进行渗硼处理,再利用电子束熔丝沉积技术将渗硼处理后的钛丝进行快速成形。本发明提供电子束熔丝沉积超细网状钛基复合材料的方法,突破了钛基复合材料丝材加工难度大的局限性;同时可对电子束熔丝沉积后复合材料内部增强相分布进行有效调控,能够制备出具有较高的强韧性的超细网状结构钛基复合材料。此外,该工艺适用性强,工艺流程短,大大拓宽钛基复合材料的制备与应用范围。

Description

一种电子束熔丝沉积超细网状结构钛基复合材料的方法
技术领域
本发明涉及金属基复合材料领域,具体涉及一种电子束熔丝沉积超细网状结构钛基复合材料的方法。
背景技术
轻质、高强度、高刚度的非连续增强钛基复合材料(DRTMCs)已经成为航空航天领域中关键候选材料。然而,由于增强体存在,提高了复合材料高温变形抗力,在高温变形时易发生局部塑性流变,加大了钛基复合材料热变形加工难度,严重限制了钛基复合材料的应用范围。
增材制造法增材制造具有快速、柔性、可设计性等特点,无需二次热变形加工,即可直接获得尺寸形状与性能匹配的钛基复合材料产品,特别适合钛基复合材料制造。中国专利号ZL201110352107.9ZL200810136852.8,公开了名称为一种原位钛基复合材料及零件的制备方法的专利,其利用激光熔化沉积法制备出的TiC和/或TiB增强钛基复合材料,但是复合材料的塑韧性较低。中国专利号ZL200810136852.8,公开了名称为TiBw/Ti合金基复合材料的制备方法的专利,其采用粉末冶金法制备出的一种网状结构TiB增强钛基复合材料,不仅具有较高的强度,而且塑韧性较增强相均匀分布的复合材得到改善。因此,将网状结构引入钛基复合材料中可以有效改善材料的塑韧性。
电子束熔丝沉积技术是一种新兴的增材制造方法,具有能量高、束流可控、加工速度快、真空环境不易污染等优点,在钛、钨等高熔点易氧化的金属及合金的加工上具有重要作用。经现有的技术文献检索发现,目前电子束熔丝沉积技术主要用于制备钛合金与镍基合金等,而有关电子束熔丝沉积制备钛基复合材料的研究未见报道,电子束熔丝沉积制备网状结构钛基复合材料更是没有。其原因一方面是电子束熔丝沉积工艺所需的原材料为丝材,颗粒增强钛基复合材料塑韧性差,难以加工成丝;另一方面是快速凝固法不同于粉末冶金法,无法先将增强相分布于大颗粒周围,然后通过烧结获得网状结构,该方法对增强相分布调控难度大。
发明内容
本发明的目的是针对现有技术中存在的这些问题,提供一种电子束熔丝沉积超细网状结构钛基复合材料的方法,可获强韧性俱佳的超细网状结构钛基复合材料,为达到上述目的,本发明提供的技术方案是:
一种电子束熔丝沉积超细网状结构钛基复合材料的方法,包括以下步骤:
(1)首先对钛合金丝材表面进行渗硼处理;
(2)再利用电子束熔丝沉积技术将渗硼处理后的钛丝进行快速成形。
所述的钛合金丝材为TC4或纯钛。
所述的钛合金丝材表面进行渗硼处理,具体工艺参数是:硼源BCl3,渗硼温度800℃,电压700V。
所述的渗硼处理钛丝,其硼含量0.2~1.2wt.%。
所述的电子束熔丝沉积工艺,具体工艺参数是:熔丝电流15~25mA,电压60kV,行进速度200mm/min,送丝速度2r/min,真空度优于5×10-2Pa。
本发明的突出优点在于采用渗硼处理将硼渗入钛丝表面,突破了钛基复合材料丝材加工难度大的局限性;在渗入上述B含量条件下,通过对电子束熔丝沉积层进行调控,保持较高的热输出,沉积的钛基复合材料在凝固时,β相形核长大对B原子具有推挤效应,使得B在β相/液相界面附近富集抑制β晶粒长大;同时产生成分过冷,促进TiB形核,沿晶界析出,形成网状结构。且在快速冷却条件下,晶粒形核率高,晶粒细小;抑制TiB长大,保持细小尺寸。因而获得超细网状结构钛基复合材料,具有较高的强韧韧性。此外,工艺适用性强,工艺流程短,大大拓宽钛基复合材料的制备与应用范围。
附图说明
图1是实施例1制备出的超细网状结构钛基复合材料的SEM照片。
具体实施方式
下面结合具体实施例对本发明作进一步说明。
实施例1
以纯钛为丝材,首先对丝材进行渗硼处理,具体工艺参数是:硼源BCl3,渗硼温度800℃,电压700V,处理时间20min,获得硼含量0.2wt.%的渗硼钛丝。再利用电子束熔丝沉积技术将上述的渗硼钛丝进行快速成形,具体工艺参数是:熔丝电流15mA,电压60kV,行进速度200mm/min,送丝速度2r/min,真空度优于5×10-2Pa。对制备所得复合材料进行组织表征及性能测试,其内部为超细网状结构,抗拉强度1016MPa,伸长率9.1%。
实施例2
本实施例与实施例1之间的区别在于丝材为TC4,其渗硼处理时间50min,获得硼含量0.4wt.%的渗硼钛丝。电子束熔丝沉积工艺参数是:熔丝电流18mA,电压60kV,行进速度200mm/min,送丝速度2r/min,真空度优于5×10-2Pa。对制备所得复合材料进行组织表征及性能测试,其内部为超细网状结构,抗拉强度1027MPa,伸长率7.9%。
实施例3
本实施例与实施例1之间的区别在于,钛丝渗硼处理时间80min,获得硼含量0.8wt.%的渗硼钛丝。电子束熔丝沉积工艺参数是:熔丝电流22mA,电压60kV,行进速度200mm/min,送丝速度2r/min,真空度优于5×10-2Pa。对制备所得复合材料进行组织表征及性能测试,其内部为超细网状结构,抗拉强度1033MPa,伸长率7.1%。
实施例4
本实施例与实施例1之间的区别在于丝材为TC4,其渗硼处理时间150min,获得硼含量1.2wt.%的渗硼钛丝。电子束熔丝沉积工艺参数是:熔丝电流25mA,电压60kV,行进速度200mm/min,送丝速度2r/min,真空度优于5×10-2Pa。对制备所得复合材料进行组织表征及性能测试,其内部为超细网状结构,抗拉强度1042MPa,伸长率5.6%。
以上所述,仅是本发明的较佳实施例,并非对本发明作任何形式上的限制,任何熟悉本专业的技术人员,在不脱离本发明技术方案范围内,依据本发明的技术实质,对以上实施例所作的任何简单的修改、等同替换与改进等,均仍属于本发明技术方案的保护范围之内。

Claims (5)

1.一种电子束熔丝沉积超细网状结构钛基复合材料的方法,其特征在于:包括以下步骤:
(1)首先对钛合金丝材表面进行渗硼处理;
(2)再利用电子束熔丝沉积技术将渗硼处理后的钛丝进行快速成形。
2.如权利要求1所述的电子束熔丝沉积超细网状结构钛基复合材料的方法,其特征在于:所述的钛合金丝材为TC4或纯钛。
3.如权利要求1所述的电子束熔丝沉积超细网状结构钛基复合材料的方法,其特征在于:对钛合金丝材表面进行渗硼处理的具体工艺参数是:硼源BCl3,渗硼温度800℃,电压700V,处理时间20~150min。
4.如权利要求1所述的电子束熔丝沉积超细网状结构钛基复合材料的方法,其特征在于:对渗硼处理钛丝,其硼含量0.2~1.2wt.%。
5.如权利要求1所述的电子束熔丝沉积超细网状结构钛基复合材料的方法,其特征在于:所述的电子束熔丝沉积工艺,具体工艺参数是:熔丝电流15~25mA,电压60kV,行进速度200mm/min,送丝速度2r/min,真空度优于5×10-2Pa。
CN201810287780.0A 2018-03-30 2018-03-30 一种电子束熔丝沉积超细网状结构钛基复合材料的方法 Active CN108504989B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201810287780.0A CN108504989B (zh) 2018-03-30 2018-03-30 一种电子束熔丝沉积超细网状结构钛基复合材料的方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201810287780.0A CN108504989B (zh) 2018-03-30 2018-03-30 一种电子束熔丝沉积超细网状结构钛基复合材料的方法

Publications (2)

Publication Number Publication Date
CN108504989A true CN108504989A (zh) 2018-09-07
CN108504989B CN108504989B (zh) 2020-08-04

Family

ID=63379910

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201810287780.0A Active CN108504989B (zh) 2018-03-30 2018-03-30 一种电子束熔丝沉积超细网状结构钛基复合材料的方法

Country Status (1)

Country Link
CN (1) CN108504989B (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115161512A (zh) * 2022-06-27 2022-10-11 广州赛隆增材制造有限责任公司 一种3d打印钛-钽网状结构复合材料及其制备方法和用途

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060134501A1 (en) * 2004-11-25 2006-06-22 Lee Jong-Ki Separator for fuel cell, method for preparing the same, and fuel cell stack comprising the same
CN102672187A (zh) * 2012-05-08 2012-09-19 哈尔滨工业大学 层状钛基复合材料的制备方法
US20150367576A1 (en) * 2014-06-19 2015-12-24 Autodesk, Inc. Automated systems for composite part fabrication
CN107138924A (zh) * 2017-06-27 2017-09-08 中国航发北京航空材料研究院 一种双金属双性能钛合金整体叶盘制造方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060134501A1 (en) * 2004-11-25 2006-06-22 Lee Jong-Ki Separator for fuel cell, method for preparing the same, and fuel cell stack comprising the same
CN102672187A (zh) * 2012-05-08 2012-09-19 哈尔滨工业大学 层状钛基复合材料的制备方法
US20150367576A1 (en) * 2014-06-19 2015-12-24 Autodesk, Inc. Automated systems for composite part fabrication
CN107138924A (zh) * 2017-06-27 2017-09-08 中国航发北京航空材料研究院 一种双金属双性能钛合金整体叶盘制造方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
唐殿福等: "《钢的化学热处理》", 31 March 2009, 辽宁科学技术出版社 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115161512A (zh) * 2022-06-27 2022-10-11 广州赛隆增材制造有限责任公司 一种3d打印钛-钽网状结构复合材料及其制备方法和用途
CN115161512B (zh) * 2022-06-27 2023-02-10 广州赛隆增材制造有限责任公司 一种3d打印钛-钽网状结构复合材料及其制备方法和用途

Also Published As

Publication number Publication date
CN108504989B (zh) 2020-08-04

Similar Documents

Publication Publication Date Title
Qiao et al. Large plasticity and tensile necking of Zr-based bulk-metallic-glass-matrix composites synthesized by the Bridgman solidification
Attar et al. Selective laser melting of in situ titanium–titanium boride composites: Processing, microstructure and mechanical properties
RU2729569C2 (ru) Материалы с оцк-структурой на основе титана, алюминия, ванадия и железа и изделия, полученные из них
Huang et al. Effect of extrusion dies angle on the microstructure and properties of (TiB+ TiC)/Ti6Al4V in situ titanium matrix composite
Yang et al. Effects of nano-Y2O3 addition on the microstructure evolution and tensile properties of a near-α titanium alloy
Ma et al. Microstructures and mechanical properties of Ti6Al4V-Ti48Al2Cr2Nb alloys fabricated by laser melting deposition of powder mixtures
CN105934528B (zh) 高强度铝合金及其制造方法
CN113373366B (zh) 一种多元难熔高熵合金及其制备方法
CN111826594B (zh) 一种电弧增材制造高强钛合金的热处理方法和一种增强的高强钛合金
Yao et al. Alleviating plastic anisotropy of boron modified titanium alloy by constructing layered structure via electron beam directed energy deposition
Chandramohan Laser additive manufactured Ti-6Al-4V alloy: texture analysis
Li et al. Effect of post-heat treatment on Ti2AlNb-based alloy fabricated by twin-wire alternating dual-electron beam additive manufacturing technology
Shin et al. Microstructure refining of aluminum alloys using aluminothermic reaction with ZnO nanoparticles
CN108504989A (zh) 一种电子束熔丝沉积超细网状结构钛基复合材料的方法
CN108555297B (zh) 加B感应加热消除激光增材制造TC4合金初生β晶界的方法
CN108103460B (zh) 一种碳化钛靶材及其制备方法
Song et al. Synthesis of Ti/TiB composites via hydrogen-assisted blended elemental powder metallurgy
Chen et al. Tensile properties of 15wt.% TiB2/7055 composite fabricated by in situ method
Xia et al. Structure and mechanical properties of as-cast (ZrTi) 100− xBx alloys
Wloch et al. Silver matrix composite reinforced by aluminium-silver intermetallic phases
CN114346147A (zh) 一种轻质高强镁合金的旋锻制备方法
CN110508814B (zh) 选区激光粉末床熔融制备含硼钛合金材料的方法及其产品
CN106636985B (zh) 一种金属玻璃复合材料及其制备方法
CN106566964B (zh) 一种高强韧双峰分布铝合金复合材料及其制备方法
CN109182932A (zh) 一种用于改善纳米Al2O3@Al-Cu基复合材料力学性能的热处理方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant