CN108481734B - 4D micro-nano Method of printing based on three-dimensional laser direct write - Google Patents

4D micro-nano Method of printing based on three-dimensional laser direct write Download PDF

Info

Publication number
CN108481734B
CN108481734B CN201810151527.2A CN201810151527A CN108481734B CN 108481734 B CN108481734 B CN 108481734B CN 201810151527 A CN201810151527 A CN 201810151527A CN 108481734 B CN108481734 B CN 108481734B
Authority
CN
China
Prior art keywords
deformation
micro
printing
substrate
nano
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201810151527.2A
Other languages
Chinese (zh)
Other versions
CN108481734A (en
Inventor
黄天云
段慧玲
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Peking University
Original Assignee
Peking University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Peking University filed Critical Peking University
Priority to CN201810151527.2A priority Critical patent/CN108481734B/en
Publication of CN108481734A publication Critical patent/CN108481734A/en
Application granted granted Critical
Publication of CN108481734B publication Critical patent/CN108481734B/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C64/00Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
    • B29C64/10Processes of additive manufacturing
    • B29C64/106Processes of additive manufacturing using only liquids or viscous materials, e.g. depositing a continuous bead of viscous material
    • B29C64/112Processes of additive manufacturing using only liquids or viscous materials, e.g. depositing a continuous bead of viscous material using individual droplets, e.g. from jetting heads
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C64/00Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
    • B29C64/20Apparatus for additive manufacturing; Details thereof or accessories therefor
    • B29C64/264Arrangements for irradiation
    • B29C64/268Arrangements for irradiation using laser beams; using electron beams [EB]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C64/00Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
    • B29C64/20Apparatus for additive manufacturing; Details thereof or accessories therefor
    • B29C64/264Arrangements for irradiation
    • B29C64/268Arrangements for irradiation using laser beams; using electron beams [EB]
    • B29C64/273Arrangements for irradiation using laser beams; using electron beams [EB] pulsed; frequency modulated
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C64/00Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
    • B29C64/30Auxiliary operations or equipment
    • B29C64/386Data acquisition or data processing for additive manufacturing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y10/00Processes of additive manufacturing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y30/00Apparatus for additive manufacturing; Details thereof or accessories therefor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y50/00Data acquisition or data processing for additive manufacturing

Abstract

The invention discloses a kind of 4D micro-nano Method of printing based on three-dimensional laser direct write, comprising steps of being ready for the substrate of 4D micro-nano printing;4D be can print into material precursor drop in substrate;Presoma described in laser irradiation is controlled, so that presoma is realized the differentiation deformation of three-dimensional structure, forms the sample of setting shape;Sample is developed.Method of printing of the invention realizes the preparation of three-dimension flexible controllable deforming micro-structure using three-dimensional laser direct writing technology.

Description

4D micro-nano Method of printing based on three-dimensional laser direct write
Technical field
The present invention relates to 4D to print field, further to a kind of 4D micro-nano Method of printing based on three-dimensional laser direct write.
Background technique
In the latest 20 years, with the development of many basic subjects such as physics, chemistry, material, machinery, electronics, people for The understanding in the micro-nano-scale world and exploration obtain unprecedented breakthrough.Manufacture resolution ratio can achieve several nanometers It is even more small, however the micro-nano function element of preparation structure complexity, current method mainly have two-dimentional photoetching technique.Have benefited from material The innovation for expecting manufacturing process, observation technology and analysis means, using three-dimensional laser direct writing technology as the advanced minute manufacturing skill of representative The positive rapid rising of art becomes the new hot spot of advanced manufacturing field instantly.Further development of the future with technology of preparing, 4D micro-nano Printing technique can print flexible active deformation structure using intellectual material under miniature scale, it will lead next-generation manufacturing technology Towards smaller (Smaller), more soft (Softer), safer (Safer), more intelligent (Smarter), and it is functionally more powerful (Stronger) etc. directions are developed, and have broad application prospects in Meta Materials design, green manufacturing and extraordinary medical field. Technology can not also realize active, quick, reciprocable, predictable malformation switching on the micro scale at this stage, there are no Method has the Deformation Demands such as large deformation, high controllability and design flexibility.
There is presently no the relevant report for the 4D micro-nano printing based on three-dimensional laser direct write, existing realization is flexible controllable The defect of the function element printing technique of deformation is as follows:
It, can only be three-dimensional outside plane or face after triggering deformation 1. the print structure reported at present is mostly two-dimension plane structure Movement.A part realizes that three-dimensional structure has to more materials and the cooperation of Alternative step is realized, cannot achieve single material and exists 3 D stereo micro nano structure is printed during unitary system is standby, while deformation process is from three-dimensional to three-dimensional variation.
2. current printing model needs backing material mostly, and is realized by way of (Layer-by-layer) is laminated Three-dimensional structure can not eliminate the residual stress in heterojunction structure print procedure, and it is even more impossible to realize on any three-dimensional space track Direct write molding.
3. malformation ability after triggering is poor, not reproducible deformation, deformation poor controllability, response time are too long, and change Shape freedom degree is single, and it is even more impossible to realize accurate prediction and Programmable Design optimization to material and structure.
4. certain materials such as Shape Memory Polymer, material itself is hard, and deformable state needs external force and temperature total Same-action is just able to achieve.
Summary of the invention
(1) technical problems to be solved
In view of this, the purpose of the present invention is to provide a kind of 4D micro-nano Method of printing based on three-dimensional laser direct write, with Solve above-described at least partly technical problem.
(2) technical solution
According to an aspect of the present invention, a kind of 4D micro-nano Method of printing based on three-dimensional laser direct write is provided, comprising steps of
It is ready for the substrate of 4D micro-nano printing;
4D be can print into material precursor drop in substrate;
Presoma described in laser irradiation is controlled, so that presoma is realized the differentiation deformation of three-dimensional structure, forms setting shape Sample;
Sample is developed.
In further embodiment, the substrate for being ready for the printing of 4D micro-nano includes: cleaning substrate of glass;Baking removal base Bottom water vapour;Plasma surface modification is carried out to substrate.
In further embodiment, controlling presoma described in laser irradiation includes: building threedimensional model;According to threedimensional model Control laser is scanned presoma, and laser power and scanning speed is adjusted in when scanning.
In further embodiment, the scanning mode is layer-by-layer laser scanning, three-dimensional laser direct write and three-dimensional laser Direct write is mixed with layer-by-layer laser scanning.
In further embodiment, building threedimensional model includes: building hinge deformation unit, and presses design requirement for hinge Deformation unit fits together, and forms the reconfigurable structures of the large scale of controllable deforming.
In further embodiment, the hinge deformation unit includes: to deform bilayer, including internal layer and outer layer, two layers Dilation rate is different;Support construction supports the deformation double-deck;
Rotary joint is set to support construction and deforms the double-deck junction, can rotate along fixed bias circuit, with the support Restrained deformation moves structure together, including active joint and passive joint.
In further embodiment, the hinge deformation unit is hollow triangular pyramid, multi-panel pyramid or semiglobe etc. The functional structure of different designs;The size of the preferred hinge deformation unit arrives several hundred microns between tens microns.
In further embodiment, it includes: to utilize 30mW- that laser power and scanning speed, which is adjusted, in when scanning 50mW power prints support construction, and deformation bilayer and passive joint;Active joint is printed by 5mW-30mW lower-wattage.
It include: that sample is put into isopropanol solvent to develop by sample development in further embodiment;With not developing Isopropanol solvent cleaning sample;Utilize water displacement isopropanol.
According to another aspect of the present invention, a kind of flexibility 4D micro-nano printed matter is provided, the printing of any description above is passed through Method is prepared.
(3) beneficial effect
(1) Method of printing of the invention realizes three-dimension flexible controllable deforming micro-structure using three-dimensional laser direct writing technology Preparation.The printing precision of sub-micron allows for the deformation of 3D to the 3D of the complex three-dimensional structure of micron level.Homogenous material exists Single preparation process simplifies preparation process, and deformation process is controllably stablized, can be realized by finite element modelling to 3 D deformation mistake The prediction of journey.
(2) present invention proposes the method for utilizing three-dimensional space direct write deformation unit, deforms the double-deck normal direction cutting printing Principle can effectively avoid the homogenization problem of residual stress in heterojunction structure print procedure.Meanwhile stacking and direct-write methods are matched It closes, print quality and print speed can be taken into account, realize the technical optimization of 4D micro-nano printing.
(3) present invention by the design of hinge deformation unit solve tradition deformation double-layer structure to material swelling character according to Rely, the deflection for realizing 4D printing micro-structure is bigger, and controllability is more preferable, and response speed faster waits technological break-throughs.
(4) present invention forms large scale deformation function system using the assembling of minimum hinge deformation unit, may be implemented to appoint Meaning deformation freedom degree design, each of system unit is all one degree of freedom, and assembling in the way of desired design can be real The design and preparation of the distressed structure of existing complexity 3D to 3D.Minimum unit of the hinge deformation unit as printing optimization, and it is multiple The design cell of miscellaneous deformation, and the printing of 4D micro-nano keeps large scale anamorphotic system design method more square with modularization assembling design Just, the deformation list of any desired can be designed effectively, and spatially, in deformation size, on bending degree and on mechanical characteristic Member.
(5) present invention is directed to super elastic structure, is a kind of particular for the flexibility 4D printed material such as hydrogel, elastomer Simply, efficiently, the programmable Method of printing of deformation.
Detailed description of the invention
Fig. 1 is the flexible 4D micro-nano Method of printing flow chart based on three-dimensional laser direct write of the embodiment of the present invention;
Fig. 2 is the flexible 4D micro-nano Method of printing process schematic based on three-dimensional laser direct write of the embodiment of the present invention;
Fig. 3 A, Fig. 3 B and Fig. 3 C are hinge deformation unit main view, top view and the perspective view of the embodiment of the present invention respectively;
Fig. 4 A and Fig. 4 B are two kinds of design diagrams of the hinge deformation unit in Fig. 3 C.
Specific embodiment
To make the objectives, technical solutions, and advantages of the present invention clearer, below in conjunction with specific embodiment, and reference Attached drawing, the present invention is described in further detail.
Basic conception according to the present invention, can be based on four-dimensional laser writing technology, and providing one kind can touch in extraneous stimulus field Give the micro-nano reconfigurable structures preparation method of flexibility of active deformation.
Fig. 1 is the flexible 4D micro-nano Method of printing flow chart based on three-dimensional laser direct write of the embodiment of the present invention.In conjunction with Fig. 1 With shown in Fig. 2, the flexible 4D micro-nano Method of printing according to an embodiment of the present invention based on three-dimensional laser direct write comprising following step It is rapid:
S110: it is ready for the substrate of 4D micro-nano printing;
S120: 4D be can print into material precursor drop in substrate;
S130: presoma described in control laser irradiation makes presoma realize the differentiation deformation of three-dimensional structure, forms setting The sample of shape;
S140: sample is developed.
Wherein, in step S110, substrate can be various substrates in the prior art, 0.17 mm of thickness of main satisfaction Transparent glass, in special process, it is possible to use thickness is bigger and jealous glass substrate;Preferred substrate can be glass Glass substrate;Further preferably borate glass (such as Pyrex).Optional substrate thickness is 0.17 micron.
In some embodiments, the substrate pass through pre-treatment step, including but not limited to polishing, liquid rinse, etc. from Daughter bombardment and drying steps.Preferred pre-treatment step includes: cleaning substrate of glass;Baking removal substrate steam;And it is right Substrate carries out plasma surface modification.Wherein, it can be used acetone (AECTONE), isopropanol (IPA) and ultrapure water (such as hinder It is 18.2 megaohms anti-) cleaning substrate of glass;Moisture removal can be removed by toasting substrate in an oven;It can be modified by plasma surface Enhance substrate adhesion.
Wherein, in step S120,4D, which can print material precursor, can be liquid crystal elastic body, Shape Memory Polymer and coagulate Glue material;Preferred presoma can be the gel rubber material of good biocompatibility.Wherein, in step S130, control laser shines Penetrating the presoma may include: building threedimensional model;Presoma is scanned according to threedimensional model control laser, when scanning Laser power and scanning speed are adjusted.
Building threedimensional model may include: the three-dimensional rigid body structure for defining micro-nano 4D intelligent device, and utilize computer aided manufacturing Design software is helped to carry out three-dimensional modeling to intelligent device.
On the basis of threedimensional model, laser intensity, scanning speed and spatial position of definition deformation heterojunction structure etc. are different Threedimensional model is carried out cutting layering or piecemeal by matter deformation information, and by serial number from bottom to top.
In some embodiments, in above-mentioned print procedure, laser scanning pattern includes three kinds of stacking, direct write and mixing.
The first prints identical heterogeneous deformation information unit according to number order, and each unit is according to horizontal successively superposition (Layer by Layer) mode is printed, is printed between unit according to adjacent sequential;
Second method is laser direct-writing printing, is cut in the way of from bottom to up to threedimensional model, cutting The direction of heterogeneous deformation is oriented parallel to guarantee the uneven to distressed structure of residual stress in print procedure to greatest extent It influences.
The third method is to be used cooperatively in print procedure with two methods.Matching principle is that printing is three-dimensional non-deformed Usually using laminating method when structure;Usually using laser direct writing method when printing heterogeneous deformation unit.
In some embodiments, laser power and scanning speed are adjusted when scanning.Laser power and scanning speed What degree was adjusted is exposure dose, and the difference of exposure dose directly determines result deflection.In the joint of different designs, expose Light dosage needs are tested in advance or by simulation and prediction malformation amounts.And in the joint of same design, utilize different exposures Light dosage carries out deflection design to the joint of different parts.
In some embodiments, it in order to increase the controllability of malformation amount and deformation direction, is designed using linkage Microstructure unit, referred to as hinge deformation unit.Hinge deformation unit is the minimum print unit of 4D micro-nano printing controllable deforming.Hinge Deformation of chain unit can there are many designs, and fit together all hinges by design requirement, form the large scale of controllable deforming The reconfigurable structures of (millimeter or centimetre rank).It is to break through conventional double structure to rely on first by designing hinge deformation unit In the limitation of deformable material, being effectively compressed for geometric distortion, the especially reality to negative poisson's ratio metamaterial structure are realized by hinge It is existing very helpful, the deflection of print structure can be greatly increased.Secondly, the bending direction that double-layer structure usually deforms is by entirety The limitation of structure, standard single module such as ball, the deformation of square block can not usually determine that hinge arrangement limits single by joint One axis is complete, can effectively promote the deformation direction controllability of distressed structure.Finally, hinge is hollow pore structure, therefore increase Rate of specific surface area makes the triggering for contacting environmental stimuli response become faster.
The detailed design of minimum hinge deformation unit illustrates that hinge schematic diagram is as shown in Fig. 3 A-3C.The hinge of 4D micro-nano printing Deformation of chain unit generally includes to deform double-deck 1 (including internal layer and outer layer), support construction 2, rotary joint (actively and passive) etc.. Deformation bilayer 1 provides deformability, drives hinge arrangement deformation;Support construction 2 provides necessary deformation space, together with joint Realize the space limitation of amoeboid movement;Joint is the mechanical structure that can be rotated along fixed bias circuit, and it is former usually to there are a variety of designs Type.Two class joints of the invention: active joint 31 and passive joint 32.Active joint 31 is with certain support force or to reply energy Power keeps certain integrality supported and structure can be kept when setting back in rotary course;And passive joint 32 is not Joint designs comprising active support and recovery capacity, are common in various design, such as lasso structure.Minimum hinge deformation The visible Fig. 3 C of hollow triangular pyramid design diagram of unit.In hinge design, other than hollow triangular pyramid, multi-panel pyramid, pyramid, Hemisphere etc. can be designed to minimum hinge deformation unit.
In some embodiments, the combined method of minimum hinge deformation unit can there are many, minimum hinge deformation unit The combining form of deformation unit can be designed.By vertex and vertex, vertex and side, different numbers are combined in side and Bian Xianglian, connection The anamorphotic system of duration set, the combination of formation are referred to shown in Fig. 4 A and Fig. 4 B.Combining form and hinge number of combinations need It is determined together according to different distortion requirements set different function hinge.
It includes: to print support knot using 30mW-50mW power that laser power and scanning speed, which are adjusted, when scanning Structure 2, and the hard layer (passive joint 32) of deformation bilayer 1 and joint;On the other hand, it is printed by 5mW-30mW lower-wattage Active joint 31;Laser power and scanning speed are substantially in inverse relation, i.e., high crosslink density can be achieved in high-power and slow speed of sweeping Printing for hard layer;Small-power and the printing that the achievable lower crosslink density of speed is used for soft layer is swept fastly.
Below by way of with specific example, the present invention is further described, it will be appreciated that concrete technology below is only used for It illustrates the present invention, should not be construed as limiting the present invention.Specific example step includes: (1) cleaning borosilicate glass substrate.In Before three-dimensional laser direct write, using AECTONE, IPA (isopropanol) and ultrapure water (18.2 megaohms of impedance) are successively to Pyrex Substrate (22mm × 22mm, 0.13-0.17mm are thick, match silent winged generation that science and technology) is cleaned.
(2) baking removal substrate steam.After drying up substrate of glass using nitrogen gun, it is placed on 120 DEG C of ovens 20 minutes.Then It is cooled to room temperature.
(3) plasma surface modification enhancing substrate adhesion.Substrate of glass after drying is put into oxygen gas plasma 15 minutes in generator.
(4) 4D be can print into material precursor drop on the glass sheet, ready-to-print.
(5) print procedure.Laser power (0~50mW) and scanning speed (0~100mm/s) are adjusted by program to control Exposure intensity on all motion profiles of laser makes 4D printed material in three-dimensional any spatial point there is uneven density to hand over Connection, and then realize the differentiation deformation of three-dimensional structure.
(6) sample develops.Sample is put into IPA solvent at least 20min that develops, is then cleaned at least with fresh IPA Twice, ultrapure water is recycled to cement out IPA.
According to another aspect of an embodiment of the present invention, a kind of flexibility 4D micro-nano printed matter is also provided, by implementing above The Method of printing that example is introduced is prepared.The 4D micro-nano printed matter can be specifically for by three-dimensional spherical, metamaterial microstructure list Mechanical Shape variable umbrella shape structure of member, intravascular stent structure, switch etc..
More than, Method of printing through the embodiment of the present invention, using homogenous material under sub-micron printing precision an only step The labyrinth deformation of 3D to 3D is realized in molding, flexible micro-nano function element have it is high deform freedom degree, multifunctional all, Precisely it is controllable the advantages that, and using finite element modelling can precisely prediction of distortion process to realize optimization design.Except flexible micro-nano function Outside energy device, which can also prepare the large scale effector with multistage microstructural using hinge arrangement design method Part, while 4D printed material has good biocompatibility, also can be used for medical microdevice, targeted therapy, group weaver Numerous biomedical applications fields such as journey.
Particular embodiments described above has carried out further in detail the purpose of the present invention, technical scheme and beneficial effects Describe in detail bright, it should be understood that the above is only a specific embodiment of the present invention, is not intended to restrict the invention, it is all Within the spirit and principles in the present invention, any modification, equivalent substitution, improvement and etc. done should be included in protection of the invention Within the scope of.

Claims (9)

1. a kind of 4D micro-nano Method of printing based on three-dimensional laser direct write, it is characterised in that comprising steps of
It is ready for the substrate of 4D micro-nano printing;
4D be can print into material precursor drop in substrate;
Presoma described in laser irradiation is controlled, so that presoma is realized the differentiation deformation of three-dimensional structure, forms the sample of setting shape Product, controlling presoma described in laser irradiation includes: building threedimensional model, constructs hinge deformation unit, and will cut with scissors by design requirement Deformation of chain unit fits together, and forms the reconfigurable structures of the large scale of controllable deforming;According to threedimensional model to presoma into Row prints, and laser power and scanning speed are adjusted in print procedure;
Sample is developed.
2. Method of printing according to claim 1, which is characterized in that being ready for the substrate that 4D micro-nano prints includes:
Clean substrate of glass;
Baking removal substrate steam;
Plasma surface modification is carried out to substrate.
3. Method of printing according to claim 1, which is characterized in that the scanning mode is layer-by-layer laser scanning, three-dimensional Laser direct-writing and three-dimensional laser direct write are mixed with layer-by-layer laser scanning.
4. Method of printing according to claim 1, which is characterized in that the hinge deformation unit includes:
Deformation is double-deck, including internal layer and outer layer, and two layers of dilation rate is different;
Support construction supports the deformation double-deck;
Rotary joint is set to support construction and deforms the double-deck junction, can rotate along fixed bias circuit, with the support construction Restrained deformation moves together, including active joint and passive joint.
5. Method of printing according to claim 1, which is characterized in that the hinge deformation unit is hollow triangular pyramid, more The functional structure of face pyramid or semiglobe design.
6. Method of printing according to claim 1, which is characterized in that the size of the hinge deformation unit is micro- between tens Rice arrives several hundred microns.
7. Method of printing according to claim 4, which is characterized in that carried out when scanning to laser power and scanning speed Adjusting includes:
Support construction and passive joint are printed using 30mW-50mW power;Active joint is printed by 5mW-30mW power.
8. Method of printing according to claim 1, which is characterized in that include: by sample development
Sample is put into isopropanol solvent and is developed;
With the isopropanol solvent cleaning sample that do not developed;
Utilize water displacement isopropanol.
9. a kind of flexibility 4D micro-nano printed matter, it is characterised in that prepared by any Method of printing of claim 1-8 At.
CN201810151527.2A 2018-02-14 2018-02-14 4D micro-nano Method of printing based on three-dimensional laser direct write Active CN108481734B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201810151527.2A CN108481734B (en) 2018-02-14 2018-02-14 4D micro-nano Method of printing based on three-dimensional laser direct write

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201810151527.2A CN108481734B (en) 2018-02-14 2018-02-14 4D micro-nano Method of printing based on three-dimensional laser direct write

Publications (2)

Publication Number Publication Date
CN108481734A CN108481734A (en) 2018-09-04
CN108481734B true CN108481734B (en) 2019-12-03

Family

ID=63340735

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201810151527.2A Active CN108481734B (en) 2018-02-14 2018-02-14 4D micro-nano Method of printing based on three-dimensional laser direct write

Country Status (1)

Country Link
CN (1) CN108481734B (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111415761B (en) * 2019-01-07 2022-03-11 新奥科技发展有限公司 Plasma-oriented part and fusion device
CN111421228B (en) * 2020-04-08 2021-05-18 华中科技大学 Sample precision clamp for cross-scale two-photon polymerization processing and leveling method
CN112521798B (en) * 2020-11-30 2021-11-26 常州大学 Preparation method of 4D printing liquid crystal elastomer and application of elastomer in actuator
CN112936853B (en) * 2021-01-29 2022-07-15 哈尔滨工业大学 4D printing structure for improving load deformation performance and design method thereof
CN115141014A (en) * 2021-03-29 2022-10-04 清华大学深圳国际研究生院 Preparation method of 4D printing ceramic and ceramic part
CN113977943A (en) * 2021-11-19 2022-01-28 吉林大学 4D printing method for controlling deformation of liquid crystal elastomer material

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9827715B2 (en) * 2014-03-27 2017-11-28 Seiko Epson Corporation Three-dimensional formation apparatus, three-dimensional formation method, and computer program
CN105602213B (en) * 2015-12-29 2017-09-12 哈尔滨工业大学 A kind of preparation of shape memory Micron-nano composites and its application in 4D printings
CN107320779B (en) * 2017-06-22 2020-03-27 清华大学深圳研究生院 Method and device for preparing in-vitro three-dimensional tissue model

Also Published As

Publication number Publication date
CN108481734A (en) 2018-09-04

Similar Documents

Publication Publication Date Title
CN108481734B (en) 4D micro-nano Method of printing based on three-dimensional laser direct write
CN103258781B (en) Method and apparatus for forming electric interconnector on Ophthalmoligic instrument
US10521010B2 (en) System and method for haptic interaction with virtual objects
Leung et al. Challenges and status on design and computation for emerging additive manufacturing technologies
CN108538755B (en) A kind of conformal manufacturing equipment and method of complex-curved electronic system
Khodambashi et al. Heterogeneous hydrogel structures with spatiotemporal reconfigurability using addressable and tunable voxels
Hu et al. Origami spring–inspired metamaterials and robots: An attempt at fully programmable robotics
Ni et al. Soft shape-programmable surfaces by fast electromagnetic actuation of liquid metal networks
KR102062255B1 (en) Microlens array and method for fabricating thereof
Shen et al. Programming the time into 3D printing: current advances and future directions in 4D printing
JP2011523199A (en) 3D mold and process for producing submicron 3D structures using 2D photon lithography and nanoimprint
Wang et al. 3D printing of electrically responsive PVC gel actuators
Kim et al. Computer-controlled dynamic mode multidirectional UV lithography for 3D microfabrication
JP2023511020A (en) FLEXIBLE CAPACITOR ARRAY AND MANUFACTURING METHOD THEREOF, CAPACITOR ARRAY DETECTION SYSTEM AND ROBOT
CN104866098A (en) Ultrasonic tactile feedback system and method for manufacturing same
CN107992672A (en) A kind of soft tissue deformation modeling method based on virtual spring
Malone et al. Multi-material freeform fabrication of active systems
Vatanparast et al. New trends in 4D printing: a critical review
Zhakypov et al. FingerPrint: A 3-D printed soft monolithic 4-degree-of-freedom fingertip haptic device with embedded actuation
JP7393304B2 (en) Simulation method, simulation device, program and film formation method
Liu et al. Controllable three-dimension auxetic structure design strategies based on triply periodic minimal surfaces and the application in hip implant
Niu et al. Reconfigurable shape-morphing flexible surfaces realized by individually addressable photoactuator arrays
Hiller Digital materials: voxel design, rapid assembly, structural properties, and design methods
CN104802350A (en) Preparation method of intermediate film, intermediate film and nano-generator prepared from intermediate film
Clement et al. 3D printed ionogels in sensors

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant