CN108470111A - 一种基于多基因表达特征谱的胃癌个性化预后评估方法 - Google Patents
一种基于多基因表达特征谱的胃癌个性化预后评估方法 Download PDFInfo
- Publication number
- CN108470111A CN108470111A CN201810440931.1A CN201810440931A CN108470111A CN 108470111 A CN108470111 A CN 108470111A CN 201810440931 A CN201810440931 A CN 201810440931A CN 108470111 A CN108470111 A CN 108470111A
- Authority
- CN
- China
- Prior art keywords
- gene
- gastric cancer
- patient
- survival
- risk
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 208000005718 Stomach Neoplasms Diseases 0.000 title claims abstract description 57
- 206010017758 gastric cancer Diseases 0.000 title claims abstract description 57
- 201000011549 stomach cancer Diseases 0.000 title claims abstract description 57
- 230000014509 gene expression Effects 0.000 title claims abstract description 37
- 238000011156 evaluation Methods 0.000 title claims description 11
- 238000001228 spectrum Methods 0.000 title claims 3
- 108090000623 proteins and genes Proteins 0.000 claims abstract description 79
- 230000004083 survival effect Effects 0.000 claims abstract description 72
- 206010028980 Neoplasm Diseases 0.000 claims abstract description 45
- 238000004393 prognosis Methods 0.000 claims abstract description 32
- 238000009826 distribution Methods 0.000 claims description 25
- 238000004364 calculation method Methods 0.000 claims description 12
- 201000011510 cancer Diseases 0.000 claims description 10
- 230000001186 cumulative effect Effects 0.000 claims description 3
- 238000013210 evaluation model Methods 0.000 claims 2
- 238000006243 chemical reaction Methods 0.000 claims 1
- 238000000034 method Methods 0.000 abstract description 15
- 239000000523 sample Substances 0.000 description 16
- 210000001519 tissue Anatomy 0.000 description 14
- 230000034994 death Effects 0.000 description 6
- 231100000517 death Toxicity 0.000 description 6
- 230000000694 effects Effects 0.000 description 3
- 238000005315 distribution function Methods 0.000 description 2
- 239000012634 fragment Substances 0.000 description 2
- 239000013610 patient sample Substances 0.000 description 2
- 101150084750 1 gene Proteins 0.000 description 1
- 208000005623 Carcinogenesis Diseases 0.000 description 1
- 210000004556 brain Anatomy 0.000 description 1
- 230000036952 cancer formation Effects 0.000 description 1
- 231100000504 carcinogenesis Toxicity 0.000 description 1
- 238000002790 cross-validation Methods 0.000 description 1
- 238000003745 diagnosis Methods 0.000 description 1
- 201000010099 disease Diseases 0.000 description 1
- 208000037265 diseases, disorders, signs and symptoms Diseases 0.000 description 1
- 239000003814 drug Substances 0.000 description 1
- 230000005584 early death Effects 0.000 description 1
- 238000001727 in vivo Methods 0.000 description 1
- 210000001165 lymph node Anatomy 0.000 description 1
- 230000036210 malignancy Effects 0.000 description 1
- 230000007246 mechanism Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000010837 poor prognosis Methods 0.000 description 1
- 230000008569 process Effects 0.000 description 1
- 230000009466 transformation Effects 0.000 description 1
Classifications
-
- G—PHYSICS
- G16—INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
- G16B—BIOINFORMATICS, i.e. INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR GENETIC OR PROTEIN-RELATED DATA PROCESSING IN COMPUTATIONAL MOLECULAR BIOLOGY
- G16B20/00—ICT specially adapted for functional genomics or proteomics, e.g. genotype-phenotype associations
-
- G—PHYSICS
- G16—INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
- G16H—HEALTHCARE INFORMATICS, i.e. INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR THE HANDLING OR PROCESSING OF MEDICAL OR HEALTHCARE DATA
- G16H50/00—ICT specially adapted for medical diagnosis, medical simulation or medical data mining; ICT specially adapted for detecting, monitoring or modelling epidemics or pandemics
- G16H50/30—ICT specially adapted for medical diagnosis, medical simulation or medical data mining; ICT specially adapted for detecting, monitoring or modelling epidemics or pandemics for calculating health indices; for individual health risk assessment
Landscapes
- Health & Medical Sciences (AREA)
- Engineering & Computer Science (AREA)
- Medical Informatics (AREA)
- Physics & Mathematics (AREA)
- Life Sciences & Earth Sciences (AREA)
- Public Health (AREA)
- Bioinformatics & Cheminformatics (AREA)
- General Health & Medical Sciences (AREA)
- Biotechnology (AREA)
- Theoretical Computer Science (AREA)
- Proteomics, Peptides & Aminoacids (AREA)
- Bioinformatics & Computational Biology (AREA)
- Genetics & Genomics (AREA)
- Evolutionary Biology (AREA)
- Biophysics (AREA)
- Analytical Chemistry (AREA)
- Spectroscopy & Molecular Physics (AREA)
- Molecular Biology (AREA)
- Biomedical Technology (AREA)
- Data Mining & Analysis (AREA)
- Databases & Information Systems (AREA)
- Pathology (AREA)
- Chemical & Material Sciences (AREA)
- Epidemiology (AREA)
- Primary Health Care (AREA)
- Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)
- Investigating Or Analysing Biological Materials (AREA)
Abstract
Description
Claims (6)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201810440931.1A CN108470111B (zh) | 2018-05-09 | 2018-05-09 | 一种基于多基因表达特征谱的胃癌个性化预后评估方法 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201810440931.1A CN108470111B (zh) | 2018-05-09 | 2018-05-09 | 一种基于多基因表达特征谱的胃癌个性化预后评估方法 |
Publications (2)
Publication Number | Publication Date |
---|---|
CN108470111A true CN108470111A (zh) | 2018-08-31 |
CN108470111B CN108470111B (zh) | 2022-01-18 |
Family
ID=63260968
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201810440931.1A Active CN108470111B (zh) | 2018-05-09 | 2018-05-09 | 一种基于多基因表达特征谱的胃癌个性化预后评估方法 |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN108470111B (zh) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN110197701A (zh) * | 2019-04-22 | 2019-09-03 | 福建医科大学附属第一医院 | 一种新型多发性骨髓瘤诺模图构建方法 |
CN110223733A (zh) * | 2019-04-22 | 2019-09-10 | 福建医科大学附属第一医院 | 一种新型多发性骨髓瘤预后基因的筛查方法 |
CN112037167A (zh) * | 2020-07-21 | 2020-12-04 | 苏州动影信息科技有限公司 | 一种基于影像组学和遗传算法的目标区域确定系统 |
CN113903471A (zh) * | 2021-09-24 | 2022-01-07 | 上海交通大学 | 基于组织病理学图像和基因表达数据的胃癌患者生存风险预测方法 |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20090319244A1 (en) * | 2002-10-24 | 2009-12-24 | Mike West | Binary prediction tree modeling with many predictors and its uses in clinical and genomic applications |
CN101688240A (zh) * | 2007-04-10 | 2010-03-31 | 国立台湾大学 | 通过微rna预测癌症患者的治疗后存活预期 |
US20140200824A1 (en) * | 2008-09-19 | 2014-07-17 | University Of Pittsburgh Of The Commonwealth System Of Higher Education | K-partite graph based formalism for characterization of complex phenotypes in clinical data analyses and disease outcome prognosis |
CN104854247A (zh) * | 2012-10-12 | 2015-08-19 | 新加坡科技研究局 | 卵巢癌的预后及分层方法 |
US20160289766A1 (en) * | 2007-01-31 | 2016-10-06 | Celera Corporation | Molecular prognostic signature for predicting breast cancer metastasis, and uses thereof |
-
2018
- 2018-05-09 CN CN201810440931.1A patent/CN108470111B/zh active Active
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20090319244A1 (en) * | 2002-10-24 | 2009-12-24 | Mike West | Binary prediction tree modeling with many predictors and its uses in clinical and genomic applications |
US20160289766A1 (en) * | 2007-01-31 | 2016-10-06 | Celera Corporation | Molecular prognostic signature for predicting breast cancer metastasis, and uses thereof |
CN101688240A (zh) * | 2007-04-10 | 2010-03-31 | 国立台湾大学 | 通过微rna预测癌症患者的治疗后存活预期 |
US20140200824A1 (en) * | 2008-09-19 | 2014-07-17 | University Of Pittsburgh Of The Commonwealth System Of Higher Education | K-partite graph based formalism for characterization of complex phenotypes in clinical data analyses and disease outcome prognosis |
CN104854247A (zh) * | 2012-10-12 | 2015-08-19 | 新加坡科技研究局 | 卵巢癌的预后及分层方法 |
Non-Patent Citations (4)
Title |
---|
JENNIFER CLARKE .ETC: ""Bayesian Weibull tree models for survival analysis of clinico-genomic data"", 《STATISTICAL METHODOLOGY》 * |
S. JAIN .ETC: ""c-erbB-2 PROTO-ONCOGENE EXPRESSION AND ITS RELATIONSHIP TO SURVIVAL IN GASTRIC CARCINOMA: AN IMMUNOHISTOCHEMICAL STUDY ON ARCHIVAL MATERIAL"", 《INT. J. CANCER》 * |
杨小明 等: "《自动化集装箱码头设计与仿真》", 31 January 2016 * |
田俊 等: ""胃癌患者生存时间分布的Weibull模型拟合"", 《中国公共卫生》 * |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN110197701A (zh) * | 2019-04-22 | 2019-09-03 | 福建医科大学附属第一医院 | 一种新型多发性骨髓瘤诺模图构建方法 |
CN110223733A (zh) * | 2019-04-22 | 2019-09-10 | 福建医科大学附属第一医院 | 一种新型多发性骨髓瘤预后基因的筛查方法 |
CN110197701B (zh) * | 2019-04-22 | 2021-08-10 | 福建医科大学附属第一医院 | 一种新型多发性骨髓瘤诺模图构建方法 |
CN110223733B (zh) * | 2019-04-22 | 2022-02-01 | 福建医科大学附属第一医院 | 一种多发性骨髓瘤预后基因的筛查方法 |
CN112037167A (zh) * | 2020-07-21 | 2020-12-04 | 苏州动影信息科技有限公司 | 一种基于影像组学和遗传算法的目标区域确定系统 |
CN112037167B (zh) * | 2020-07-21 | 2023-11-24 | 苏州动影信息科技有限公司 | 一种基于影像组学和遗传算法的目标区域确定系统 |
CN113903471A (zh) * | 2021-09-24 | 2022-01-07 | 上海交通大学 | 基于组织病理学图像和基因表达数据的胃癌患者生存风险预测方法 |
Also Published As
Publication number | Publication date |
---|---|
CN108470111B (zh) | 2022-01-18 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN108363907B (zh) | 一种基于多基因表达特征谱的肺腺癌个性化预后评估方法 | |
CN108630317A (zh) | 一种基于多基因表达特征谱的肝癌个性化预后评估方法 | |
CN108470111A (zh) | 一种基于多基因表达特征谱的胃癌个性化预后评估方法 | |
CN108648826B (zh) | 一种基于多基因表达特征谱的胰腺癌个性化预后评估方法 | |
Yin et al. | A fusion decision system to identify and grade malnutrition in cancer patients: machine learning reveals feasible workflow from representative real-world data | |
Özdamar et al. | Intraobserver and interobserver reproducibility of WHO and Gleason histologic grading systems in prostatic adenocarcinomas | |
Pompei et al. | Age distribution of cancer: the incidence turnover at old age | |
CN108611416B (zh) | 一种基于多基因表达特征谱的宫颈癌个性化预后评估方法 | |
CN102930163A (zh) | 一种2型糖尿病风险状态判定方法 | |
CN108733980A (zh) | 一种基于多基因表达特征谱的胶质母细胞瘤个性化预后评估方法 | |
CN114891887A (zh) | 一种三阴性乳腺癌预后基因标志物筛选的方法 | |
CN115019880B (zh) | 一种肝癌预后模型及其构建方法和应用 | |
CN114203256B (zh) | 基于微生物丰度的mibc分型及预后预测模型构建方法 | |
CN108647493B (zh) | 一种肾透明细胞癌个性化预后评估方法 | |
CN106485086A (zh) | 基于aic和改进熵权法的人体体成分预测方法 | |
CN116864062B (zh) | 一种基于互联网的健康体检报告数据分析管理系统 | |
CN108320806B (zh) | 一种基于多基因表达特征谱的结肠癌个性化预后评估方法 | |
CN115714023A (zh) | 一种癌症风险评估系统的建立方法 | |
Wang et al. | Value of radiomics model based on multi-parametric magnetic resonance imaging in predicting epidermal growth factor receptor mutation status in patients with lung adenocarcinoma | |
CN105092789A (zh) | 一种片烟醇化过程中烟叶风格特征变化趋势分析方法 | |
US20180100199A1 (en) | Method for determining prognosis of breast cancer patient by using gene expression data | |
CN113658696A (zh) | 一种基于患者年龄、营养指标、肿瘤分期和肿瘤标志物联合预测胃癌预后的预测系统 | |
CN106601271A (zh) | 一种语音异常信号检测系统 | |
CN110148471A (zh) | 肝胆肿瘤患者生存率预测数据收集系统及模型构建方法 | |
Corvo et al. | Cell kinetics and tumor regression during radiotherapy in head and neck squamous‐cell carcinomas |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant | ||
TR01 | Transfer of patent right |
Effective date of registration: 20250108 Address after: Unit 8-1, Building 6, No. 153 Jinyu Avenue, Cuntan Street, Liangjiang New District, Jiangbei District, Chongqing City, 400000 Patentee after: Trace Expression Life Science (Chongqing) Co.,Ltd. Country or region after: China Address before: No.32, Jiaochang East Road, Wuhua District, Kunming, Yunnan 650000 Patentee before: KUNMING INSTITUTE OF ZOOLOGY CHINESE ACADEMY OF SCIENCES Country or region before: China |
|
TR01 | Transfer of patent right |