CN108484923B - Supramolecular polymers based on lipoic acid compounds and preparation method thereof - Google Patents
Supramolecular polymers based on lipoic acid compounds and preparation method thereof Download PDFInfo
- Publication number
- CN108484923B CN108484923B CN201810232611.7A CN201810232611A CN108484923B CN 108484923 B CN108484923 B CN 108484923B CN 201810232611 A CN201810232611 A CN 201810232611A CN 108484923 B CN108484923 B CN 108484923B
- Authority
- CN
- China
- Prior art keywords
- supramolecular polymer
- lipoic acid
- derivatives
- supramolecular
- cross
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 229920002677 supramolecular polymer Polymers 0.000 title claims abstract description 59
- AGBQKNBQESQNJD-UHFFFAOYSA-M lipoate Chemical class [O-]C(=O)CCCCC1CCSS1 AGBQKNBQESQNJD-UHFFFAOYSA-M 0.000 title claims abstract description 24
- 238000002360 preparation method Methods 0.000 title claims abstract description 9
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 claims abstract description 30
- 235000019136 lipoic acid Nutrition 0.000 claims abstract description 23
- 229960002663 thioctic acid Drugs 0.000 claims abstract description 23
- 239000003431 cross linking reagent Substances 0.000 claims abstract description 19
- 229910052742 iron Inorganic materials 0.000 claims abstract description 16
- 150000002505 iron Chemical class 0.000 claims abstract description 8
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 claims abstract description 6
- 150000001875 compounds Chemical class 0.000 claims abstract description 6
- 229910052739 hydrogen Inorganic materials 0.000 claims abstract description 6
- 239000001257 hydrogen Substances 0.000 claims abstract description 6
- 239000003960 organic solvent Substances 0.000 claims abstract description 5
- 125000003178 carboxy group Chemical group [H]OC(*)=O 0.000 claims abstract description 4
- 125000000217 alkyl group Chemical group 0.000 claims abstract description 3
- CREMABGTGYGIQB-UHFFFAOYSA-N carbon carbon Chemical compound C.C CREMABGTGYGIQB-UHFFFAOYSA-N 0.000 claims abstract description 3
- 239000011203 carbon fibre reinforced carbon Substances 0.000 claims abstract description 3
- 150000002430 hydrocarbons Chemical group 0.000 claims abstract description 3
- 238000002156 mixing Methods 0.000 claims abstract description 3
- 239000000203 mixture Substances 0.000 claims abstract description 3
- 238000003756 stirring Methods 0.000 claims description 15
- 238000006243 chemical reaction Methods 0.000 claims description 11
- 238000010438 heat treatment Methods 0.000 claims description 10
- 238000000034 method Methods 0.000 claims description 8
- UHOVQNZJYSORNB-UHFFFAOYSA-N monobenzene Natural products C1=CC=CC=C1 UHOVQNZJYSORNB-UHFFFAOYSA-N 0.000 claims description 8
- CSCPPACGZOOCGX-UHFFFAOYSA-N Acetone Chemical compound CC(C)=O CSCPPACGZOOCGX-UHFFFAOYSA-N 0.000 claims description 6
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical compound OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 claims description 6
- MYRTYDVEIRVNKP-UHFFFAOYSA-N 1,2-Divinylbenzene Chemical compound C=CC1=CC=CC=C1C=C MYRTYDVEIRVNKP-UHFFFAOYSA-N 0.000 claims description 4
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 claims description 4
- PPBRXRYQALVLMV-UHFFFAOYSA-N Styrene Chemical compound C=CC1=CC=CC=C1 PPBRXRYQALVLMV-UHFFFAOYSA-N 0.000 claims description 4
- 150000001555 benzenes Chemical class 0.000 claims description 4
- VCJMYUPGQJHHFU-UHFFFAOYSA-N iron(3+);trinitrate Chemical compound [Fe+3].[O-][N+]([O-])=O.[O-][N+]([O-])=O.[O-][N+]([O-])=O VCJMYUPGQJHHFU-UHFFFAOYSA-N 0.000 claims description 4
- 125000000391 vinyl group Chemical group [H]C([*])=C([H])[H] 0.000 claims description 4
- IBVPVTPPYGGAEL-UHFFFAOYSA-N 1,3-bis(prop-1-en-2-yl)benzene Chemical compound CC(=C)C1=CC=CC(C(C)=C)=C1 IBVPVTPPYGGAEL-UHFFFAOYSA-N 0.000 claims description 3
- 229910021578 Iron(III) chloride Inorganic materials 0.000 claims description 3
- RBTARNINKXHZNM-UHFFFAOYSA-K iron trichloride Chemical compound Cl[Fe](Cl)Cl RBTARNINKXHZNM-UHFFFAOYSA-K 0.000 claims description 3
- 239000012943 hotmelt Substances 0.000 claims description 2
- RUTXIHLAWFEWGM-UHFFFAOYSA-H iron(3+) sulfate Chemical compound [Fe+3].[Fe+3].[O-]S([O-])(=O)=O.[O-]S([O-])(=O)=O.[O-]S([O-])(=O)=O RUTXIHLAWFEWGM-UHFFFAOYSA-H 0.000 claims description 2
- XHQSLVIGPHXVAK-UHFFFAOYSA-K iron(3+);octadecanoate Chemical compound [Fe+3].CCCCCCCCCCCCCCCCCC([O-])=O.CCCCCCCCCCCCCCCCCC([O-])=O.CCCCCCCCCCCCCCCCCC([O-])=O XHQSLVIGPHXVAK-UHFFFAOYSA-K 0.000 claims description 2
- 229910000360 iron(III) sulfate Inorganic materials 0.000 claims description 2
- 125000001424 substituent group Chemical group 0.000 claims description 2
- 229920002554 vinyl polymer Polymers 0.000 claims 2
- 239000013076 target substance Substances 0.000 claims 1
- 229920000642 polymer Polymers 0.000 abstract description 15
- 238000002844 melting Methods 0.000 abstract description 4
- 238000010586 diagram Methods 0.000 description 8
- 239000000178 monomer Substances 0.000 description 5
- -1 electronic devices Substances 0.000 description 4
- 238000012360 testing method Methods 0.000 description 4
- 229920001971 elastomer Polymers 0.000 description 3
- 239000000806 elastomer Substances 0.000 description 3
- 230000035876 healing Effects 0.000 description 3
- 230000008018 melting Effects 0.000 description 3
- 238000011160 research Methods 0.000 description 3
- 239000002904 solvent Substances 0.000 description 3
- 238000012512 characterization method Methods 0.000 description 2
- 238000001816 cooling Methods 0.000 description 2
- 238000005520 cutting process Methods 0.000 description 2
- 239000004205 dimethyl polysiloxane Substances 0.000 description 2
- 230000003993 interaction Effects 0.000 description 2
- 239000007788 liquid Substances 0.000 description 2
- 229920000435 poly(dimethylsiloxane) Polymers 0.000 description 2
- 239000000843 powder Substances 0.000 description 2
- 239000002994 raw material Substances 0.000 description 2
- 230000004044 response Effects 0.000 description 2
- 230000004043 responsiveness Effects 0.000 description 2
- 239000002520 smart material Substances 0.000 description 2
- 230000000638 stimulation Effects 0.000 description 2
- 238000001237 Raman spectrum Methods 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 239000012620 biological material Substances 0.000 description 1
- 238000004132 cross linking Methods 0.000 description 1
- 125000004122 cyclic group Chemical group 0.000 description 1
- 238000010494 dissociation reaction Methods 0.000 description 1
- 230000005593 dissociations Effects 0.000 description 1
- 238000012377 drug delivery Methods 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- 230000003832 immune regulation Effects 0.000 description 1
- 238000002329 infrared spectrum Methods 0.000 description 1
- 239000003446 ligand Substances 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 238000011056 performance test Methods 0.000 description 1
- 230000008569 process Effects 0.000 description 1
- UUVCRNTVNKTNRK-UHFFFAOYSA-N pyridine-2,6-dicarboxamide Chemical compound NC(=O)C1=CC=CC(C(N)=O)=N1 UUVCRNTVNKTNRK-UHFFFAOYSA-N 0.000 description 1
- 230000008521 reorganization Effects 0.000 description 1
- 230000002441 reversible effect Effects 0.000 description 1
- 238000001338 self-assembly Methods 0.000 description 1
- 239000002699 waste material Substances 0.000 description 1
- 239000002351 wastewater Substances 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
- 230000029663 wound healing Effects 0.000 description 1
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G83/00—Macromolecular compounds not provided for in groups C08G2/00 - C08G81/00
- C08G83/008—Supramolecular polymers
Landscapes
- Chemical & Material Sciences (AREA)
- Health & Medical Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Medicinal Chemistry (AREA)
- Polymers & Plastics (AREA)
- Organic Chemistry (AREA)
- Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
- Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)
- Compositions Of Macromolecular Compounds (AREA)
- Processes Of Treating Macromolecular Substances (AREA)
Abstract
Description
技术领域technical field
本发明涉及一种超分子聚合物及其制备方法,具体地说,涉及一种基于硫辛酸或/和其衍生物的超分子聚合物及其制备方法。The present invention relates to a supramolecular polymer and a preparation method thereof, in particular to a supramolecular polymer based on lipoic acid or/and its derivatives and a preparation method thereof.
背景技术Background technique
超分子聚合物是指小分子单体或低分子聚合物通过非共价键的相互作用自组装而成的聚合物。酸碱度、温度及光照等因素会导致超分子聚合物的非共价键的解离和重组,具有可逆性,因此,超分子聚合物是一种可以作为自修复和自愈合的智能材料,是近年来国内外的研究热点之一。Supramolecular polymers refer to the self-assembly of small molecular monomers or low molecular polymers through the interaction of non-covalent bonds. Factors such as pH, temperature, and light can lead to the dissociation and reorganization of non-covalent bonds in supramolecular polymers, which are reversible. Therefore, supramolecular polymers are smart materials that can be used as self-healing and self-healing materials. One of the research hotspots at home and abroad in recent years.
超分子聚合物应用领域广泛,例如被修饰的智能材料,电子器件和生物材料等。近年来,其在生物和生物医学领域的应用研究发展迅速,包括与细胞相关的应用、组织工程、药物传递、免疫调节和伤口愈合等。Supramolecular polymers have a wide range of applications, such as modified smart materials, electronic devices, and biological materials. In recent years, its application research in biological and biomedical fields has developed rapidly, including cell-related applications, tissue engineering, drug delivery, immune regulation, and wound healing.
2016年,鲍哲南等人通过在聚二甲基硅氧烷(PDMS)链中引入交联配合物,得到了一种可拉伸100倍,可室温48小时自修复的弹性体(A highly stretchable autonomousself-healing elastomer,Nat.Chem.2016,8,618-624.)。所使用的交联配合物由2,6-吡啶二酰胺配体组成,它通过三种不同的相互作用与Fe(III)中心配位。In 2016, Bao Zhenan et al. obtained a 100-fold stretchable and self-healing elastomer (A highly stretchable autonomousself) by introducing a cross-linked complex into the polydimethylsiloxane (PDMS) chain. - healing elastomer, Nat. Chem. 2016, 8, 618-624.). The cross-linking complex used consists of a 2,6-pyridinediamide ligand, which coordinates to the Fe(III) center through three different interactions.
现有技术存在的不足在于,制备超分子聚合物的单体或低分子聚合物难得(需自制)。因此,利用现有已知化合物制备具有优异性能的超分子聚合物是本发明需要解决的技术问题。The disadvantage of the prior art is that the monomers or low-molecular polymers for the preparation of supramolecular polymers are rare (need to be self-made). Therefore, it is a technical problem to be solved by the present invention to prepare supramolecular polymers with excellent properties using existing known compounds.
发明内容SUMMARY OF THE INVENTION
本发明的发明人经广泛且深入的研究发现:采用硫辛酸或其衍生物为单体,配以特定种类和特定量的交联剂和铁离子源,在不添加溶剂的条件下,经热熔化法可得一种超分子聚合物。经检测,所得超分子聚合物的可拉伸度大于150倍,且其能在室温条件下超快速自修复(不超过一分钟)。The inventors of the present invention have found through extensive and in-depth research that: using lipoic acid or its derivatives as monomers, with a specific type and amount of cross-linking agent and iron ion source, without adding a solvent, heat A supramolecular polymer can be obtained by the melting method. After testing, the obtained supramolecular polymer has a stretchability greater than 150 times, and it can self-repair ultra-fast (less than one minute) at room temperature.
本发明一个目的在于,提供一种基于硫辛酸或/和其衍生物的超分子聚合物。An object of the present invention is to provide a supramolecular polymer based on lipoic acid or/and its derivatives.
所述超分子聚合物由主要步骤如下的制备方法制得:The supramolecular polymer is prepared by the preparation method with the following main steps:
在无溶剂条件下,由硫辛酸或/和其衍生物,交联剂和铁源经热熔混合后得到目标物;Under solvent-free conditions, the target product is obtained by hot-melt mixing of lipoic acid or/and its derivatives, cross-linking agent and iron source;
其中,硫辛酸或/和其衍生物,交联剂和铁源的摩尔比为2:(0.1~1.5):(0.01~1),(铁源的摩尔数是以铁离子的摩尔数计);Wherein, the molar ratio of lipoic acid or/and its derivatives, cross-linking agent and iron source is 2:(0.1-1.5):(0.01-1), (the number of moles of iron source is calculated as the number of moles of iron ions) ;
所述硫辛酸或/和其衍生物选自:式I所示化合物中一种或两种以上(含两种)混合物;Described lipoic acid or/and its derivative are selected from: one or two or more (containing two) mixtures in the compound shown in formula I;
所述交联剂是含碳碳不饱和键的烃类化合物,所述铁源由铁盐和能溶解铁盐的有机溶剂组成;The crosslinking agent is a hydrocarbon compound containing carbon-carbon unsaturated bonds, and the iron source is composed of an iron salt and an organic solvent capable of dissolving the iron salt;
式I中,R1为氢或C1~C4直链或支链烷基,R2为氢或羧基(-COOH),n为1~5的整数。In formula I, R 1 is hydrogen or a C 1 -C 4 straight or branched chain alkyl group, R 2 is hydrogen or a carboxyl group (-COOH), and n is an integer of 1-5.
本发明另一个目的在于,提供一种制备上述超分子聚合物的方法。Another object of the present invention is to provide a method for preparing the above-mentioned supramolecular polymer.
所述方法的主要步骤是:在无溶剂条件下,将硫辛酸或/和其衍生物置于带有搅拌装置的反应容器中,搅拌并加热,待硫辛酸或/和其衍生物熔化后再按上述摩尔比,向所述反应容器中依次加入交联剂和铁源,再搅拌至少3分钟后,停止加热,冷却后得到目标物。The main steps of the method are: under solvent-free conditions, place lipoic acid or/and its derivatives in a reaction vessel with a stirring device, stir and heat, and press the lipoic acid or/and its derivatives after melting. In the above molar ratio, the crosslinking agent and the iron source are sequentially added to the reaction vessel, and after stirring for at least 3 minutes, the heating is stopped, and the target product is obtained after cooling.
附图说明Description of drawings
图1.为本发明实施例1制备的超分子聚合物的外观图;Fig. 1. is the appearance diagram of the supramolecular polymer prepared by Example 1 of the present invention;
图2.为本发明实施例2制备的超分子聚合物的流变性能曲线;Fig. 2. is the rheological property curve of the supramolecular polymer prepared by Example 2 of the present invention;
图3.为本发明实施例3制备的超分子聚合物的结构表征图;Figure 3. is the structural characterization diagram of the supramolecular polymer prepared in Example 3 of the present invention;
其中,A为聚合物的结构示意图,B为聚合物的红外光谱图,C为聚合物的拉曼光谱图;Wherein, A is the structural schematic diagram of the polymer, B is the infrared spectrum of the polymer, and C is the Raman spectrum of the polymer;
图4.为本发明实施例4制备的超分子聚合物的自愈性能图;Fig. 4. is the self-healing performance figure of the supramolecular polymer prepared by Example 4 of the present invention;
其中,A为超分子聚合物的自愈显微图像,B为超分子聚合物初始和自愈后的拉伸曲线;Among them, A is the self-healing microscopic image of the supramolecular polymer, and B is the tensile curve of the supramolecular polymer at the beginning and after self-healing;
图5.为本发明实施例5制备的超分子聚合物的水下自愈性能图;Fig. 5. is the underwater self-healing performance figure of the supramolecular polymer prepared by Example 5 of the present invention;
其中,A为超分子聚合物的切割图,B为超分子聚合物的水下自愈性能表现图。Among them, A is the cutting diagram of the supramolecular polymer, and B is the performance diagram of the underwater self-healing performance of the supramolecular polymer.
图6.为本发明实施例6制备的超分子聚合物的拉伸及回弹性能图:Fig. 6. is the tensile and resilience performance diagram of the supramolecular polymer prepared in Example 6 of the present invention:
其中,A为超分子聚合物的初始图,B为超分子聚合物的拉伸图,C为超分子聚合物拉伸后释放的图,D为超分子聚合物的拉伸性能曲线,E为超分子聚合物的回弹性能曲线。Among them, A is the initial graph of the supramolecular polymer, B is the stretching graph of the supramolecular polymer, C is the graph of the supramolecular polymer released after stretching, D is the tensile property curve of the supramolecular polymer, and E is the Rebound performance curves of supramolecular polymers.
具体实施方式Detailed ways
在本发明一个优选的技术方案中,所述硫辛酸或/和其衍生物为式I所示化合物,其中n为1~3的整数。In a preferred technical solution of the present invention, the lipoic acid or/and its derivatives are compounds represented by formula I, wherein n is an integer of 1-3.
在本发明另一个优选的技术方案中,所用交联剂是取代苯,所述取代苯的取代基为乙烯基或C1~C3烷基取代的乙烯基;In another preferred technical solution of the present invention, the used crosslinking agent is substituted benzene, and the substituent of the substituted benzene is vinyl group or C 1 -C 3 alkyl substituted vinyl group;
本发明推荐使用的交联剂是苯乙烯、二乙烯基苯或1,3-二(1-甲基乙烯基)苯(DIB)。The crosslinking agent recommended for use in the present invention is styrene, divinylbenzene or 1,3-bis(1-methylvinyl)benzene (DIB).
在本发明又一个优选的技术方案中,所述铁盐可以是硫酸铁,氯化铁,硝酸铁或/和硬脂酸铁;所述有机溶剂是丙酮,乙醇或甲醇。In yet another preferred technical solution of the present invention, the iron salt can be ferric sulfate, ferric chloride, ferric nitrate or/and ferric stearate; the organic solvent is acetone, ethanol or methanol.
本发明提供的制备本发明所述超分子聚合物的方法,其主要步骤是:在无溶剂条件下,将硫辛酸或/和其衍生物置于带有搅拌装置的反应容器中,搅拌并加热(油浴温度为70℃~200℃),待硫辛酸或/和其衍生物熔化后按前文所述摩尔比,向所述反应容器中加入交联剂,完毕后,继续搅拌5分钟~8分钟,再按前文所述摩尔比向所述反应容器中加入铁源,完毕后,再搅拌3分钟~5分钟,停止加热,冷却后得到目标物。The method for preparing the supramolecular polymer of the present invention provided by the present invention, its main steps are: under solvent-free conditions, placing lipoic acid or/and its derivatives in a reaction vessel with a stirring device, stirring and heating ( The temperature of the oil bath is 70℃~200℃), after the lipoic acid or/and its derivatives are melted, add the crosslinking agent to the reaction vessel according to the molar ratio mentioned above, and continue to stir for 5 minutes to 8 minutes after completion. , and then add the iron source into the reaction vessel according to the molar ratio mentioned above, and after completion, stir for 3 to 5 minutes, stop heating, and obtain the target object after cooling.
本发明具有如下特点:The present invention has the following characteristics:
1、本发明所用的原料对人体有益,生物相容,来源广泛,价廉易得,具有工业可行性;1. The raw materials used in the present invention are beneficial to the human body, are biocompatible, have a wide range of sources, are cheap and easy to obtain, and have industrial feasibility;
2、本发明采用直接加热熔化原料的方法,无需溶剂,反应快速,过程简单安全,不产生废水、废渣等工业污染。整个制备工艺简单,生产成本低廉,产率定量,符合绿色化学的要求;2. The present invention adopts the method of directly heating and melting raw materials, without solvent, the reaction is fast, the process is simple and safe, and no industrial pollution such as waste water and waste residue is generated. The whole preparation process is simple, the production cost is low, and the yield is quantitative, which meets the requirements of green chemistry;
3、本发明提供的超分子聚合物具有室温及水下自愈性,高度拉伸性(能拉伸150倍以上)及优异的热响应性(能在热刺激下,固液转换次数可10次以上)。3. The supramolecular polymer provided by the present invention has room temperature and underwater self-healing properties, high stretchability (can be stretched more than 150 times) and excellent thermal responsiveness (the number of solid-liquid conversions can be up to 10 under thermal stimulation. times or more).
此外,本发明提供的超分子聚合物具有良好的生物相容性(且不含溶剂),在生物医疗领域具有广泛的应用前景。In addition, the supramolecular polymer provided by the present invention has good biocompatibility (and no solvent), and has broad application prospects in the field of biomedicine.
下面通过实施例对本发明作进一步阐述,其目的仅在于更好理解本发明的内容。因此,所举之例不限制本发明的保护范围。The present invention will be further elaborated below through examples, and its purpose is only to better understand the content of the present invention. Therefore, the examples do not limit the protection scope of the present invention.
超分子聚合物的制备Preparation of supramolecular polymers
实施例1Example 1
将10g硫辛酸粉末置于带有搅拌装置的反应器中,油浴加热至硫辛酸粉末熔化,开始搅拌。然后加6g(60wt%)1,3-二(1-甲基乙烯基)苯(DIB)至该反应器中,继续加热搅拌5分钟。再加入0.1g氯化铁的丙酮溶液至该反应器中,继续加热搅拌3分钟,停止加热,冷却至室温,即得超分子聚合物-1。10 g of lipoic acid powder was placed in a reactor with a stirring device, and the oil bath was heated until the lipoic acid powder was melted, and stirring was started. Then, 6 g (60 wt%) of 1,3-bis(1-methylvinyl)benzene (DIB) was added to the reactor, and heating and stirring were continued for 5 minutes. Then add 0.1 g of ferric chloride in acetone solution to the reactor, continue heating and stirring for 3 minutes, stop heating, and cool to room temperature to obtain supramolecular polymer-1.
实施例2~8Examples 2 to 8
除改变单体及交联剂的种类,及单体、交联剂和铁源的摩尔比外,其余步骤和条件与实施例1相同,分别得到不同超分子聚合物,详见表1。Except for changing the types of monomer and cross-linking agent, and the molar ratio of monomer, cross-linking agent and iron source, the remaining steps and conditions are the same as in Example 1, and different supramolecular polymers are obtained respectively, as shown in Table 1.
表1Table 1
本发明提供的超分子聚合物的外观(以超分子聚合物-1为例)见图1.;所提供的超分子聚合物流变性能曲线(以超分子聚合物-2为例)见图2.;及所提供的超分子聚合物结构表征(以超分子聚合物-3为例)见图3.。The appearance of the supramolecular polymer provided by the present invention (taking supramolecular polymer-1 as an example) is shown in Figure 1. The provided supramolecular polymer rheological property curve (taking supramolecular polymer-2 as an example) is shown in Figure 2 .; and the provided characterization of the supramolecular polymer structure (taking supramolecular polymer-3 as an example) is shown in Figure 3..
超分子聚合物自愈(合)性能、拉伸性能和热响应性能的测试Testing of self-healing (healing) properties, tensile properties and thermal response properties of supramolecular polymers
实施例9Example 9
1、自愈(合)性能的测试1. Test of self-healing (combination) performance
(1)取一段条状的本发明所述的超分子聚合物(超分子聚合物-4为例),用剪刀将其切割成两段并紧靠放在一起,放置在载玻片上,用100×倍显微镜记录受损聚合物的图像,50小时后再次用100×倍显微镜观察其自愈合性能,记录;(1) Take a strip of the supramolecular polymer of the present invention (supramolecular polymer-4 as an example), cut it into two sections with scissors and place them close together, place them on a glass slide, and use The image of the damaged polymer was recorded with a 100× magnification microscope, and its self-healing performance was observed again with a 100× magnification microscope after 50 hours, and recorded;
取一段条状的本发明所述的超分子聚合物(超分子聚合物-4为例),用剪刀将其切割成两段并紧靠放在一起,放置1分钟,将聚合物两段置于拉力机夹具上,以100mm/min的速度进行拉伸,观察其拉伸性能。Take a piece of the supramolecular polymer of the present invention (supramolecular polymer-4 as an example), cut it into two sections with scissors and put them close together, leave them for 1 minute, and place the two sections of the polymer together. On the jig of the tensile machine, stretch at a speed of 100 mm/min, and observe its tensile properties.
图4.中,A为超分子聚合物-4的自愈显微图像(1分钟),B为超分子聚合物-4的初始和自愈后的拉伸曲线;In Fig. 4, A is the self-healing microscopic image of supramolecular polymer-4 (1 minute), and B is the initial and self-healing tensile curves of supramolecular polymer-4;
(2)取一段粗条状的本发明所述的超分子聚合物(超分子聚合物-5为例),用剪刀将其切割成两段,将其放入水中并紧靠放在一起,观察其自愈合性能,详见图5.(其中,A为超分子聚合物的切割图,B为超分子聚合物的水下自愈性能表现图)。(2) take a thick strip of supramolecular polymer of the present invention (for example, supramolecular polymer-5), cut it into two sections with scissors, put it into water and put it close together, To observe its self-healing performance, see Figure 5. (wherein, A is the cutting diagram of the supramolecular polymer, and B is the performance diagram of the underwater self-healing performance of the supramolecular polymer).
上述实验表明,超分子聚合物-4具有优良的空气及水下自愈(合)性能。The above experiments show that supramolecular polymer-4 has excellent air and underwater self-healing (healing) properties.
2、拉伸性能测试2. Tensile performance test
取一段条状的本发明所述的超分子聚合物(以超分子聚合物-6为例),用手握住聚合物两段,使聚合物初始长度为1cm。缓慢平稳地拉伸聚合物,观察其拉伸性能,拉伸至50cm以上后再缓慢平稳地释放聚合物,观察其回弹性能;Take a piece of the supramolecular polymer according to the present invention (taking supramolecular polymer-6 as an example), and hold the two sections of the polymer by hand, so that the initial length of the polymer is 1 cm. Stretch the polymer slowly and steadily to observe its tensile properties, and then slowly and steadily release the polymer after stretching to more than 50 cm to observe its resilience;
取一段条状的本发明所述的超分子聚合物(以超分子聚合物-6为例),将聚合物两段置于拉力机夹具上,以100mm/min的速度进行拉伸,观察其拉伸性能;Take a strip of the supramolecular polymer of the present invention (taking supramolecular polymer-6 as an example), place two sections of the polymer on the tensioner clamp, stretch at a speed of 100 mm/min, and observe its tensile properties;
取一段条状的本发明所述的超分子聚合物(以超分子聚合物-6为例),将聚合物两段置于拉力机夹具上,以100mm/min的速度进行循环拉伸,观察其回弹性能。Take a strip of the supramolecular polymer of the present invention (taking supramolecular polymer-6 as an example), place two sections of the polymer on the tension machine clamp, and carry out cyclic stretching at a speed of 100 mm/min, observe its resilience performance.
图6.中A为超分子聚合物-6的初始图,B为超分子聚合物-6的拉伸图,C为超分子聚合物-6拉伸后释放的图,D为超分子聚合物-6的拉伸性能曲线,E为超分子聚合物-6的回弹性能曲线。Figure 6. A is the initial image of supramolecular polymer-6, B is the stretched image of supramolecular polymer-6, C is the released image of supramolecular polymer-6 after stretching, and D is supramolecular polymer-6 Tensile performance curve of -6, E is the rebound performance curve of supramolecular polymer -6.
由A可知,超分子聚合物-6的初始长度为1cm,由B可知,超分子聚合物-6被均匀拉伸至50cm以上,由C可知,被释放后的超分子聚合物-6为初始长度的5倍,由D可知,所述超分子聚合物-6的拉伸率可达15000%以上,由E可知,所述超分子聚合物-6可在200%的拉伸率下多次循环,证明其优良的拉伸性和回弹性。From A, it can be seen that the initial length of supramolecular polymer-6 is 1 cm, from B, it can be seen that the supramolecular polymer-6 is uniformly stretched to more than 50 cm, and from C, it can be seen that the released supramolecular polymer-6 is the initial length. 5 times the length, it can be seen from D that the stretch rate of the supramolecular polymer-6 can reach more than 15000%, and it can be seen from E that the supramolecular polymer-6 can be stretched several times at a stretch rate of 200% cycle, proving its excellent stretchability and resilience.
3、热响应性测试3. Thermal responsiveness test
将初次形成弹性体的本发明所述的超分子聚合物在70℃油浴加热下熔化,然后停止加热冷却至室温,聚合物再次从熔融态转化为弹性态。The supramolecular polymer of the present invention, which initially formed an elastomer, was melted under heating in an oil bath at 70° C., and then the heating was stopped and cooled to room temperature, and the polymer was transformed from a molten state to an elastic state again.
因此,所述超分子聚合物具有优良的热响应性能:即能在热刺激下可实现固液转换。Therefore, the supramolecular polymer has excellent thermal response properties: that is, it can realize solid-liquid conversion under thermal stimulation.
Claims (7)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201810232611.7A CN108484923B (en) | 2018-03-20 | 2018-03-20 | Supramolecular polymers based on lipoic acid compounds and preparation method thereof |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201810232611.7A CN108484923B (en) | 2018-03-20 | 2018-03-20 | Supramolecular polymers based on lipoic acid compounds and preparation method thereof |
Publications (2)
Publication Number | Publication Date |
---|---|
CN108484923A CN108484923A (en) | 2018-09-04 |
CN108484923B true CN108484923B (en) | 2020-07-31 |
Family
ID=63318643
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201810232611.7A Active CN108484923B (en) | 2018-03-20 | 2018-03-20 | Supramolecular polymers based on lipoic acid compounds and preparation method thereof |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN108484923B (en) |
Families Citing this family (18)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN109337043B (en) * | 2018-10-12 | 2021-03-26 | 泉州三欣新材料科技有限公司 | Solvent-free self-repairing polyurethane and preparation method thereof |
CN111040119B (en) * | 2018-10-12 | 2021-12-24 | 三门大洋橡塑有限公司 | Self-repairing type organic silicon modified polyurethane and preparation method thereof |
CN109320723B (en) * | 2018-10-12 | 2021-05-04 | 佛山市十而立新材料有限公司 | Self-repairing organic silicon resin and preparation method thereof |
CN109233571B (en) * | 2018-10-12 | 2021-01-15 | 南宁本吉生物科技有限公司 | Solvent-free self-repairing epoxy resin and preparation method thereof |
CN109401336B (en) * | 2018-10-25 | 2021-02-12 | 华东理工大学 | Preparation method of recyclable supramolecular polymer film with humidity response |
CN109897200A (en) * | 2019-02-26 | 2019-06-18 | 哈尔滨工业大学 | The method of preparation method and the preparation of the utilization gel without interface walking gel robot of self-healing gel |
CN109870174A (en) * | 2019-03-08 | 2019-06-11 | 华南协同创新研究院 | Flexible electrode and preparation method thereof |
CN112552725B (en) * | 2020-12-11 | 2022-03-29 | 中国科学院海洋研究所 | Underwater self-repairing organic silicon antifouling coating and preparation method thereof |
CN113054193B (en) * | 2021-03-12 | 2022-05-24 | 广东工业大学 | Silicon-based negative electrode self-repairing polymer binder and preparation method and application thereof |
CN113061263B (en) * | 2021-04-06 | 2021-12-17 | 华东理工大学 | Preparation method of photocrosslinking dynamic reversible supramolecular polymer binder based on lipoic acid-based small molecular compounds |
CN113336957B (en) * | 2021-05-31 | 2023-05-23 | 深圳先进电子材料国际创新研究院 | Polymer material and preparation method and application thereof |
CN113336960B (en) * | 2021-06-18 | 2022-12-06 | 华东理工大学 | Preparation method of supermolecular polymer with super-strong adhesive property in water |
CN113214482B (en) * | 2021-06-25 | 2022-04-05 | 华东理工大学 | Preparation method of lipoic acid compound polymer |
CN113621342B (en) * | 2021-08-27 | 2022-08-26 | 四川大学 | Solvent-free binder and preparation method and application thereof |
CN114656616A (en) * | 2022-03-31 | 2022-06-24 | 深圳先进技术研究院 | An intrinsic self-healing thermally conductive polymer based on lipoic acid or/and its derivatives and its preparation method and application |
CN115417998B (en) * | 2022-08-18 | 2023-05-05 | 广东工业大学 | Biodegradable self-repairing rubber elastomer and preparation method and application thereof |
CN116444795A (en) * | 2023-03-15 | 2023-07-18 | 广东云曌医疗科技有限公司 | Self-healing elastomer and preparation method and application thereof |
CN116640307B (en) * | 2023-05-18 | 2025-06-17 | 苏州大学 | A dynamic deep eutectic solvent, ion gel and preparation method thereof |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2008156449A (en) * | 2006-12-22 | 2008-07-10 | Sumitomo Rubber Ind Ltd | Crosslinking agent, rubber composition comprising the same and tire manufactured using the rubber composition |
CN105524272A (en) * | 2014-10-24 | 2016-04-27 | 江苏师范大学 | Preparation method and use of thioctic acid-modified polyethylene glycol-polyaminoacid block copolymer |
WO2016066864A1 (en) * | 2014-10-30 | 2016-05-06 | Innovaciones Fisicas Y Quimicas Sostenibles, S.L. | Nanoparticles for the controlled release of active ingredients |
CN106905478A (en) * | 2017-04-19 | 2017-06-30 | 贵州大学 | A kind of alpha lipoic acid molecularly imprinted polymer and preparation method thereof |
-
2018
- 2018-03-20 CN CN201810232611.7A patent/CN108484923B/en active Active
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2008156449A (en) * | 2006-12-22 | 2008-07-10 | Sumitomo Rubber Ind Ltd | Crosslinking agent, rubber composition comprising the same and tire manufactured using the rubber composition |
CN105524272A (en) * | 2014-10-24 | 2016-04-27 | 江苏师范大学 | Preparation method and use of thioctic acid-modified polyethylene glycol-polyaminoacid block copolymer |
WO2016066864A1 (en) * | 2014-10-30 | 2016-05-06 | Innovaciones Fisicas Y Quimicas Sostenibles, S.L. | Nanoparticles for the controlled release of active ingredients |
CN106905478A (en) * | 2017-04-19 | 2017-06-30 | 贵州大学 | A kind of alpha lipoic acid molecularly imprinted polymer and preparation method thereof |
Non-Patent Citations (2)
Title |
---|
《Multi-responsive core-crosslinked poly (thiolether ester) micelles for》;Yanfang Hu et al;《polymer》;Elsevier;20171231;第110卷(第1期);第235-241页 * |
《抗氧化温敏型硫辛酸分子印迹聚合物的研究动态》;朱秋劲等;《食品安全质量检测学报》;20131231;第4卷(第6期);第1785-1788页 * |
Also Published As
Publication number | Publication date |
---|---|
CN108484923A (en) | 2018-09-04 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN108484923B (en) | Supramolecular polymers based on lipoic acid compounds and preparation method thereof | |
CN113061263B (en) | Preparation method of photocrosslinking dynamic reversible supramolecular polymer binder based on lipoic acid-based small molecular compounds | |
Hu et al. | Poly (ethylene oxide)-based composite polymer electrolytes embedding with ionic bond modified nanoparticles for all-solid-state lithium-ion battery | |
CN108623826B (en) | Double-network ionic gel with stimulus responsiveness and self-repairability | |
CN112185712B (en) | A kind of imidazole polyionic liquid gel electrolyte and preparation method thereof | |
CN108192020B (en) | A kind of preparation method of intelligent zwitterionic polymer material | |
CN104497208A (en) | Self-healing sulfobetaine zwitterionic nano composite aquagel and preparation method thereof | |
CN109503768B (en) | A kind of preparation method of high-strength, tough, viscous and weather-resistant polyvinyl alcohol-based double network hydrogel | |
CN108503941A (en) | A kind of preparation method of the shape memory high molecule material based on thermoplastic sulfurized rubber | |
CN109988265A (en) | Preparation method of self-healing hydrogel | |
CN114773756B (en) | Thermo-mechanical stable supermolecular elastomer material and preparation method thereof | |
CN114989332B (en) | Ionic elastomer, preparation method and application | |
CN110713600B (en) | Preparation method of self-healing silicon elastomer based on metal coordination bond-hydrogen bond double crosslinking and elastomer | |
CN110357993A (en) | A kind of novel high polymer for the structure of dihydropyridine containing 1,4- can be used as antibacterial additive | |
CN113501907A (en) | Method for regulating and controlling modulus change range of thermal response ionic liquid gel and thermal response ionic liquid gel | |
CN102060960B (en) | Method for preparing comb-shaped macromolecular solid-solid phase change material | |
CN110606986B (en) | Silicone rubber cross-linking agent, and preparation method and application thereof | |
CN114149555B (en) | A kind of self-healing polyurethane and its preparation and application | |
CN109666163B (en) | Hybrid crosslinked dynamic polymer and application thereof | |
CN102977368B (en) | Polypyrazole formate and preparation method thereof | |
CN109384928B (en) | Polysiloxane elastomer based on aromatic disulfide bond and imine bond and preparation method thereof | |
CN113831638B (en) | Anti-aging BOPP film and preparation method and application thereof | |
CN104497182B (en) | The preparation method of Narrow Molecular Weight Distribution polymethyl methacrylate | |
CN105754040B (en) | High fluidity Heat-proof PVC resin and preparation method thereof | |
Gökçeören et al. | Synthesis and investigation of poly (N-isopropylacrylamide-co-N-vinylcarbazole) hydrogels morphological, fluorescence and electrical properties |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |