CN108466437A - 用于带法兰边包容机匣的二维多向预浸布的制备及其应用 - Google Patents

用于带法兰边包容机匣的二维多向预浸布的制备及其应用 Download PDF

Info

Publication number
CN108466437A
CN108466437A CN201810268782.5A CN201810268782A CN108466437A CN 108466437 A CN108466437 A CN 108466437A CN 201810268782 A CN201810268782 A CN 201810268782A CN 108466437 A CN108466437 A CN 108466437A
Authority
CN
China
Prior art keywords
prepreg
prepreg tape
dimension
multidirectional
angle
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201810268782.5A
Other languages
English (en)
Other versions
CN108466437B (zh
Inventor
顾善群
刘燕峰
陈祥宝
李军
邹齐
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
AECC Beijing Institute of Aeronautical Materials
Original Assignee
AECC Beijing Institute of Aeronautical Materials
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by AECC Beijing Institute of Aeronautical Materials filed Critical AECC Beijing Institute of Aeronautical Materials
Priority to CN201810268782.5A priority Critical patent/CN108466437B/zh
Publication of CN108466437A publication Critical patent/CN108466437A/zh
Application granted granted Critical
Publication of CN108466437B publication Critical patent/CN108466437B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C70/00Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts
    • B29C70/04Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts comprising reinforcements only, e.g. self-reinforcing plastics
    • B29C70/28Shaping operations therefor
    • B29C70/30Shaping by lay-up, i.e. applying fibres, tape or broadsheet on a mould, former or core; Shaping by spray-up, i.e. spraying of fibres on a mould, former or core
    • B29C70/38Automated lay-up, e.g. using robots, laying filaments according to predetermined patterns
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C70/00Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts
    • B29C70/04Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts comprising reinforcements only, e.g. self-reinforcing plastics
    • B29C70/06Fibrous reinforcements only
    • B29C70/10Fibrous reinforcements only characterised by the structure of fibrous reinforcements, e.g. hollow fibres
    • B29C70/16Fibrous reinforcements only characterised by the structure of fibrous reinforcements, e.g. hollow fibres using fibres of substantial or continuous length
    • B29C70/22Fibrous reinforcements only characterised by the structure of fibrous reinforcements, e.g. hollow fibres using fibres of substantial or continuous length oriented in at least two directions forming a two dimensional structure
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C70/00Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts
    • B29C70/04Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts comprising reinforcements only, e.g. self-reinforcing plastics
    • B29C70/28Shaping operations therefor
    • B29C70/30Shaping by lay-up, i.e. applying fibres, tape or broadsheet on a mould, former or core; Shaping by spray-up, i.e. spraying of fibres on a mould, former or core
    • B29C70/34Shaping by lay-up, i.e. applying fibres, tape or broadsheet on a mould, former or core; Shaping by spray-up, i.e. spraying of fibres on a mould, former or core and shaping or impregnating by compression, i.e. combined with compressing after the lay-up operation
    • B29C70/342Shaping by lay-up, i.e. applying fibres, tape or broadsheet on a mould, former or core; Shaping by spray-up, i.e. spraying of fibres on a mould, former or core and shaping or impregnating by compression, i.e. combined with compressing after the lay-up operation using isostatic pressure
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29LINDEXING SCHEME ASSOCIATED WITH SUBCLASS B29C, RELATING TO PARTICULAR ARTICLES
    • B29L2031/00Other particular articles
    • B29L2031/30Vehicles, e.g. ships or aircraft, or body parts thereof
    • B29L2031/3076Aircrafts

Abstract

本发明是一种用于带法兰边包容机匣的二维多向预浸布的制备及其应用,可用于带法兰边整环结构或对开结构风扇包容机匣的整体成型,该二维多向预浸布是通过自动铺丝工艺制备而成,具有连续自动化、稳定化低成本制备的特点。通过调整预浸料的纤维种类及厚度、二维多向预浸布的角度,可制备不同功能用途和厚度的二维多向预浸布。这种二维多向预浸布制备的带法兰边整环结构或对开结构风扇包容机匣具有高抗冲击性能,克服自动铺丝机无法实现法兰边自动铺丝成型的工程难点,可满足涡扇发动机减重需求。

Description

用于带法兰边包容机匣的二维多向预浸布的制备及其应用
技术领域
本发明是一种用于带法兰边包容机匣的二维多向预浸布的制备及其应用,属于树脂基复合材料技术领域。
背景技术
用于航空器的涡扇发动机具有可旋转的转子风扇叶片,涡扇发动机工作时,风扇叶片在发动机内高速旋转,当风扇叶片受到外物撞击或由于内部缺陷发生断裂飞出,可能击穿机体造成灾难性的后果,这需要风扇机匣具有包容特性。
全复合材料风扇包容机匣通常采用“二维三轴编织+树脂传递模塑(RTM)”或“2.5D机织+RTM”成型,材料主要为碳纤维增强环氧树脂复合材料。申请号为US7246990的专利报道了“二维三轴编织+RTM”成型方法,即首先在编织机上将12k的T700S碳纤维编织成[(0/±60)]结构的编织筒,再将编织筒压扁形成编织带,然后通过芯轴的转动将编织带缠绕在预设的机匣模上,形成带有法兰边及锥度的机匣编织预成型体,然后使用高温环氧树脂进行RTM成型,获得全复合材料机匣。申请号为US8322971的专利报道了“2.5D机织+RTM”成型方法,即将一种2.5D结构的T700SC-12K碳纤维编织体缠绕在芯模上,再通过RTM的方法来制备全复合材料风扇机匣,2.5D结构的编织体可以通过改变纱线的纤度和数量制备得到变厚度的结构,预成型体可以是多层编织结构缠绕铺敷而成。然而,二维三轴编织和2.5D机织工艺,均需要大型的专业的二维三轴编织机和2.5D机织机,针对特定的包容机匣尺寸,需要设计编织或机织方法,加工繁琐,生产周期长,成本很高。此外,2.5D机织结构全复合材料结构的损伤模式和破坏准则目前仍没有准确认识和把握。
自动铺丝技术(AFP)是一种采用自动铺丝机设备实现铺叠过程的自动化替代预浸料手工铺叠的复合材料先进制造技术,较手工成形具有高效率、高质量、高精度等特点,已广泛应用于航空航天飞行器中多种结构部件的制造,采用自动铺丝工艺制备包容机匣具有重要的现实意义。然而,目前自动铺丝工艺由于自动铺丝机铺丝头设备的限制,若整体成型带法兰边的风扇包容机匣(图1),铺放R区(法兰边与机匣圆筒段的过渡拐角处)时,铺丝机的铺丝头与模具干涉,无法实现自动铺放,同时,法兰边的铺放轨迹规划难以仿真。因此,在制造涡扇发动机风扇包容机匣时,一般先采用铺丝工艺制备整环结构风扇包容机匣(图2所示),再在包容机匣两边安装钛合金法兰边。这大大增加风扇包容机匣重量,同时在叶片发生断裂飞出时,叶片撞击形成的裂纹沿着风扇包容机匣包容段向两端扩展,由于没有全复合材料风扇包容机匣的法兰边对裂纹形成约束力,破坏后的风扇包容机匣的剩余强度大大低于全复合材料风扇包容机匣,大大限制其在实际中的应用,目前无实际应用的报道。申请号分别为201480031280.0和US9249530的专利报道了采用自动铺丝工艺在燃气轮机整环结构风扇包容机匣模具上铺放多个预浸带,在预浸带间形成互相交织和相互交叉的互锁图案,制备风扇包容机匣纺织纤维毛坯,再经过固化制备风扇包容机匣,其中铺丝角度为[60/0/-60]、[61/-61/17/-17]。然而,上述铺丝方法仍局限于不带法兰边的整环结构风扇包容机匣的制备,后期两端的钛合金安装边,对制件增重显著,不能满足实际设计需要的全复合材料带法兰边的整环结构风扇包容机匣,尤其四周均带法兰边的对开结构风扇包容机匣的制造需求。
发明内容
本发明正是针对上述现有技术存在的问题而设计提供了一种用于带法兰边风扇包容机匣的二维多向预浸布制备方法,其目的是提供一种新型的用于带法兰边的整环结构风扇包容机匣,尤其四周均带法兰边的对开结构风扇包容机匣的低成本制造方法。
本发明的目的是通过以下技术方案来实现的:
本发明提出了一种用于带法兰边包容机匣的二维多向预浸布的制备方法,该方法的步骤是:
步骤一、预浸带的制备:
制备预浸料:按二维多向预浸布的使用功能,选择合适的纤维和树脂,制备特定厚度的纤维增强树脂基预浸料;
采用预浸料自动分切机将纤维增强树脂基预浸料分切成自动铺丝机所用的标准宽度为6.35mm的预浸带;
纤维增强树脂基预浸料是连续纤维在连续的生产方式下均匀浸渍基体树脂后形成的中间体,其中,连续纤维为碳纤维、玻璃纤维、芳纶纤维、聚酰亚胺纤维中的一种,树脂为环氧树脂、酚醛树脂、双马树脂、聚酰亚胺树脂中的一种;
步骤二、二维多向预浸布的制备:
2.1根据使用需求,确定需要制备二维多向预浸布的正方形尺寸,并在选择合适的铺放平台上相应正方形区域,采用丙酮将铺放平台的工作区域表面擦拭干净,采用黑色记号笔画出正方形区域边界线,并在工作区域表面铺贴单面带胶四氟布;
2.2根据二维多向预浸布的角度[α/β/γ/δ]设计需求,在正方形区域的四个顶角处,采用自动铺丝机“铺放直线轨迹”功能,自动铺丝机分别以铺层设计角度α、β、γ、δ按顺序铺放一根预浸带,预浸带的一侧恰好压住顶角,另一侧位于正方形区域内,α、β、γ、δ的铺放位置根据其角度大小确定,其中,正方形区域的左上顶角铺放设计角度为0°方向的预浸带,右上顶角铺放设计角度为-90°~0°方向的预浸带,左下顶角铺放设计角度为为90°方向的预浸带,右下顶角铺放设计角度为0°~90°方向的预浸带;
根据设计角度[α/β/γ/δ],确定正确的铺丝位置,若设计角度为[α/β/γ],铺丝时,δ对应的正方形区域的顶角区域不铺放预浸带;
2.3自动铺丝机继续按照α→β→γ→δ的角度顺序往正方形区域内铺放下一根预浸带,其中,下一根预浸带的中心线与上一根预浸带的中心线间隔距离为ai(ai=6.35n,n为整数,i分别对应α、β、γ、δ),其中不同设计角度对应的铺丝间隔距离ai可以相同,也可以不同,ai值的大小决定最终的二维多向预浸布的交织点的密度及分布位置;
2.4自动铺丝机按照α→β→γ→δ的铺放顺序,由上一轮相同设计角度对应的上一根预浸带的中心线位置往工作区域内,间隔一定距离ai铺放下一根预浸带;
2.5重复步骤2.4,直到下一间隔ai对应的预浸带中心线位置落于正方形区域外,跳过该设计角度,继续铺放下一根设计角度对应的预浸带,直到所有下一间隔ai对应的预浸带中心线位置落于正方形区域外,停止铺放;
2.6自动铺丝机按照α→β→γ→δ的铺放顺序,分别由相同设计角度对应的第一根预浸带的中心线位置往工作区域内,仅挨第一根预浸带铺放下一根预浸带,相邻两根预浸带的中心线的距离为6.35mm,开始新一轮的铺丝;
2.7自动铺丝机按照α→β→γ→δ的铺放顺序,分别由上一轮相同设计角度对应的上一根预浸带的中心线位置往工作区域内,间隔一定距离ai铺放下一根预浸带;
2.8重复2.7的步骤,直到下一间隔ai对应的预浸带中心线位置落于正方形区域外,跳过该设计角度,继续铺放下一根设计角度对应的预浸带,直到所有下一间隔ai对应的预浸带中心线位置落于正方形区域外,完成此轮预浸带的铺放;
2.9自动铺丝机按照α→β→γ→δ的铺放顺序,从上一轮相同设计角度对应的第一根预浸带开始,重复2.6到2.8的步骤,开始又一轮的铺丝,直到相同设计角度的预浸带均填满正方形区域,跳过该设计角度,继续下一轮的铺丝,直到所有的相同设计角度的预浸带均填满正方形区域,完成全部预浸带的自动铺放,获得自动铺丝预制体;
2.10沿正方形区域边界线裁剪上述预制体,裁剪后的预制体上下表面分别采用离型膜和离型纸复合,获得二维多向预浸布。
该种二维多向预浸布设计角度为[45/0/-45/90]或[60/0/-60]。
本发明技术方案还提出一种上述用于带法兰边包容机匣的二维多向预浸布的应用,其特征在于:采用所述带法兰边风扇包容机匣的二维多向预浸布制备带法兰边的涡扇发动机风扇包容机匣,制备方法是根据带法兰边的涡扇发动机风扇包容机匣的铺层设计信息表及包容机匣三维数模,通过FiberSim软件得到每层二维多向预浸布的尺寸和角度,采用所述的二维多向预浸布制备方法制备相应的二维多向预浸布,并将其铺放在热压罐成型模具表面,再经热压罐固化成型,制得高抗冲击性能的风扇包容机匣。
本发明具有的优点和有益效果,
本发明所述用于带法兰边风扇包容机匣的二维多向预浸布,具有以下几个方面的优点和优异效果:第一、二维多向预浸布因具有高损伤容限和高抗冲击性能,同时克服自动铺丝机无法实现法兰边自动铺丝成型的工程难点,可以满足带法兰边的涡扇发动机风扇包容机匣的成型要求。第二、二维多向预浸布可通过自动铺丝工艺连续自动化、稳定化低成本制备,可以很好地满足实际应用的大量需求。第三、二维多向预浸布可调的厚度和功能用途,使得二维多向预浸布具有用途广泛的特点。通过调整预浸料的厚度及纤维种类、二维多向预浸布的角度,可实现二维多向预浸布厚度和抗高速冲击性能功能用途的可调节性,可在带法兰边的涡扇发动机风扇包容机匣、涡扇发动机风扇叶片、新型装甲防护等领域有广泛的应用前景。第四、树脂的多样选择,这使二维多向预浸布可以满足不同类型涡扇发动机风扇机匣的使用温度要求。
附图说明
图1为全复合材料带法兰边涡扇发动机风扇包容机匣示意图
图2为自动铺丝工艺成型无法兰边涡扇发动机风扇包容机匣示意图
图3为二维多向预浸布自动铺丝示意图,其中“→”方向为铺丝方向
图4为聚酰亚胺纤维增强环氧树脂基二维多向预浸布([60/0/-60])的实物图像
具体实施方式
下面将结合附图和实施例对本发明技术方案作详细描述:
实施例1:碳纤维二维多向布的制备
步骤一、预浸带的制备:
制备预浸料:选择东丽T700SC-12K碳纤维和自制的高韧性EC180A环氧树脂,采用双层胶膜法制备单层厚度为125μm,纤维体积分数为60%的T700/EC180A预浸料;
分切预浸料:采用预浸料自动分切机将T700/EC180A预浸料分切成自动铺丝机所用的标准宽度为0.25英寸(6.35mm)的预浸带;
步骤二、二维多向预浸布的制备:
2.1为了制备角度为[45/0/-45/90],尺寸为1300mm×1300mm的二维多向预浸布,并在选择合适的铺放平台上相应正方形区域,采用丙酮将铺放平台的工作区域表面擦拭干净,采用黑色记号笔画出正方形区域边界线,并在工作区域表面铺贴单面带胶四氟布;
2.2采用自动铺丝机“铺放直线轨迹”功能,分别在右下顶角、左上顶角、右上顶角、左下顶角,分别以角度45°、0°、-45°、90°铺放一根预浸带,预浸带的一侧恰好压住顶角,另一侧位于正方形区域内;
2.3自动铺丝机继续按照45°→0°→-45°→90°顺序往正方形区域内铺放下一根预浸带,其中,下一根预浸带的中心线与上一根预浸带的中心线间隔距离分别为88.9mm(14根预浸带宽度)、63.5mm(10根预浸带宽度)、88.9mm(14根预浸带宽度)、63.5mm(10根预浸带宽度);
2.4自动铺丝机按照45°→0°→-45°→90°铺放顺序,由上一轮相同设计角度对应的上一根预浸带的中心线位置往工作区域内,分别间隔距离88.9mm(14根预浸带宽度)、63.5mm(10根预浸带宽度)、88.9mm(14根预浸带宽度)、63.5mm(10根预浸带宽度)铺放下一根预浸带;
2.5重复2.4步骤,直到0°、90°分别间隔距离63.5mm(10根预浸带宽度)对应的预浸带中心线位置和45°、-45°分别间隔距离88.9mm(14根预浸带宽度)对应的预浸带中心线位置落于正方形区域外,停止铺放;
2.6自动铺丝机按照45°→0°→-45°→90°铺放顺序,分别由相同设计角度对应的第一根预浸带的中心线位置往工作区域内,仅挨第一根预浸带铺放下一根预浸带,相邻两根预浸带的中心线的距离为6.35mm,开始新一轮的铺丝;
2.7自动铺丝机按照45°→0°→-45°→90°的铺放顺序,分别由上一轮相同设计角度对应的上一根预浸带的中心线位置往工作区域内,分别间隔距离88.9mm(14根预浸带宽度)、63.5mm(10根预浸带宽度)、88.9mm(14根预浸带宽度)、63.5mm(10根预浸带宽度)铺放下一根预浸带;
2.8重复2.7的步骤,直到0°、90°分别间隔距离63.5mm(10根预浸带宽度)对应的预浸带中心线位置落于正方形区域外,跳过0°、90°设计角度,继续按照45°→-45°铺放,直到45°、-45°分别间隔距离88.9mm(14根预浸带宽度)对应的预浸带中心线位置落于正方形区域外,停止铺放;
2.9自动铺丝机按照45°→0°→-45°→90°的铺放顺序,从上一轮相同设计角度对应的第一根预浸带开始,重复2.6到2.8的步骤,开始又一轮的铺丝,直到所有的相同设计角度0°和90°的预浸带均填满正方形区域,跳过该设计角度,自动铺丝机按照45°→-45°顺序,继续下一轮的铺丝,直到所有的相同设计角度45°和-45°的预浸带均填满正方形区域,完成全部预浸带的自动铺放,获得自动铺丝预制体;
2.10沿正方形区域边界线裁剪上述预制体,裁剪后的预制体上下表面分别采用离型膜和离型纸复合,获得角度为[45/0/-45/90]的二维多向预浸布。
步骤三、复合材料试样的制备及力学性能测试:
裁剪尺寸为320mm×320mm的[45/0/-45/90]的二维多向预浸料10整片,叠合成预制体,采用热压罐工艺固化制得复合材料平板,热压罐固化工艺为:室温下抽真空至-0.095MPa以下,加压0.6MPa,以(1±0.5)℃/min升温速率升温至(180±3)℃,保温3h,通水冷却至60℃以下,卸压出罐。
参考复合材料冲击后压缩强度试样的制样方法(ASTM D 7136、ASTM D7137标准),将复合材料平板裁剪成300mm×100mm的样板,采用落锤冲击试验仪在试样板中心处冲击,重锤冲击能量为6.67J/mm,并完成冲击后压缩强度测试。
本实施例所获得的复合材料的冲击后压缩强度(CAI)为260MPa,比T700/EC180A单向预浸料的CAI值提高16%。
实施例2:聚酰亚胺纤维二维多向布的制备
步骤一、预浸带的制备:
制备预浸料:选择聚酰亚胺纤维和自制的高韧性EC180A环氧树脂,采用双层胶膜法制备单层厚度为125μm、纤维体积分数为60%的PI/EC180A预浸料;
分切预浸料:采用预浸料自动分切机将PI/EC180A预浸料分切成自动铺丝机所用的标准宽度为0.25英寸(6.35mm)的预浸带;
步骤二、二维多向预浸布的制备:
2.1为了制备角度为[60/0/-60],尺寸为1300mm×1300mm的二维多向预浸布,在选择合适的铺放平台上相应正方形区域,采用丙酮将铺放平台的工作区域表面擦拭干净,采用黑色记号笔画出正方形区域边界线,并在工作区域表面铺贴单面带胶四氟布;
2.2采用自动铺丝机“铺放直线轨迹”功能,分别在右下顶角、左上顶角、右上顶角,分别以角度60°、0°、-60°铺放一根预浸带,预浸带的一侧恰好压住顶角,另一侧位于正方形区域内;
2.3自动铺丝机按照60°→0°→-60°的角度顺序往正方形区域内铺放下一根预浸带,其中,下一根预浸带的中心线与上一根预浸带的中心线间隔距离为63.5mm(10根预浸带宽度);
2.4自动铺丝机按照60°→0°→-60°的铺放顺序,由上一轮相同设计角度对应的上一根预浸带的中心线位置往工作区域内,间隔63.5mm(10根预浸带宽度)铺放下一根预浸带;
2.5重复2.4步骤,直到0°间隔距离63.5mm(10根预浸带宽度)对应的预浸带中心线位置落于正方形区域外,跳过0°设计角度,继续按照60°→-60°铺放,直到60°、-60°间隔距离63.5mm(10根预浸带宽度)对应的预浸带中心线位置落于正方形区域外,停止铺放;
2.6自动铺丝机按照60°→0°→-60°顺序,分别由相同设计角度对应的第一根预浸带的中心线位置往工作区域内,仅挨第一根预浸带铺放下一根预浸带,相邻两根预浸带的中心线的距离为6.35mm,开始新一轮的铺丝;
2.7自动铺丝机按照60°→0°→-60°的铺放顺序,分别由上一轮相同设计角度对应的上一根预浸带的中心线位置往工作区域内,均分别间隔距离63.5mm(10根预浸带宽度)铺放下一根预浸带;
2.8重复2.7的步骤,直到0°分别间隔距离63.5mm(10根预浸带宽度)对应的预浸带中心线位置落于正方形区域外,跳过0°设计角度,继续按照60°→-60°铺放,直到60°、-60°均分别间隔距离63.5mm(10根预浸带宽度)对应的预浸带中心线位置落于正方形区域外,停止铺放,完成预浸带的铺放,获得自动铺丝预制体;
2.9自动铺丝机按照60°→0°→-60°顺序,从上一轮相同设计角度对应的第一根预浸带开始,重复2.6到2.8的步骤,开始又一轮的铺丝,直到所有的相同设计角度0°的预浸带均填满正方形区域,跳过该设计角度,自动铺丝机按照60°→-60°顺序,继续下一轮的铺丝,直到所有的相同设计角度60°和-60°的预浸带均填满正方形区域,完成全部预浸带的自动铺放,获得自动铺丝预制体;
2.10沿正方形区域边界线裁剪上述预制体,裁剪后的预制体上下表面分别采用离型膜和离型纸复合,获得角度为[60/0/-60]的二维多向预浸布。
步骤三、复合材料试样的制备及抗高速冲击性能测试:
裁剪尺寸为320mm×320mm的[60/0/-60]的二维多向预浸料10整片,叠合成复合材料层合板叠层毛坯,采用热压罐工艺固化制得复合材料平板,热压罐固化工艺为:室温下抽真空至-0.095MPa以下,加压0.6MPa,以(1±0.5)℃/min升温速率升温至(180±3)℃,保温3h,通水冷却至60℃以下,卸压出罐。
将复合材料平板裁剪成100mm×100mm的样板(面重为5kg/m2)。选择45钢制圆柱形弹(直径为9mm,长为5mm)作为冲击块,试验时将冲击块装于0.85g直径12mm的尼龙弹托,冲击块与弹托通过空气炮试验装置一起冲击复合材料板,测试其抗高速冲击性能。
本实施例所获得的复合材料的抗冲击吸能为72.9J,抗高速冲击性能比等面重下TC4钛合金(66.7J)提高11%。
实施例3:带法兰边的整环结构包容机匣的制备
步骤一、预浸带的制备:
制备预浸料:选择东丽T700SC-12K碳纤维和自制的高韧性EC180A环氧树脂,采用双层胶膜法制备单层厚度为125μm、纤维体积分数为60%的T700/EC180A预浸料;
分切预浸料:采用预浸料自动分切机将T700/EC180A预浸料分切成自动铺丝机所用的标准宽度为0.25英寸(6.35mm)的预浸带;
步骤二、二维多向预浸布的制备:
2.1首先根据包容机匣铺层信息表及包容机匣三维数模,通过FiberSim得到单层的铺层尺寸,制备角度为[45/0/-45/90],一系列尺寸的二维多向预浸布,并在选择合适的铺放平台上相应正方形区域,采用丙酮将铺放平台的工作区域表面擦拭干净,采用黑色记号笔画出正方形区域边界线,并在工作区域表面铺贴单面带胶四氟布;
2.2采用自动铺丝机“铺放直线轨迹”功能,分别在右下顶角、左上顶角、右上顶角、左下顶角,分别以角度45°、0°、-45°、90°铺放一根预浸带,预浸带的一侧恰好压住顶角,另一侧位于工作区域内;
2.3自动铺丝机继续按照45°→0°→-45°→90°顺序往正方形区域内铺放下一根预浸带,其中,下一根预浸带的中心线与上一根预浸带的中心线间隔距离分别为88.9mm(14根预浸带宽度)、63.5mm(10根预浸带宽度)、88.9mm(14根预浸带宽度)、63.5mm(10根预浸带宽度);
2.4自动铺丝机按照45°→0°→-45°→90°铺放顺序,由上一轮相同设计角度对应的上一根预浸带的中心线位置往工作区域内,分别间隔距离88.9mm(14根预浸带宽度)、63.5mm(10根预浸带宽度)、88.9mm(14根预浸带宽度)、63.5mm(10根预浸带宽度)铺放下一根预浸带;
2.5重复2.4步骤,直到0°、90°分别间隔距离63.5mm(10根预浸带宽度)对应的预浸带中心线位置和45°、-45°分别间隔距离88.9mm(14根预浸带宽度)对应的预浸带中心线位置落于正方形区域外,停止铺放;
2.6自动铺丝机按照45°→0°→-45°→90°铺放顺序,分别由相同设计角度对应的第一根预浸带的中心线位置往工作区域内,仅挨第一根预浸带铺放下一根预浸带,相邻两根预浸带的中心线的距离为6.35mm,开始新一轮的铺丝;
2.7自动铺丝机按照45°→0°→-45°→90°的铺放顺序,分别由上一轮相同设计角度对应的上一根预浸带的中心线位置往工作区域内,分别间隔距离88.9mm(14根预浸带宽度)、63.5mm(10根预浸带宽度)、88.9mm(14根预浸带宽度)、63.5mm(10根预浸带宽度)铺放下一根预浸带;
2.8重复2.7的步骤,直到0°、90°分别间隔距离63.5mm(10根预浸带宽度)对应的预浸带中心线位置落于正方形区域外,跳过0°、90°设计角度,继续按照45°→-45°铺放,直到45°、-45°分别间隔距离88.9mm(14根预浸带宽度)对应的预浸带中心线位置落于正方形区域外,停止铺放,完成预浸带的铺放,获得自动铺丝预制体;
2.9自动铺丝机按照45°→0°→-45°→90°的铺放顺序,从上一轮相同设计角度对应的第一根预浸带开始,重复2.6到2.8的步骤,开始又一轮的铺丝,直到所有的相同设计角度0°和90°的预浸带均填满正方形区域,跳过该设计角度,自动铺丝机按照45°→-45°顺序,继续下一轮的铺丝,直到所有的相同设计角度45°和-45°的预浸带均填满正方形区域,完成全部预浸带的自动铺放,获得自动铺丝预制体;
2.10沿正方形区域边界线裁剪上述预制体,裁剪后的预制体上下表面分别采用离型膜和离型纸复合,获得角度为[45/0/-45/90]的二维多向预浸布。
步骤三、带法兰边的整环结构包容机匣的制备:
3.1按结构件形状设计并加工带法兰边的整环结构包容机匣的热压罐成型模具,采用丙酮将模具表面擦拭干净,并在模具表面涂脱模剂;
3.2根据结构件铺层设计图纸,采用自动下料机将步骤二制备的二维多向预浸布裁剪成所需尺寸,并采用自动下料机裁剪出非整层透明料片;
3.3包容机匣铺贴时通过激光定位,首次使用激光定位时,必须用透明下料片校准激光定位,当激光定位线和下料片吻合后,进行铺层铺贴,完成该层二维多向预浸布铺放后,抽真空预定型;
3.4重复3.3的方法,完成包容机匣的铺贴,制得包容机匣毛坯;
3.5预浸料铺贴完成后,依次放置高温剥离布(Bleeder Lease E)、有空膜、硫化后的匀压橡胶、无孔膜、尼龙透气毡、高温真空袋,然后用高温腻子条密封,抽真空定型后,将放入热压罐中固化成型,热压罐固化工艺为:室温下抽真空至-0.095MPa以下,加压0.6MPa,以(1±0.5)℃/min升温速率升温至(180±3)℃,保温3h,通水冷却至60℃以下,卸压出罐。
3.6经脱模制得带法兰边的整环结构包容机匣。
实施例4:四周均带法兰边的对开结构包容机匣的制备
步骤一、预浸带的制备:
制备预浸料:分别选择东丽T700SC-12K碳纤维、聚酰亚胺纤维,和自制的耐高温EC280A双马树脂,采用双层胶膜法,分别制备单层厚度为125μm、纤维体积分数为60%的T700/EC280A预浸料和PI/EC280A预浸料;
分切预浸料:采用预浸料自动分切机将T700/EC180A预浸料、PI/EC280A预浸料,分切成自动铺丝机所用的标准宽度为0.25英寸(6.35mm)的预浸带;
步骤二、包容机匣的设计:
该包容机匣采用“结构层+功能层”设计,即内层采用高力学性能的碳纤维、角度为[45/0/-45/90]的二维多向布,外层采用高抗冲击性能的聚酰亚胺纤维、角度为[60/0/-60]的二维多向布;
步骤三、碳纤维二维多向预浸布的制备:
3.1选用T700/EC280A预浸带,根据包容机匣铺层信息表及包容机匣三维数模,通过FiberSim软件得到每层二维多向预浸布的尺寸,制备角度为[45/0/-45/90]、一系列尺寸的碳纤维二维多向预浸布,并在选择合适的铺放平台上相应正方形区域,采用丙酮将铺放平台的工作区域表面擦拭干净,采用黑色记号笔画出正方形区域边界线,并在工作区域表面铺贴单面带胶四氟布;
3.2采用自动铺丝机“铺放直线轨迹”功能,分别在右下顶角、左上顶角、右上顶角、左下顶角,分别以角度45°、0°、-45°、90°铺放一根预浸带,预浸带的一侧恰好压住顶角,另一侧位于正方形区域内;
3.3自动铺丝机继续按照45°→0°→-45°→90°顺序往正方形区域内铺放下一根预浸带,其中,下一根预浸带的中心线与上一根预浸带的中心线间隔距离分别为44.45mm(7根预浸带宽度)、31.75mm(5根预浸带宽度)、44.45mm(7根预浸带宽度)、31.75mm(5根预浸带宽度);
3.4自动铺丝机按照45°→0°→-45°→90°顺序,铺放顺序,由上一轮相同设计角度对应的上一根预浸带的中心线位置往工作区域内,分别间隔距离44.45mm(7根预浸带宽度)、31.75mm(5根预浸带宽度)、44.45mm(7根预浸带宽度)、31.75mm(5根预浸带宽度)铺放下一根预浸带;
3.5重复3.4步骤,直到0°、90°分别间隔距离31.75mm(5根预浸带宽度)对应的预浸带中心线位置落于正方形区域外,跳过0°、90°设计角度,继续按照45°→-45°铺放,直到45°、-45°分别间隔距离44.45mm(7根预浸带宽度)对应的预浸带中心线位置落于正方形区域外,停止铺放;
3.6自动铺丝机按照45°→0°→-45°→90°铺放顺序,分别由相同设计角度对应的第一根预浸带的中心线位置往工作区域内,仅挨第一根预浸带铺放下一根预浸带,相邻两根预浸带的中心线的距离为6.35mm,开始新一轮的铺丝;
3.7自动铺丝机按照45°→0°→-45°→90°的铺放顺序,分别由上一轮相同设计角度对应的上一根预浸带的中心线位置往工作区域内,分别间隔距离44.45mm(7根预浸带宽度)、31.75mm(5根预浸带宽度)、44.45mm(7根预浸带宽度)、31.75mm(5根预浸带宽度)铺放下一根预浸带;
3.8重复3.7的步骤,直到0°、90°分别间隔距离31.75mm(5根预浸带宽度)对应的预浸带中心线位置落于正方形区域外,跳过0°、90°设计角度,继续按照45°→-45°铺放,直到45°、-45°分别间隔距离44.45mm(7根预浸带宽度)对应的预浸带中心线位置落于正方形区域外,停止铺放;
3.9自动铺丝机按照45°→0°→-45°→90°顺序,从上一轮相同设计角度对应的第一根预浸带开始,重复3.6~3.8的步骤,开始又一轮的铺丝,直到所有的相同设计角度0°和90°的预浸带均填满正方形区域,跳过该设计角度,自动铺丝机按照45°→-45°顺序,继续下一轮的铺丝,直到所有的相同设计角度45°和-45°的预浸带均填满正方形区域,完成全部预浸带的自动铺放,获得自动铺丝预制体;
3.10沿正方形区域边界线裁剪上述预制体,裁剪后的预制体上下表面分别采用离型膜和离型纸复合,获得角度为[45/0/-45/90]的二维多向预浸布。
步骤四、聚酰亚胺纤维二维多向预浸布的制备:
4.1选用PI/EC280A预浸带,根据包容机匣铺层信息表及包容机匣三维数模,通过FiberSim软件得到每层二维多向预浸布的尺寸,制备角度为[60/0/-60]、一系列尺寸的碳纤维二维多向预浸布,选择合适的铺放平台,在选择合适的铺放平台上相应正方形区域,采用丙酮将铺放平台的工作区域表面擦拭干净,采用黑色记号笔画出正方形区域边界线,并在工作区域表面铺贴单面带胶四氟布;;
4.2采用自动铺丝机“铺放直线轨迹”功能,分别在右下顶角、左上顶角、右上顶角,分别以角度60°、0°、-60°铺放一根预浸带,预浸带的一侧恰好压住顶角,另一侧位于正方形区域内;
4.3自动铺丝机按照60°→0°→-60°的角度顺序往正方形区域内铺放下一根预浸带,其中,下一根预浸带的中心线与上一根预浸带的中心线间隔距离为31.75mm(5根预浸带宽度);
4.4自动铺丝机按照60°→0°→-60°的铺放顺序,由上一轮相同设计角度对应的上一根预浸带的中心线位置往工作区域内,均间隔31.75mm(5根预浸带宽度)铺放下一根预浸带;
4.5重复4.4步骤,直到0°间隔距离31.75mm(5根预浸带宽度)对应的预浸带中心线位置落于正方形区域外,跳过0°设计角度,继续按照60°→-60°铺放,直到60°、-60°间隔距离31.75mm(5根预浸带宽度)对应的预浸带中心线位置落于正方形区域外,停止铺放;
4.6自动铺丝机按照60°→0°→-60°顺序,分别由相同设计角度对应的第一根预浸带的中心线位置往工作区域内,仅挨第一根预浸带铺放下一根预浸带,相邻两根预浸带的中心线的距离为6.35mm,开始新一轮的铺丝;
4.7自动铺丝机按照60°→0°→-60°的铺放顺序,分别由上一轮相同设计角度对应的上一根预浸带的中心线位置往工作区域内,均分别间隔距离31.75mm(5根预浸带宽度)铺放下一根预浸带;
4.8重复4.7的步骤,直到0°分别间隔距离31.75mm(5根预浸带宽度)对应的预浸带中心线位置落于正方形区域外,跳过0°设计角度,继续按照60°→-60°铺放,直到60°、-60°均分别间隔距离31.75mm(5根预浸带宽度)对应的预浸带中心线位置落于正方形区域外,停止铺放,完成预浸带的铺放,获得自动铺丝预制体;
4.9自动铺丝机按照60°→0°→-60°顺序,从上一轮相同设计角度对应的第一根预浸带开始,重复4.6~4.8的步骤,开始又一轮的铺丝,直到所有的相同设计角度0°的预浸带均填满正方形区域,跳过该设计角度,自动铺丝机按照60°→-60°顺序,继续下一轮的铺丝,直到所有的相同设计角度60°和-60°的预浸带均填满正方形区域,完成全部预浸带的自动铺放,获得自动铺丝预制体;
4.10沿正方形区域边界线裁剪上述预制体,裁剪后的预制体上下表面分别采用离型膜和离型纸复合,获得角度为[60/0/-60]的二维多向预浸布。
步骤五、四周均带法兰边的对开结构包容机匣的制备:
5.1按结构件形状设计并加工带法兰边的对开结构包容机匣的热压罐成型模具,采用丙酮将模具表面擦拭干净,并在模具表面涂脱模剂;
5.2根据结构件铺层设计图纸,采用自动下料机将步骤二制备的二维多向预浸布裁剪成所需尺寸,并采用自动下料机裁剪出非整层透明料片;
5.3包容机匣铺贴时通过激光定位,首次使用激光定位时,必须用透明下料片校准激光定位,当激光定位线和下料片吻合后,进行铺层铺贴,完成该层二维多向预浸布铺放后,抽真空预定型;
5.4重复5.3的方法,完成包容机匣的铺贴,制得包容机匣毛坯;
5.5预浸料铺贴完成后,依次放置高温剥离布(Bleeder Lease E)、有空膜、匀压板、无孔膜、透气玻璃毡、高温真空袋,然后用高温腻子条密封,抽真空定型后,将放入热压罐中固化成型,工艺为:室温下抽真空,真空度不小于0.095MPa,室温下加压至0.1MPa,以1.5~2℃/min速率升温至(125±5)℃(1h内升到),保温0.5h后加压至0.6MPa,继续保温0.5h;继续升温至(185±5)℃,保温1h;继续升温至(230±3)℃,保温2h;再继续升温至(250±3)℃,保温4h;再继续升温至(280±3)℃,保温4h;以1.5~2℃/min速率通水冷却到60℃卸压出罐;
5.6经脱模制得半个四周均带法兰边的对开结构包容机匣;
5.7重复5.1~5.6步骤,制得另一个四周均带法兰边的对开结构包容机匣。

Claims (3)

1.一种用于带法兰边包容机匣的二维多向预浸布的制备,其特征在于:该二维多向预浸布的制备的步骤是:
步骤一、预浸带的制备:
采用预浸料自动分切机将纤维增强树脂基预浸料分切成自动铺丝机所用的标准宽度为6.35mm的预浸带;
纤维增强树脂基预浸料是连续纤维在连续的生产方式下均匀浸渍基体树脂后形成的中间体,其中,连续纤维为碳纤维、玻璃纤维、芳纶纤维、聚酰亚胺纤维中的一种,树脂为环氧树脂、酚醛树脂、双马树脂、聚酰亚胺树脂中的一种;
步骤二、二维多向预浸布的制备:
2.1确定需要制备二维多向预浸布的正方形尺寸,并在铺放平台上相应正方形区域表面铺贴单面带胶四氟布;
2.2在正方形区域的四个顶角处,采用自动铺丝机“铺放直线轨迹”功能,自动铺丝机分别以铺层设计角度α、β、γ、δ按顺序铺放一根预浸带,预浸带的一侧恰好压住顶角,另一侧位于正方形区域内,α、β、γ、δ的铺放位置根据其角度大小确定,其中,正方形区域的左上顶角铺放设计角度为0°方向的预浸带,右上顶角铺放设计角度为-90°~0°方向的预浸带,左下顶角铺放设计角度为为90°方向的预浸带,右下顶角铺放设计角度为0°~90°方向的预浸带;
2.3自动铺丝机继续按照α→β→γ→δ的角度顺序往正方形区域内铺放下一根预浸带,其中,下一根预浸带的中心线与上一根预浸带的中心线间隔距离为ai(ai=6.35n,n为整数,i分别对应α、β、γ、δ);
2.4自动铺丝机按照α→β→γ→δ的铺放顺序,由上一轮相同设计角度对应的上一根预浸带的中心线位置往工作区域内,间隔一定距离ai铺放下一根预浸带;
2.5重复步骤2.4,直到下一间隔ai对应的预浸带中心线位置落于正方形区域外,跳过该设计角度,继续铺放下一根设计角度对应的预浸带,直到所有下一间隔ai对应的预浸带中心线位置落于正方形区域外,停止铺放;
2.6自动铺丝机按照α→β→γ→δ的铺放顺序,分别由相同设计角度对应的第一根预浸带的中心线位置往工作区域内,仅挨第一根预浸带铺放下一根预浸带,相邻两根预浸带的中心线的距离为6.35mm,开始新一轮的铺丝;
2.7自动铺丝机按照α→β→γ→δ的铺放顺序,分别由上一轮相同设计角度对应的上一根预浸带的中心线位置往工作区域内,间隔一定距离ai铺放下一根预浸带;
2.8重复2.7的步骤,直到下一间隔ai对应的预浸带中心线位置落于正方形区域外,跳过该设计角度,继续铺放下一根设计角度对应的预浸带,直到所有下一间隔ai对应的预浸带中心线位置落于正方形区域外,完成此轮预浸带的铺放;
2.9自动铺丝机按照α→β→γ→δ的铺放顺序,从上一轮相同设计角度对应的第一根预浸带开始,重复2.6到2.8的步骤,开始又一轮的铺丝,直到相同设计角度的预浸带均填满正方形区域,跳过该设计角度,继续下一轮的铺丝,直到所有的相同设计角度的预浸带均填满正方形区域,完成全部预浸带的自动铺放,获得自动铺丝预制体;
2.10沿正方形区域边界线裁剪上述预制体,裁剪后的预制体上下表面分别采用离型膜和离型纸复合,获得二维多向预浸布。
2.根据权利要求1所述的用于带法兰边包容机匣的二维多向预浸布的制备,其特征在于:二维多向预浸布设计角度为[45/0/-45/90]或[60/0/-60]。
3.一种权利要求1所述的用于带法兰边包容机匣的二维多向预浸布的应用,其特征在于:采用所述带法兰边风扇包容机匣的二维多向预浸布制备带法兰边的涡扇发动机风扇包容机匣,制备方法是根据带法兰边的涡扇发动机风扇包容机匣的铺层设计信息表及包容机匣三维数模,通过FiberSim软件得到每层二维多向预浸布的尺寸和角度,采用所述的二维多向预浸布制备方法制备相应的二维多向预浸布,并将其铺放在热压罐成型模具表面,再经热压罐固化成型,制得高抗冲击性能的风扇包容机匣。
CN201810268782.5A 2018-03-28 2018-03-28 用于带法兰边包容机匣的二维多向预浸布的制备及其应用 Active CN108466437B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201810268782.5A CN108466437B (zh) 2018-03-28 2018-03-28 用于带法兰边包容机匣的二维多向预浸布的制备及其应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201810268782.5A CN108466437B (zh) 2018-03-28 2018-03-28 用于带法兰边包容机匣的二维多向预浸布的制备及其应用

Publications (2)

Publication Number Publication Date
CN108466437A true CN108466437A (zh) 2018-08-31
CN108466437B CN108466437B (zh) 2020-04-28

Family

ID=63262183

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201810268782.5A Active CN108466437B (zh) 2018-03-28 2018-03-28 用于带法兰边包容机匣的二维多向预浸布的制备及其应用

Country Status (1)

Country Link
CN (1) CN108466437B (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109353027A (zh) * 2018-10-26 2019-02-19 江苏三强复合材料有限公司 碳纤维复合材料交叉类网格结构的成型方法
CN110978561A (zh) * 2019-12-30 2020-04-10 中国航空制造技术研究院 一种全铺层结构复合材料罩体的纤维预制体制备方法
CN114030203A (zh) * 2021-11-08 2022-02-11 北京航空航天大学 一种制造航空发动机复合材料风扇叶身特征件的工装

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012046020A1 (en) * 2010-10-08 2012-04-12 Gkn Aerospace Services Limited Sinusoidal flange
CN103978698A (zh) * 2014-05-21 2014-08-13 航天材料及工艺研究所 一种带端框的复合材料锥形壳体成型方法
US20140352838A1 (en) * 2013-05-30 2014-12-04 General Electric Company Fiber preform architecture for composite articles and method of fabrication
CN105818355A (zh) * 2016-04-21 2016-08-03 广州赛奥碳纤维技术有限公司 一种大丝束预浸带平面自动铺放及模压成型工艺

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012046020A1 (en) * 2010-10-08 2012-04-12 Gkn Aerospace Services Limited Sinusoidal flange
US20140352838A1 (en) * 2013-05-30 2014-12-04 General Electric Company Fiber preform architecture for composite articles and method of fabrication
CN103978698A (zh) * 2014-05-21 2014-08-13 航天材料及工艺研究所 一种带端框的复合材料锥形壳体成型方法
CN105818355A (zh) * 2016-04-21 2016-08-03 广州赛奥碳纤维技术有限公司 一种大丝束预浸带平面自动铺放及模压成型工艺

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109353027A (zh) * 2018-10-26 2019-02-19 江苏三强复合材料有限公司 碳纤维复合材料交叉类网格结构的成型方法
CN110978561A (zh) * 2019-12-30 2020-04-10 中国航空制造技术研究院 一种全铺层结构复合材料罩体的纤维预制体制备方法
CN114030203A (zh) * 2021-11-08 2022-02-11 北京航空航天大学 一种制造航空发动机复合材料风扇叶身特征件的工装

Also Published As

Publication number Publication date
CN108466437B (zh) 2020-04-28

Similar Documents

Publication Publication Date Title
CN103407175B (zh) 一种纤维增强树脂基复合材料翼盒的整体成型方法
CN103407173B (zh) 一种纤维增强树脂基复合材料机翼的整体成型方法
CN108466437A (zh) 用于带法兰边包容机匣的二维多向预浸布的制备及其应用
CN101804714B (zh) 具有表面功能层的复合材料构件的rtm制备方法
CN103963319A (zh) 一种复合材料加筋壁板的预浸料/树脂膜熔渗共固化成型方法
CN103407171B (zh) 一种缝纫增强的纤维增强树脂基复合材料十字型接头的整体成型方法
KR20160108304A (ko) 피복 섬유 강화 수지 성형품 및 그의 제조 방법
US10792871B2 (en) Moulding
CN102371686A (zh) 制造复合结构组件的方法
US8123886B2 (en) Method of manufacture of composite laminates, an assembly therefor, and related articles
CN107225773A (zh) 用于组装加强的复合结构的方法
CN104023979A (zh) 预浸料坯、纤维增强复合材料以及纤维增强复合材料的制备方法
JP2007521987A (ja) 炭素発泡体複合ツールおよび炭素発泡体複合ツールを使用するための方法
CN1665676A (zh) 三维针织间隔织物夹层复合材料
CN113427793B (zh) 高强度耐高温复合材料进气道及其成型方法
CN107283878A (zh) 嵌入式共固化穿孔阻尼复合材料的模压法制作工艺
JP6016428B2 (ja) 粗糸の束、粗糸の束を製造する方法、及び加工物を製造する方法
CN106956472A (zh) 一种复合材料抗冲击结构及其成型方法
CN103264448B (zh) 金刚石圆锯片聚合物基复合材料基体及其加工方法
JPWO2019188195A1 (ja) 繊維強化樹脂の製造方法
CN108864995B (zh) 一种多轴向复合材料弯管及制备方法
RU2630798C1 (ru) Оснастка для формования изделий из полимерных композиционных материалов и способ ее изготовления
CN108177361B (zh) 制造复合材料车辆零部件的方法和车辆零部件及车辆
CN108943888B (zh) 一种复合材料层间增韧的方法
JP2012066397A (ja) 繊維強化プラスチックの製造方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant