CN108462518A - Data transmission method and device based on user's scheduling - Google Patents
Data transmission method and device based on user's scheduling Download PDFInfo
- Publication number
- CN108462518A CN108462518A CN201710087367.5A CN201710087367A CN108462518A CN 108462518 A CN108462518 A CN 108462518A CN 201710087367 A CN201710087367 A CN 201710087367A CN 108462518 A CN108462518 A CN 108462518A
- Authority
- CN
- China
- Prior art keywords
- data layer
- product
- calculated
- channel vector
- current data
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000000034 method Methods 0.000 title claims abstract description 82
- 230000005540 biological transmission Effects 0.000 title claims abstract description 52
- 239000011159 matrix material Substances 0.000 claims abstract description 239
- 239000013598 vector Substances 0.000 claims description 140
- 238000004422 calculation algorithm Methods 0.000 claims description 42
- 230000017105 transposition Effects 0.000 claims description 13
- 230000008569 process Effects 0.000 claims description 11
- 238000012804 iterative process Methods 0.000 claims description 7
- 238000012545 processing Methods 0.000 claims description 5
- 230000002776 aggregation Effects 0.000 claims description 3
- 238000004220 aggregation Methods 0.000 claims description 3
- 238000004364 calculation method Methods 0.000 abstract description 24
- 230000004044 response Effects 0.000 abstract description 5
- 238000010586 diagram Methods 0.000 description 19
- 238000004891 communication Methods 0.000 description 14
- 230000006854 communication Effects 0.000 description 14
- 238000000354 decomposition reaction Methods 0.000 description 13
- 238000005516 engineering process Methods 0.000 description 7
- 238000004590 computer program Methods 0.000 description 4
- 241001463014 Chazara briseis Species 0.000 description 3
- 230000008901 benefit Effects 0.000 description 3
- 238000002955 isolation Methods 0.000 description 3
- 230000007175 bidirectional communication Effects 0.000 description 2
- 230000001413 cellular effect Effects 0.000 description 2
- 238000006243 chemical reaction Methods 0.000 description 2
- 230000000052 comparative effect Effects 0.000 description 2
- 230000008030 elimination Effects 0.000 description 2
- 238000003379 elimination reaction Methods 0.000 description 2
- 238000002474 experimental method Methods 0.000 description 2
- 230000006870 function Effects 0.000 description 2
- 230000007774 longterm Effects 0.000 description 2
- 238000010606 normalization Methods 0.000 description 2
- 238000003672 processing method Methods 0.000 description 2
- 230000009467 reduction Effects 0.000 description 2
- 101000741965 Homo sapiens Inactive tyrosine-protein kinase PRAG1 Proteins 0.000 description 1
- 102100038659 Inactive tyrosine-protein kinase PRAG1 Human genes 0.000 description 1
- 238000012512 characterization method Methods 0.000 description 1
- 238000012790 confirmation Methods 0.000 description 1
- 230000008878 coupling Effects 0.000 description 1
- 238000010168 coupling process Methods 0.000 description 1
- 238000005859 coupling reaction Methods 0.000 description 1
- 238000005034 decoration Methods 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000010295 mobile communication Methods 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 229920001690 polydopamine Polymers 0.000 description 1
- 238000010845 search algorithm Methods 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04B—TRANSMISSION
- H04B7/00—Radio transmission systems, i.e. using radiation field
- H04B7/02—Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
- H04B7/04—Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
- H04B7/0413—MIMO systems
- H04B7/0452—Multi-user MIMO systems
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04B—TRANSMISSION
- H04B7/00—Radio transmission systems, i.e. using radiation field
- H04B7/02—Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
- H04B7/04—Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
- H04B7/0413—MIMO systems
- H04B7/0456—Selection of precoding matrices or codebooks, e.g. using matrices antenna weighting
Landscapes
- Engineering & Computer Science (AREA)
- Computer Networks & Wireless Communication (AREA)
- Signal Processing (AREA)
- Mobile Radio Communication Systems (AREA)
Abstract
本发明实施例提供了基于用户调度的数据传输方法及装置,所述方法包括:基于获取的用户终端设备的信息,从备选多用户配对集合中确定出对应的数据层的组合;迭代确定出所述数据层的组合的预编码矩阵;根据所述预编码矩阵确定用户调度结果,并根据所述用户调度结果向对应的用户终端设备进行数据传输。本发明实施例中,节省了矩阵的求逆运算,大大降低了计算的复杂度,提升确定出预编码矩阵的效率和速度;而且能够足够快速的确定出多用户配对的多个数据层组合的预编码矩阵,不需要降低系统容量。因此,本发明可以在不影响系统容量的情况下,提升多用户调度的效率,从整体上加快对用户终端设备的响应,可以提升用户的体验。
The embodiment of the present invention provides a data transmission method and device based on user scheduling, the method includes: based on the obtained information of the user terminal equipment, determine the combination of the corresponding data layer from the candidate multi-user pairing set; iteratively determine A combined precoding matrix of the data layers; determining a user scheduling result according to the precoding matrix, and performing data transmission to a corresponding user terminal device according to the user scheduling result. In the embodiment of the present invention, the inversion operation of the matrix is saved, the complexity of the calculation is greatly reduced, and the efficiency and speed of determining the precoding matrix are improved; moreover, the combination of multiple data layers for multi-user pairing can be determined quickly enough The precoding matrix does not need to reduce the system capacity. Therefore, the present invention can improve the efficiency of multi-user scheduling without affecting the system capacity, speed up the response to user terminal equipment as a whole, and improve user experience.
Description
技术领域technical field
本发明涉及无线通信技术领域,具体而言,本发明涉及一种基于用户调度的数据传输方法及装置。The present invention relates to the technical field of wireless communication, in particular, the present invention relates to a data transmission method and device based on user scheduling.
背景技术Background technique
在采用多天线的MIMO(Multiple Input Multiple Output,多入多出)技术的移动通信系统中,不同用户之间的信道具备一定的空间隔离度。利用不同用户之间空间信道的隔离度,可以利用相同时/频/码资源同时为多用户发送信号。在MIMO系统中,这些利用相同时/频/码资源同时为多用户发送信号的方式称为MU(Multi-User,多用户)MIMO技术。In a mobile communication system using a multiple-antenna MIMO (Multiple Input Multiple Output, Multiple Input Multiple Output) technology, channels between different users have a certain degree of spatial isolation. Utilizing the isolation of spatial channels between different users, the same time/frequency/code resources can be used to simultaneously send signals for multiple users. In a MIMO system, these ways of simultaneously sending signals for multiple users using the same time/frequency/code resource are called MU (Multi-User, multi-user) MIMO technology.
根据MIMO理论,MU-MIMO下的MIMO系统的容量与基站天线数和多用户总接收天线数成正比,通过MU-MIMO,利用不同用户之间的空间信道隔离度,可以显著提升系统容量。然而,在实际系统中,利用相同资源的多用户之间的空间信道并非完全隔离,相互之间存在干扰,从而导致MU-MIMO系统容量降低。下行系统中,可以通过多用户MU-MIMO预编码技术,对多用户之间的干扰进行抑制或消除,从而提升MU-MIMO系统容量。According to the MIMO theory, the capacity of the MIMO system under MU-MIMO is proportional to the number of base station antennas and the total number of multi-user receiving antennas. Through MU-MIMO, the system capacity can be significantly improved by utilizing the spatial channel isolation between different users. However, in an actual system, the spatial channels between multiple users using the same resource are not completely isolated, and there is mutual interference, which leads to a reduction in the capacity of the MU-MIMO system. In the downlink system, the multi-user MU-MIMO precoding technology can be used to suppress or eliminate the interference between multiple users, thereby improving the capacity of the MU-MIMO system.
现有的MU-MIMO无线通信系统,例如LTE(Long Term Evolution,长期演进)/LTE-A系统是典型的多天线无线通信系统,传统LTE/LTE-A系统下行天线端口数一般为2、4或8。在现有的MU-MIMO无线通信系统中,结合了MU-MIMO预编码技术的MU-MIMO调度是其中的关键技术之一。MU-MIMO调度确定MU-MIMO中各时、频、码资源上配对传输的用户,并为各用户确定MCS(Modulation and Coding Scheme,调制编码方案)、及各用户MU-MIMO传输的预编码矩阵。经典的MU-MIMO系统的基于用户调度的数据传输方法,通常利用搜索算法搜索出MU-MIMO中所有可能的备选多用户配对集合,一般对于每个被搜索的MU-MIMO可能的备选多用户配对集合,都需要利用MU-MIMO预编码技术,计算对应的预编码矩阵;根据计算出的预编码矩阵进行用户调度。The existing MU-MIMO wireless communication system, such as LTE (Long Term Evolution, long-term evolution)/LTE-A system is a typical multi-antenna wireless communication system, and the number of downlink antenna ports in the traditional LTE/LTE-A system is generally 2 or 4 or 8. In existing MU-MIMO wireless communication systems, MU-MIMO scheduling combined with MU-MIMO precoding technology is one of the key technologies. MU-MIMO scheduling determines the users for paired transmission on each time, frequency, and code resource in MU-MIMO, and determines the MCS (Modulation and Coding Scheme, modulation and coding scheme) for each user and the precoding matrix for each user's MU-MIMO transmission . The data transmission method based on user scheduling in the classic MU-MIMO system usually uses a search algorithm to search for all possible candidate multi-user pairing sets in MU-MIMO. Generally, for each searched MU-MIMO possible candidate multiple User pairing sets need to use MU-MIMO precoding technology to calculate the corresponding precoding matrix; perform user scheduling according to the calculated precoding matrix.
现有的MU-MIMO预编码矩阵计算中,涉及矩阵求逆和矩阵乘法等高复杂度运算。并且随着天线数和配对层数的增加,MU-MIMO预编码矩阵的计算复杂度将显著增加。In the existing MU-MIMO precoding matrix calculation, high-complexity operations such as matrix inversion and matrix multiplication are involved. And as the number of antennas and the number of paired layers increase, the computational complexity of the MU-MIMO precoding matrix will increase significantly.
然而,目前已经出现了包含32天线、64天线和128天线的基站样机的无线通信系统,例如引入基于AAS(Active Antenna System有源天线系统)系统的FD(Full-Dimensional,全向)-MIMO系统,Massive(大规模)MIMO技术后,无线通信系统的发送天线数可能达到16、32、64或128等,甚至更多。AAS的MIMO系统中,基站的天线数远大于单个终端的天线数。此外,运营商也提出了基站需要装备大量天线的需求。因此,实际系统中基站天线数目将不断增加。若仍采用现有的多用户调度方法,该方法中的MU-MIMO预编码矩阵的计算复杂度将不断增加,将不可避免地大大降低确定出预编码矩阵的效率,导致降低多用户调度的效率,很容易大大增加对用户终端设备的响应延迟,容易降低用户的体验。However, wireless communication systems including base station prototypes with 32 antennas, 64 antennas and 128 antennas have appeared, such as the introduction of FD (Full-Dimensional, omnidirectional)-MIMO systems based on AAS (Active Antenna System) systems After the Massive (large-scale) MIMO technology, the number of transmitting antennas in the wireless communication system may reach 16, 32, 64 or 128, etc., or even more. In the AAS MIMO system, the number of antennas of the base station is much larger than the number of antennas of a single terminal. In addition, operators have also proposed that base stations need to be equipped with a large number of antennas. Therefore, the number of base station antennas in actual systems will continue to increase. If the existing multi-user scheduling method is still used, the computational complexity of the MU-MIMO precoding matrix in this method will continue to increase, which will inevitably greatly reduce the efficiency of determining the precoding matrix, resulting in a reduction in the efficiency of multi-user scheduling , it is easy to greatly increase the response delay to the user terminal equipment, and it is easy to reduce the user experience.
发明内容Contents of the invention
本发明针对现有方式的缺点,提出一种基于用户调度的数据传输方法及装置,用以解决现有技术存在预编码矩阵的计算复杂度较高、确定出预编码矩阵的效率较低的问题,以降低预编码矩阵的计算复杂度,提升确定出预编码矩阵的效率。Aiming at the shortcomings of the existing methods, the present invention proposes a data transmission method and device based on user scheduling to solve the problems in the prior art that the calculation complexity of the precoding matrix is high and the efficiency of determining the precoding matrix is low , so as to reduce the computational complexity of the precoding matrix and improve the efficiency of determining the precoding matrix.
本发明的实施例根据第一个方面,提供了一种基于用户调度的数据传输方法,包括:According to the first aspect, an embodiment of the present invention provides a data transmission method based on user scheduling, including:
基于获取的用户终端设备的信息,从备选多用户配对集合中确定出对应的数据层的组合;Based on the acquired information of the user terminal equipment, determine a combination of corresponding data layers from the candidate multi-user pairing set;
迭代确定出所述数据层的组合的预编码矩阵;Iteratively determining the combined precoding matrix of the data layer;
根据所述预编码矩阵确定用户调度结果,并根据所述用户调度结果向对应的用户终端设备进行数据传输。A user scheduling result is determined according to the precoding matrix, and data transmission is performed to a corresponding user terminal device according to the user scheduling result.
本发明的实施例根据第二个方面,还提供了一种基于用户调度的数据传输装置,包括:According to the second aspect, an embodiment of the present invention also provides a data transmission device based on user scheduling, including:
数据层组合确定模块,用于基于获取的用户终端设备的信息,从备选多用户配对集合中确定出对应的数据层的组合;A data layer combination determination module, configured to determine the corresponding data layer combination from the candidate multi-user pairing set based on the acquired information of the user terminal equipment;
预编码矩阵确定模块,用于迭代确定出所述数据层的组合的预编码矩阵;A precoding matrix determination module, configured to iteratively determine the combined precoding matrix of the data layers;
调度传输模块,用于根据所述预编码矩阵确定用户调度结果,并根据所述用户调度结果向对应的用户终端设备进行数据传输。A scheduling transmission module, configured to determine a user scheduling result according to the precoding matrix, and perform data transmission to a corresponding user terminal device according to the user scheduling result.
本发明实施例中,根据数量较少的数据层组合对应的预编码矩阵,迭代确定出数量较多的数据层组合对应的预编码矩阵。迭代的过程中,节省了矩阵的求逆运算,且大大减少了向量(或矩阵)的乘法运算,大大降低了计算的复杂度,提升确定出预编码矩阵的效率和速度;而且即使无线通讯系统的系统的数据层和天线的数量都较多,也能够足够快速的确定出多用户配对的多个数据层组合的预编码矩阵,不需要降低系统容量。因此,本发明可以在不影响系统容量的情况下,提升多用户调度的效率,从整体上加快对用户终端设备的响应,可以提升用户的体验。In the embodiment of the present invention, the precoding matrices corresponding to the large number of data layer combinations are iteratively determined according to the precoding matrices corresponding to the small number of data layer combinations. In the iterative process, the inversion operation of the matrix is saved, and the multiplication operation of the vector (or matrix) is greatly reduced, the complexity of the calculation is greatly reduced, and the efficiency and speed of determining the precoding matrix are improved; and even if the wireless communication system The number of data layers and antennas of the system is large, and the precoding matrix of the combination of multiple data layers for multi-user pairing can be determined quickly enough without reducing the system capacity. Therefore, the present invention can improve the efficiency of multi-user scheduling without affecting the system capacity, speed up the response to user terminal equipment as a whole, and improve user experience.
本发明附加的方面和优点将在下面的描述中部分给出,这些将从下面的描述中变得明显,或通过本发明的实践了解到。Additional aspects and advantages of the invention will be set forth in part in the description which follows, and will become apparent from the description, or may be learned by practice of the invention.
附图说明Description of drawings
本发明上述的和/或附加的方面和优点从下面结合附图对实施例的描述中将变得明显和容易理解,其中:The above and/or additional aspects and advantages of the present invention will become apparent and easy to understand from the following description of the embodiments in conjunction with the accompanying drawings, wherein:
图1为本发明实施例的基于用户调度的数据传输方法的流程示意图;FIG. 1 is a schematic flowchart of a data transmission method based on user scheduling according to an embodiment of the present invention;
图2a为本发明实施例的迭代确定出选自备选多用户配对集合中的数据层组合的预编码矩阵的一个实例的示意图;FIG. 2a is a schematic diagram of an example of a precoding matrix selected from a data layer combination selected from an alternative multi-user pairing set through iterations according to an embodiment of the present invention;
图2b为本发明实施例的图2a中第二步骤的分解步骤的一个实例的示意图;Fig. 2b is a schematic diagram of an example of the decomposition step of the second step in Fig. 2a according to an embodiment of the present invention;
图2c为本发明实施例的图2a中第四步骤的分解步骤的一个实例的示意图;Fig. 2c is a schematic diagram of an example of the decomposition step of the fourth step in Fig. 2a according to an embodiment of the present invention;
图3为本发明实施例的基于用户调度的数据传输装置的内部结构的框架示意图;FIG. 3 is a schematic framework diagram of an internal structure of a data transmission device based on user scheduling according to an embodiment of the present invention;
图4为现有的预编码矩阵确定方法与本发明中的预编码矩阵确定方法进行对比实验的一个实例的示意图。Fig. 4 is a schematic diagram of an example of a comparative experiment between the existing method for determining a precoding matrix and the method for determining a precoding matrix in the present invention.
具体实施方式Detailed ways
下面详细描述本发明的实施例,所述实施例的示例在附图中示出,其中自始至终相同或类似的标号表示相同或类似的元件或具有相同或类似功能的元件。下面通过参考附图描述的实施例是示例性的,仅用于解释本发明,而不能解释为对本发明的限制。Embodiments of the present invention are described in detail below, examples of which are shown in the drawings, wherein the same or similar reference numerals designate the same or similar elements or elements having the same or similar functions throughout. The embodiments described below by referring to the figures are exemplary only for explaining the present invention and should not be construed as limiting the present invention.
本技术领域技术人员可以理解,除非特意声明,这里使用的单数形式“一”、“一个”、“所述”和“该”也可包括复数形式。应该进一步理解的是,本发明的说明书中使用的措辞“包括”是指存在所述特征、整数、步骤、操作、元件和/或组件,但是并不排除存在或添加一个或多个其他特征、整数、步骤、操作、元件、组件和/或它们的组。应该理解,当我们称元件被“连接”或“耦接”到另一元件时,它可以直接连接或耦接到其他元件,或者也可以存在中间元件。此外,这里使用的“连接”或“耦接”可以包括无线连接或无线耦接。这里使用的措辞“和/或”包括一个或更多个相关联的列出项的全部或任一单元和全部组合。Those skilled in the art will understand that unless otherwise stated, the singular forms "a", "an", "said" and "the" used herein may also include plural forms. It should be further understood that the word "comprising" used in the description of the present invention refers to the presence of said features, integers, steps, operations, elements and/or components, but does not exclude the presence or addition of one or more other features, Integers, steps, operations, elements, components, and/or groups thereof. It will be understood that when an element is referred to as being "connected" or "coupled" to another element, it can be directly connected or coupled to the other element or intervening elements may also be present. Additionally, "connected" or "coupled" as used herein may include wireless connection or wireless coupling. The expression "and/or" used herein includes all or any elements and all combinations of one or more associated listed items.
本技术领域技术人员可以理解,除非另外定义,这里使用的所有术语(包括技术术语和科学术语),具有与本发明所属领域中的普通技术人员的一般理解相同的意义。还应该理解的是,诸如通用字典中定义的那些术语,应该被理解为具有与现有技术的上下文中的意义一致的意义,并且除非像这里一样被特定定义,否则不会用理想化或过于正式的含义来解释。Those skilled in the art can understand that, unless otherwise defined, all terms (including technical terms and scientific terms) used herein have the same meaning as commonly understood by those of ordinary skill in the art to which this invention belongs. It should also be understood that terms, such as those defined in commonly used dictionaries, should be understood to have meanings consistent with their meaning in the context of the prior art, and unless specifically defined as herein, are not intended to be idealized or overly Formal meaning to explain.
本技术领域技术人员可以理解,这里所使用的“终端”、“终端设备”既包括无线信号接收器的设备,其仅具备无发射能力的无线信号接收器的设备,又包括接收和发射硬件的设备,其具有能够在双向通信链路上,进行双向通信的接收和发射硬件的设备。这种设备可以包括:蜂窝或其他通信设备,其具有单线路显示器或多线路显示器或没有多线路显示器的蜂窝或其他通信设备;PCS(Personal Communications Service,个人通信系统),其可以组合语音、数据处理、传真和/或数据通信能力;PDA(Personal Digital Assistant,个人数字助理),其可以包括射频接收器、寻呼机、互联网/内联网访问、网络浏览器、记事本、日历和/或GPS(Global Positioning System,全球定位系统)接收器;常规膝上型和/或掌上型计算机或其他设备,其具有和/或包括射频接收器的常规膝上型和/或掌上型计算机或其他设备。这里所使用的“终端”、“终端设备”可以是便携式、可运输、安装在交通工具(航空、海运和/或陆地)中的,或者适合于和/或配置为在本地运行,和/或以分布形式,运行在地球和/或空间的任何其他位置运行。这里所使用的“终端”、“终端设备”还可以是通信终端、上网终端、音乐/视频播放终端,例如可以是PDA、MID(Mobile Internet Device,移动互联网设备)和/或具有音乐/视频播放功能的移动电话,也可以是智能电视、机顶盒等设备。Those skilled in the art can understand that the "terminal" and "terminal equipment" used here not only include wireless signal receiver equipment, which only has wireless signal receiver equipment without transmission capabilities, but also include receiving and transmitting hardware. A device having receive and transmit hardware capable of bi-directional communication over a bi-directional communication link. Such equipment may include: cellular or other communication equipment, which has a single-line display or a multi-line display or a cellular or other communication equipment without a multi-line display; PCS (Personal Communications Service, personal communication system), which can combine voice, data Processing, facsimile and/or data communication capabilities; PDA (Personal Digital Assistant, Personal Digital Assistant), which may include radio frequency receiver, pager, Internet/Intranet access, web browser, notepad, calendar and/or GPS (Global Positioning System (Global Positioning System) receiver; a conventional laptop and/or palmtop computer or other device having and/or including a radio frequency receiver. As used herein, a "terminal", "terminal device" may be portable, transportable, installed in a vehicle (air, sea, and/or land), or adapted and/or configured to operate locally, and/or In distributed form, the operation operates at any other location on Earth and/or in space. The "terminal" and "terminal equipment" used here can also be communication terminals, Internet terminals, music/video playback terminals, such as PDAs, MIDs (Mobile Internet Devices, mobile Internet devices) and/or with music/video playback terminals. Functional mobile phones, smart TVs, set-top boxes and other devices.
本发明的发明人发现,为了降低现有的多用户调度方法中,预编码矩阵的确定过程(例如矩阵求逆)的复杂度,现有的低复杂度方法包括lumped matrix method(分块矩阵法)、Gaussian elimination method(高斯消元法)、或Cholesky分解法(平方根分解法)等。目前对于一般高阶矩阵的求逆,Cholesky分解法是已知的复杂度最低的算法,并且被广泛应用。The inventors of the present invention have found that, in order to reduce the complexity of the determination process (such as matrix inversion) of the precoding matrix in the existing multi-user scheduling method, the existing low-complexity method includes lumped matrix method (block matrix method) ), Gaussian elimination method (Gaussian elimination method), or Cholesky decomposition method (square root decomposition method), etc. At present, for the inversion of general high-order matrices, the Cholesky decomposition method is the known algorithm with the lowest complexity and is widely used.
假定基站天线数目为NT,当计算备选多用户配对集合中第i层数据层的配对时,使用最常用的Cholesky分解法的预编码算法,需要大概2i(i2-1)/3+(6i2+2i)NT次实数乘法。可以看出,随着天线数和配对层数的增加,现有的MU-MIMO预编码矩阵的计算复杂度将显著增加,仍会大大降低确定出预编码矩阵的效率,导致降低多用户调度的效率,很容易大大增加对用户终端设备的响应延迟,容易降低用户的体验。Assuming that the number of base station antennas is N T , when calculating the pairing of the i-th data layer in the candidate multi-user pairing set, using the most commonly used precoding algorithm of the Cholesky decomposition method requires about 2i(i 2 -1)/3+ (6i 2 +2i) NT real number multiplications. It can be seen that as the number of antennas and the number of paired layers increase, the computational complexity of the existing MU-MIMO precoding matrix will increase significantly, and the efficiency of determining the precoding matrix will still be greatly reduced, resulting in reduced multi-user scheduling. Efficiency, it is easy to greatly increase the response delay to the user terminal equipment, and it is easy to reduce the user experience.
本发明的发明人发现,目前虽然存在一些基于牺牲系统容量的低复杂度的预编码矩阵的算法,例如降低配对次数、降低实际天线数目等方法。但是这些算法不但没有从根本上降低预编码算法的复杂度,而且降低了天线的实际利用数目,与利用更多的天线与更多用户终端设备进行通讯的发展趋势相违背,造成比现有系统多的大量天线成为摆设,相当于降低了实际多天线系统的系统容量。The inventors of the present invention have found that currently there are some low-complexity precoding matrix algorithms that sacrifice system capacity, such as reducing the number of pairing times and reducing the number of actual antennas. However, these algorithms not only do not fundamentally reduce the complexity of the precoding algorithm, but also reduce the actual number of antennas used, which is contrary to the development trend of using more antennas to communicate with more user terminal equipment, resulting in A large number of antennas become decorations, which is equivalent to reducing the system capacity of the actual multi-antenna system.
本发明提供的基于用户调度的数据传输设备,包括:多个发送天线。The data transmission device based on user scheduling provided by the present invention includes: multiple sending antennas.
较佳地,本发明的基于用户调度的数据传输设备包括基于用户调度的数据传输装置。Preferably, the user-scheduling-based data transmission device of the present invention includes a user-scheduling-based data transmission device.
基于用户调度的数据传输设备可以设置于基站中。The data transmission device based on user scheduling can be set in the base station.
本发明提供的基于用户调度的数据传输方法的流程示意图如图1所示,包括:S101基于获取的用户终端设备的信息,从备选多用户配对集合中确定出对应的数据层的组合;S102迭代确定出数据层的组合的预编码矩阵;S103:根据预编码矩阵确定用户调度结果,并根据该用户调度结果向对应的用户终端设备进行数据传输。The flowchart of the data transmission method based on user scheduling provided by the present invention is shown in Figure 1, including: S101 Determine the combination of corresponding data layers from the candidate multi-user pairing set based on the obtained information of the user terminal equipment; S102 Iteratively determine the combined precoding matrix of the data layer; S103: Determine the user scheduling result according to the precoding matrix, and perform data transmission to the corresponding user terminal equipment according to the user scheduling result.
其中,用户终端设备的信息包括下述至少一项:信道状态信息、重传反馈信息、业务相关信息。Wherein, the information of the user terminal equipment includes at least one of the following items: channel state information, retransmission feedback information, and service-related information.
备选多用户配对集合包括所有可以参与至少一个用户传输的数据层的组合。The set of candidate multi-user pairings includes all combinations of data layers that can participate in the transmission of at least one user.
容易看出,本发明中,根据数量较少的数据层组合对应的预编码矩阵,迭代确定出数量较多的数据层组合对应的预编码矩阵。迭代的过程中,节省了矩阵的求逆运算,且大大减少了向量(或矩阵)的乘法运算,大大降低了计算的复杂度,提升确定出预编码矩阵的效率和速度;而且即使无线通讯系统的系统的数据层和天线的数量都较多,也能够足够快速的确定出多用户配对的多个数据层组合的预编码矩阵,不需要降低系统容量。因此,本发明可以在不影响系统容量的情况下,提升多用户调度的效率,从整体上加快对用户终端设备的响应,可以提升用户的体验。It can be easily seen that in the present invention, precoding matrices corresponding to a large number of data layer combinations are iteratively determined according to precoding matrices corresponding to a small number of data layer combinations. In the iterative process, the inversion operation of the matrix is saved, and the multiplication operation of the vector (or matrix) is greatly reduced, the complexity of the calculation is greatly reduced, and the efficiency and speed of determining the precoding matrix are improved; and even if the wireless communication system The number of data layers and antennas of the system is large, and the precoding matrix of the combination of multiple data layers for multi-user pairing can be determined quickly enough without reducing the system capacity. Therefore, the present invention can improve the efficiency of multi-user scheduling without affecting the system capacity, speed up the response to user terminal equipment as a whole, and improve user experience.
下面展开介绍本发明实施例的基于用户调度的数据传输方法。The following describes the data transmission method based on user scheduling in the embodiment of the present invention.
获取至少一个用户终端设备发送的信息。Obtain information sent by at least one user terminal device.
较佳地,一些情况下,一个用户终端设备需要占用一个信道,发送涉及利用一个信息进行数据传输的信息。另一些情况下,一个用户终端设备需要占用两个以上信道,发送涉及利用两个以上信道进行数据传输的信息。Preferably, in some cases, a user terminal equipment needs to occupy a channel to send information involving data transmission using a piece of information. In other cases, a user terminal equipment needs to occupy more than two channels and send information involving data transmission using more than two channels.
信息包括下述至少一项:信道状态信息、重传反馈信息、业务相关信息。The information includes at least one of the following: channel state information, retransmission feedback information, and service-related information.
其中,信道状态信息,包括下述至少一项:信道质量信息、空间信道状态信息、秩信息。Wherein, the channel state information includes at least one of the following: channel quality information, spatial channel state information, and rank information.
信道质量信息包括:CQI(Channel Quality Indicator,信道质量指示)。The channel quality information includes: CQI (Channel Quality Indicator, channel quality indicator).
秩信息包括:RI(rank indicator,秩指示)。The rank information includes: RI (rank indicator, rank indication).
空间信道状态信息包括:PMI(Pre-coding Matrix Index,预编码矩阵索引)信息所对应预编码矩阵、利用信道互易性和/或预编码矩阵索引信息所对应预编码矩阵所确定的空间信道状态信息。The spatial channel state information includes: the precoding matrix corresponding to the PMI (Pre-coding Matrix Index, precoding matrix index) information, the spatial channel state determined by channel reciprocity and/or the precoding matrix corresponding to the precoding matrix index information information.
具体地,在满足上下行信道互易性条件,并能通过上行信道状态信息的系统中,如TD-LTE系统等,空间信道状态信息可以是利用信道互易性所确定的空间信道状态信息。Specifically, in a system that satisfies the reciprocity condition of the uplink and downlink channels and can pass the uplink channel state information, such as the TD-LTE system, the spatial channel state information may be the spatial channel state information determined by channel reciprocity.
在同时满足上下行信道互易性条件,且包含一个或多个预编码矩阵索引PMI反馈的系统中,空间信道状态信息可以是预编码矩阵索引信息所对应的预编码矩阵,可以是利用信道互易性所确定的空间信道状态信息,也可以是利用信道互易性和预编码矩阵索引信息所对应的预编码矩阵结合所得到的空间信道状态信息。In a system that satisfies the reciprocity condition of uplink and downlink channels at the same time, and includes one or more precoding matrix index PMI feedback, the spatial channel state information may be the precoding matrix corresponding to the precoding matrix index information, or the The spatial channel state information determined by the reciprocity may also be the spatial channel state information obtained by combining the channel reciprocity and the precoding matrix corresponding to the precoding matrix index information.
较佳地,空间信道状态信息,可以为功率归一化后的空间信道状态信息。所谓功率归一化,即将空间信道的总功率值设置为1。Preferably, the spatial channel state information may be power-normalized spatial channel state information. The so-called power normalization means that the total power value of the spatial channel is set to 1.
较佳地,空间信道状态信息,可以聚合信道矩阵和/或信道向量的形式进行表征。Preferably, the spatial channel state information can be represented in the form of aggregated channel matrix and/or channel vector.
进一步,为了便于理解,可以定义聚合信道矩阵的维度为数据层数乘以发送天线数。其他形式的聚合信道矩阵的表征方式并不影响使用本专利的方法,只需要对聚合信道矩阵的维度做相应转换即可。Further, for ease of understanding, the dimension of the aggregated channel matrix may be defined as the number of data layers multiplied by the number of transmit antennas. The characterization methods of other forms of aggregated channel matrix do not affect the use of the method of this patent, only the dimensions of the aggregated channel matrix need to be converted accordingly.
重传反馈信息包括:ACK(ACKnowledgement,确认回答)和/或NACK(NegativeACKnowledgment,否定回答)信息。The retransmission feedback information includes: ACK (ACKnowledgment, confirmation answer) and/or NACK (NegativeACKnowledgment, negative answer) information.
业务相关信息包括下述至少一项:用户终端设备的业务类型、已传数据量、buffer(增益)状态。The service-related information includes at least one of the following: the service type of the user terminal equipment, the amount of transmitted data, and the buffer (gain) status.
根据获取的至少一个用户终端设备的信息,确定出对应的备选多用户配对集合。According to the acquired information of at least one user terminal device, a corresponding set of candidate multi-user pairings is determined.
具体地,基于所获取的信道状态信息、重传反馈信息和/或业务相关信息,利用下述至少一种搜索方法,从备选多用户配对集合中确定出对应的数据层的组合:穷举搜索方法、贪婪搜索方法、按层搜索方法、按用户搜索方法。Specifically, based on the acquired channel state information, retransmission feedback information and/or service-related information, use at least one of the following search methods to determine the corresponding combination of data layers from the candidate multi-user pairing set: exhaustive Search method, Greedy search method, Search method by layer, Search method by user.
备选多用户配对集合,包括:所有可以参与至少一个用户传输的数据层组合。从备选多用户配对集合中确定出的数据层的组合,与至少一个用户终端设备所分配信道相配对;其中,一个数据层与一个用户终端设备所分配信道相对应。The set of candidate multi-user pairings includes: all data layer combinations that can participate in at least one user transmission. The combination of data layers determined from the candidate multi-user pairing set is paired with a channel allocated to at least one user terminal equipment; wherein, one data layer corresponds to a channel allocated to a user terminal equipment.
本发明实施例中,可以采用下述线性预编码算法之一,来确定出选自备选多用户配对集合的数据层组合的预编码矩阵:SLNR(Signal to Leakage and noise ratio,信漏噪比)算法,MMSE(Minimum Mean Square Error,最小均方误差)算法,ZF(Zero Forcing,迫零)算法。In the embodiment of the present invention, one of the following linear precoding algorithms can be used to determine the precoding matrix of the data layer combination selected from the candidate multi-user pairing set: SLNR (Signal to Leakage and noise ratio, signal-to-leakage-to-noise ratio ) algorithm, MMSE (Minimum Mean Square Error, minimum mean square error) algorithm, ZF (Zero Forcing, zero forcing) algorithm.
假设至少一个用户传输时的预编码矩阵为符合W=f{(X+HHH)-1HH}的预编码矩阵;其中X为对角阵,其维度等于从备选多用户配对集合中确定出的数据层组合中数据层数,H为由数据层组合对应用户终端设备的空间信道状态信息组成的聚合信道矩阵,其行数为数据层组合中的数据层数,其列数等于基站的发送天线数;f()表示矩阵运算,HH中的右上标H表示矩阵的共轭转置,W表示假设至少一个用户传输时的预编码矩阵,其行数等于基站的发送天线数,其列数为确定出的数据层组合中的数据层数。Assume that the precoding matrix of at least one user is a precoding matrix conforming to W=f{(X+H H H) -1 H H }; where X is a diagonal matrix whose dimension is equal to that from the candidate multi-user pairing set The number of data layers in the data layer combination determined in , H is the aggregation channel matrix composed of the spatial channel state information corresponding to the user terminal equipment of the data layer combination, the number of rows is the number of data layers in the data layer combination, and the number of columns is equal to The number of transmitting antennas of the base station; f() indicates matrix operation, the superscript H in H H indicates the conjugate transposition of the matrix, W indicates the precoding matrix when at least one user is transmitted, and the number of rows is equal to the number of transmitting antennas of the base station , the number of columns is the number of data layers in the determined data layer combination.
具体地,当X为零矩阵,f(A)=A时,W为基于迫零算法的至少一个用户传输时的预编码矩阵。Specifically, when X is a zero matrix and f(A)=A, W is a precoding matrix during transmission of at least one user based on a zero-forcing algorithm.
当X为非零对角阵,f(A)=A时,W为基于最小均方误差算法的至少一个用户传输时的预编码矩阵。When X is a non-zero diagonal matrix and f(A)=A, W is a precoding matrix when at least one user transmits based on the minimum mean square error algorithm.
当X为对角阵,f(A)=max eigenvector{Ai}时,W为基于最小信漏比算法的至少一个用户传输时的预编码矩阵。When X is a diagonal matrix, f(A)=max eigenvector{A i }, W is a precoding matrix when at least one user transmits based on the minimum signal-to-leakage ratio algorithm.
较佳地,用公式来表示不同线性预编码算法确定出的预编码矩阵。Preferably, formulas are used to represent precoding matrices determined by different linear precoding algorithms.
假定用户(终端设备)i的(所分配的)信道为Hi,所有用户的(聚合)信道矩阵为H,则这些线性预编码矩阵的公式分别如下所示:Assuming that the (assigned) channel of user (terminal device) i is H i , and the (aggregated) channel matrix of all users is H, the formulas of these linear precoding matrices are as follows:
WZF=HH(HHH)-1………………………………………··(公式1)W ZF= H H (HH H ) -1 …………………………………………………………………………………………………………………………………………………………………………
WMMSE=HH(HHH+σ2I)-1=(σ2I+HHH)-1HH……………·(公式2)W MMSE =H H (HH H +σ 2 I) -1 =(σ 2 I+H H H) -1 H H ……………… (Formula 2)
上述公式(1)-(3)中WZF表示基于ZF算法的预编码矩阵,WMMSE表示基于MMSE算法的预编码矩阵,WSLNR,i表示第i个用户的基于SLNR算法的预编码矩阵;HH表示矩阵H的共轭转置(hermit),A-1表示矩阵A的逆(inversion),eigenvector(A)表示矩阵A的特征向量(eigenvector),max(.)表示求最大的元素,I为单位矩阵(unit matrix),σ为MMSE因子。In the above formulas (1)-(3), W ZF represents the precoding matrix based on the ZF algorithm, W MMSE represents the precoding matrix based on the MMSE algorithm, and W SLNR,i represents the precoding matrix based on the SLNR algorithm of the i-th user; H H represents the conjugate transpose (hermit) of matrix H, A -1 represents the inverse (inversion) of matrix A, eigenvector(A) represents the eigenvector (eigenvector) of matrix A, max(.) represents the largest element, I is the unit matrix, and σ is the MMSE factor.
为了便于理解,下面以基于MMSE算法的预编码矩阵确定方法为例,具体介绍迭代确定出数据层组合的预编码矩阵的方法。For ease of understanding, the method for determining the precoding matrix based on the MMSE algorithm is taken as an example below to specifically introduce the method for iteratively determining the precoding matrix of the data layer combination.
基于上述公式(2),假设系统中基站天线数目为NT。从备选多用户配对集合中确定出的数据层组合中,第r个数据层的空间信道状态信息为1*NT维的信道向量,记作hr,被搜索选中的共r个数据层(即数据层组合)的(聚合)信道矩阵为Nr,其维度为r*NT,定义需要求逆的矩阵为Based on the above formula (2), it is assumed that the number of base station antennas in the system is N T . Among the data layer combinations determined from the candidate multi-user pairing set, the spatial channel state information of the rth data layer is a 1*N T -dimensional channel vector, denoted as h r , a total of r data layers selected by the search The (aggregation) channel matrix (ie data layer combination) is N r , and its dimension is r*N T , and the matrix that needs to be inverted is defined as
上述公式(4)中Ar表示共r个数据层的被求逆矩阵,A0为设定的初始化矩阵。则计算包含第r层的至少一个用户传输时的预编码矩阵时,所有r个数据层的至少一个用户传输时的预编码矩阵为Wr,通过下述公式(5)得到: Ar in the above formula (4) represents the inverse matrix of a total of r data layers, and A0 is the set initialization matrix. Then when calculating the precoding matrix when at least one user including the r-th layer transmits, the precoding matrix when at least one user of all r data layers transmits is W r , which is obtained by the following formula (5):
上述公式(5)中第p个数据层在至少一个用户传输时对应的预编码向量为Wr,p,p小于或等于r,通过下述公式(6)得到:The precoding vector corresponding to the pth data layer in the above formula (5) when at least one user transmits is W r,p , p is less than or equal to r, and can be obtained by the following formula (6):
迭代确定出选自备选多用户配对集合的数据层组合的预编码矩阵的方法,包括:(基于)外循环迭代(的数据层组合的预编码矩阵的确定)方法。The method for iteratively determining the precoding matrix of the data layer combination selected from the candidate multi-user pairing set includes: (based on) an outer loop iteration (determining the precoding matrix of the data layer combination) method.
每个外循环迭代过程中,包括:内循环一和内循环二。Each iteration of the outer loop includes: inner loop 1 and inner loop 2.
其中,外循环迭代的次数等于被选择的数据层的总数;一次外循环迭代过程中的内循环一的迭代次数,等于已计算数据层的总数;一次外循环迭代过程中包括一次内循环二。Wherein, the number of iterations of the outer loop is equal to the total number of selected data layers; the number of iterations of the inner loop 1 during an iteration of the outer loop is equal to the total number of calculated data layers; an iteration of the outer loop includes an inner loop 2 once.
每个外循环迭代过程中,基于当前数据层的信道向量、和各已计算数据层的组合对应的预编码矩阵,确定出当前数据层和各已计算数据层的组合对应的预编码矩阵;直到外循环的次数等于从备选多用户配对集合中确定出的对应数据层的个数。In each outer loop iteration process, based on the channel vector of the current data layer and the precoding matrix corresponding to the combination of each calculated data layer, the precoding matrix corresponding to the combination of the current data layer and each calculated data layer is determined; until The number of outer loops is equal to the number of corresponding data layers determined from the candidate multi-user pairing set.
其中,已计算数据层为已参与过预编码矩阵确定的数据层。Wherein, the calculated data layer is a data layer that has participated in the determination of the precoding matrix.
较佳地,每个外循环迭代过程中,内循环一处理过程包括:根据指定的求逆结果与当前数据层的信道向量的共轭转置的乘积,迭代确定出最后一个已计算数据层对应的求逆结果与当前数据层的信道向量的共轭转置的乘积;进而确定出当前数据层的信道向量、与最后一个已计算数据层对应的求逆结果与当前数据层的信道向量的共轭转置的乘积,相乘后加一的倒数。Preferably, in each iteration of the outer loop, the first processing of the inner loop includes: according to the product of the specified inversion result and the conjugate transpose of the channel vector of the current data layer, iteratively determine the corresponding The product of the inversion result of the current data layer and the conjugate transpose of the channel vector of the current data layer; and then determine the channel vector of the current data layer, the inversion result corresponding to the last calculated data layer and the channel vector of the current data layer. The product of the yoke transpose, multiplied and the inverse of one added.
其中,最后一个已计算数据层为与当前数据层相邻且靠前一个的数据层;指定的求逆结果包括指定的初始求逆结果和已计算层对应的求逆结果。Among them, the last calculated data layer is the data layer adjacent to the current data layer and the previous data layer; the specified inversion result includes the specified initial inversion result and the inversion result corresponding to the calculated layer.
具体地,已计算数据层所对应的求逆结果,其具体内容与计算假设至少一个用户传输时的预编码矩阵算法有关。根据确定预编码矩阵时所采用的算法,确定出已计算数据层所对应的求逆结果的类型。较佳地,当采用最小均方误差MMSE算法确定预编码矩阵时,确定出各已计算数据层所对应的聚合信道矩阵的共轭转置与各已计算数据层所对应的聚合信道矩阵的乘积矩阵、与以干扰噪声功率值做对角线元素的对角方阵的和矩阵的逆矩阵,作为已计算数据层所对应的求逆结果。进一步,在已计算数据层数为0的情况下,已计算数据层所对应的求逆结果为对角阵的逆矩阵。Specifically, the inversion result corresponding to the data layer has been calculated, and its specific content is related to the calculation of the precoding matrix algorithm when at least one user is assumed to be transmitting. According to the algorithm adopted when determining the precoding matrix, the type of the inversion result corresponding to the calculated data layer is determined. Preferably, when the minimum mean square error MMSE algorithm is used to determine the precoding matrix, the product of the conjugate transpose of the aggregated channel matrix corresponding to each calculated data layer and the aggregated channel matrix corresponding to each calculated data layer is determined matrix, and the inverse matrix of the sum matrix of the diagonal square matrix with the interference noise power value as the diagonal element, as the inversion result corresponding to the calculated data layer. Further, when the number of calculated data layers is 0, the inversion result corresponding to the calculated data layers is the inverse matrix of the diagonal matrix.
在内循环二的处理过程包括:根据当前数据层涉及的(即利用内循环一确定出的)上述乘积和倒数,以及最后一个已计算数据层对应的求逆结果、分别与各已计算数据层的信道向量的共轭转置的乘积,确定出当前数据层对应的求逆结果、分别与各已计算数据层和当前数据层的信道向量的共轭转置的乘积,作为当前数据层和各已计算数据层的组合对应的预编码矩阵。The processing process of the inner loop two includes: according to the above-mentioned product and reciprocal involved in the current data layer (that is, determined by the inner loop one), and the inversion result corresponding to the last calculated data layer, and each calculated data layer The product of the conjugate transpose of the channel vector of the current data layer is determined to determine the corresponding inversion result of the current data layer, and the product of the conjugate transpose of the channel vector of each calculated data layer and the current data layer respectively, as the current data layer and each A precoding matrix corresponding to a combination of data layers has been calculated.
较佳地,下面具体介绍内循环一的迭代过程。Preferably, the iterative process of the inner loop 1 will be described in detail below.
在内循环一中第一次迭代过程中,根据指定的初始求逆结果和当前数据层的信道向量的共轭转置的乘积,确定出第一个已计算数据层对应的求逆结果与当前数据层的信道向量的共轭转置的乘积。In the first iteration of inner loop 1, according to the product of the specified initial inversion result and the conjugate transpose of the channel vector of the current data layer, determine the inversion result corresponding to the first calculated data layer and the current The product of the conjugate transposes of the channel vectors of the data layer.
在内循环一中后续的每个迭代过程中,根据前一个已计算数据层对应的求逆结果与当前数据层的信道向量的共轭转置的乘积,确定出该已计算数据层对应的求逆结果与当前数据层的信道向量的共轭转置的乘积;直到确定出最后一个已计算数据层对应的求逆结果与当前数据层的信道向量的共轭转置的乘积,结束内循环一。In each subsequent iterative process of the inner loop 1, according to the product of the inversion result corresponding to the previous calculated data layer and the conjugate transpose of the channel vector of the current data layer, determine the calculation value corresponding to the calculated data layer The product of the inverse result and the conjugate transpose of the channel vector of the current data layer; until the product of the inverse result corresponding to the last calculated data layer and the conjugate transpose of the channel vector of the current data layer is determined, the inner loop one ends .
进一步,对于每个已计算数据层,根据前一个已计算数据层对应的求逆结果与当前数据层的信道向量的共轭转置的乘积,以及预存的各已计算数据层各自的第一类中间结果,确定出该已计算数据层对应的求逆结果与当前数据层的信道向量的共轭转置的乘积。Further, for each calculated data layer, according to the product of the inversion result corresponding to the previous calculated data layer and the conjugate transpose of the channel vector of the current data layer, and the pre-stored respective first type of each calculated data layer As an intermediate result, the product of the inversion result corresponding to the calculated data layer and the conjugate transpose of the channel vector of the current data layer is determined.
其中,每个已计算数据层的第一类中间结果,包括:前一个已计算数据层对应的求逆结果与该已计算数据层的信道向量的共轭转置的乘积,和前一个已计算数据层对应的求逆结果、与该已计算数据层的信道向量及其共轭转置相乘后加一的倒数。Among them, the first type of intermediate results of each calculated data layer includes: the product of the inversion result corresponding to the previous calculated data layer and the conjugate transpose of the channel vector of the calculated data layer, and the previous calculated The inverse result corresponding to the data layer is multiplied by the channel vector of the calculated data layer and its conjugate transpose, and then the reciprocal of one is added.
较佳地,对于每个已计算数据层,前一个已计算数据层对应的求逆结果、与该已计算数据层的信道向量及其共轭转置相乘后加一的倒数,可以具体为:该已计算数据层的信道向量、前一个已计算数据层对应的求逆结果、和该已计算数据层的信道向量的共轭转置(这三项)相乘后加一的倒数。Preferably, for each calculated data layer, the inverse result corresponding to the previous calculated data layer, multiplied by the channel vector of the calculated data layer and its conjugate transpose, and then the reciprocal of 1 can be specifically expressed as : The channel vector of the calculated data layer, the inversion result corresponding to the previous calculated data layer, and the conjugate transpose of the channel vector of the calculated data layer (these three items) are multiplied and the reciprocal of one is added.
更优的,将通过内循环一确定出的当前数据层涉及的上述乘积和倒数,作为当前数据层的第一类中间结果进行存储,供确定后续数据层的第一类中间结果时使用。More preferably, the above-mentioned product and reciprocal involved in the current data layer determined by the inner loop one are stored as the first-type intermediate results of the current data layer for use in determining the first-type intermediate results of subsequent data layers.
更优的,将通过内循环二确定出的当前数据层对应的求逆结果、分别与各已计算数据层和当前数据层的信道向量的共轭转置的乘积,作为当前数据层的第二类中间结果进行存储,供确定后续数据层的第二类中间结果时使用。More optimally, the product of the inversion result corresponding to the current data layer determined by the inner loop 2 and the conjugate transpose of each calculated data layer and the channel vector of the current data layer is used as the second The class intermediate results are stored for use when determining the second class intermediate results of the subsequent data layer.
进一步,每个已计算数据层的第一类中间结果,是在确定下述预编码矩阵时存储的:该已计算数据层、和在该已计算数据层之前的已计算数据层的组合对应的预编码矩阵。Further, the first-type intermediate results of each calculated data layer are stored when the following precoding matrix is determined: the calculated data layer corresponds to the combination of the calculated data layer before the calculated data layer precoding matrix.
最后一个已计算数据层对应的求逆结果、分别与之前各已计算数据层的信道向量的共轭转置的乘积,作为最后一个已计算数据层对应的第二类中间结果,是在确定最后一个已计算数据层和在其之前的已计算数据层的组合对应的预编码矩阵时存储的。The product of the inversion result corresponding to the last calculated data layer and the conjugate transpose of the channel vectors of the previous calculated data layers, as the second type of intermediate result corresponding to the last calculated data layer, is determined in the final A precoding matrix corresponding to a combination of a calculated data layer and a previous calculated data layer is stored.
图2a是迭代确定出选自备选多用户配对集合的数据层组合的预编码矩阵的一个实例的示意图。Fig. 2a is a schematic diagram of an example of iteratively determining a precoding matrix of a data layer combination selected from a set of candidate multi-user pairings.
图2a中,在第(i+1)外循环迭代过程中,第i、(i+1)数据层分别为最后一个已计算数据层(已确定出对应的预编码矩阵)、当前数据层(还未确定出对应的预编码矩阵),利用内循环一,迭代确定出第i数据层对应的求逆结果Ai -1与第(i+1)数据层的信道向量的共轭转置hi+1 H的乘积Ai -1hi+1 H。(i+1)为大于等于1且小于等于r的正整数。In Fig. 2a, in the iterative process of the (i+1)th outer loop, the i-th and (i+1) data layers are respectively the last calculated data layer (the corresponding precoding matrix has been determined), the current data layer ( The corresponding precoding matrix has not been determined), using the inner loop one, iteratively determine the conjugate transposition h of the inversion result A i -1 corresponding to the i-th data layer and the channel vector of the (i+1)-th data layer The product of i+1 H is A i -1 h i+1 H . (i+1) is a positive integer greater than or equal to 1 and less than or equal to r.
进而确定出第i数据层对应的求逆结果与第(i+1)数据层的信道向量的共轭转置的乘积、与第(i+1)数据层的信道向量hi+1相乘后加一的倒数 Then determine the product of the inversion result corresponding to the i-th data layer and the conjugate transpose of the channel vector of the (i+1)-th data layer, and multiply it by the channel vector h i+1 of the (i+1)-th data layer reciprocal of plus one
具体地,图2a的步骤一得到A0 -1hi+1 H中,根据下述公式(6)进行计算:Specifically, step 1 in Figure 2a obtains A 0 -1 h i+1 H , and calculates according to the following formula (6):
A0 -1hi+1 H=Sigma*hi+1 H…………………………………(公式6)A 0 -1 h i+1 H =Sigma*h i+1 H ……………………………(Formula 6)
上述公式(6)中A0 -1表示指定的初始求逆结果;hi+1 H为输入的第(i+1)数据层对应的(用户的)信道向量;Sigma=1/σ2,σ2为MMSE权重因子。In the above formula (6), A 0 -1 represents the specified initial inversion result; h i+1 H is the (user's) channel vector corresponding to the input (i+1)th data layer; Sigma=1/σ 2 , σ 2 is the MMSE weight factor.
内循环一,包括图2a中的步骤二和三。图2a的步骤二计算Ak+1 -1hi+1 H中,k+1为大于等于1且小于等于i的正整数;内循环一需要迭代i次,与已计算数据层的总数相等。Inner loop one includes steps two and three in Figure 2a. Step 2 in Figure 2a calculates A k+1 -1 h i+1 H , k+1 is a positive integer greater than or equal to 1 and less than or equal to i; the inner loop needs to iterate i times, which is equal to the total number of calculated data layers .
图2a的第一缓存器(缓存器1)中预存有每个已计算数据层的第一类中间结果。对于第k(已计算)数据层的第一类中间结果,包括:第(k-1)(前一个)数据层对应的求逆结果Ak-1 -1与第k数据层的信道向量的共轭转置hk H的乘积Ak-1 -1hk H,和第k数据层的信道向量的共轭转置hk H、第(k-1)数据层对应的求逆结果Ak-1 -1与第k数据层的信道向量hk相乘后加一的倒数 The first type of intermediate results of each calculated data layer are pre-stored in the first buffer (buffer 1) in FIG. 2a. For the first type of intermediate results of the kth (calculated) data layer, it includes: the inversion result A k-1 -1 corresponding to the (k-1) (previous) data layer and the channel vector of the kth data layer The product A k-1 -1 h k H of the conjugate transpose h k H , and the conjugate transpose h k H of the channel vector of the kth data layer, and the inversion result A corresponding to the (k-1)th data layer K-1 -1 is multiplied by the channel vector h k of the k-th data layer and then the reciprocal of one is added
对于第k+1(已计算)数据层的第一类中间结果,包括:第k(前一个)数据层对应的求逆结果Ak -1与第k+1数据层的信道向量的共轭转置hk+1 H的乘积Ak -1hk+1 H,和第k+1数据层的信道向量的共轭转置hk+1 H、第k数据层对应的求逆结果Ak -1与第k+1数据层的信道向量hk+1相乘后加一的倒数 For the first type of intermediate results of the k+1th (calculated) data layer, it includes: the conjugate of the inversion result A k -1 corresponding to the kth (previous) data layer and the channel vector of the k+1th data layer The product A k -1 h k + 1 H of the transpose h k+1 H , and the conjugate transpose h k+1 H of the channel vector of the k+1th data layer, and the inversion result A corresponding to the kth data layer The reciprocal of k -1 and the channel vector h k+1 of the k+1th data layer multiplied by one
较佳地,根据前一个已计算数据层对应的求逆结果(或图2a中上述步骤一的输出结果)与当前数据层的信道向量的共轭转置的乘积,以及第一缓存器(缓存器1)中预存的各已计算数据层各自的第一类中间结果,利用下述公式(7)确定出该已计算数据层对应的信道向量的共轭转置的乘积:Preferably, according to the product of the inversion result corresponding to the previous calculated data layer (or the output result of the above step 1 in Figure 2a) and the conjugate transpose of the channel vector of the current data layer, and the first buffer (buffer The respective first-type intermediate results of each calculated data layer pre-stored in the device 1), using the following formula (7) to determine the product of the conjugate transpose of the channel vector corresponding to the calculated data layer:
所述公式(7)中是预先确定的;k+1的取值范围为1至i的正整数。根据上述公式(7),可以推出下述结果:In the formula (7) is predetermined; the value range of k+1 is a positive integer from 1 to i. According to the above formula (7), the following results can be deduced:
请注意,当前数据层为第(i+1)层,且k+1小于等于i。Please note that the current data layer is the (i+1)th layer, and k+1 is less than or equal to i.
当k+1=1时,为内循环一中第一次迭代,根据作为步骤一的输出结果的指定噪声对应的A0 -1与当前数据层的信道向量的共轭转置hi+1 H的乘积A0 -1hi+1 H(公式7中等号右边第一项),预存的第1数据层的第一类中间结果和以及可以推得的确定出第1数据层对应的求逆结果A1 -1与当前数据层的信道向量的共轭转置的乘积进一步,第1数据层的第一类中间结果,是在确定第1数据层(即第1数据层为当前数据层时)对应的预编码矩阵时,产生并存储的。When k+1=1, it is the first iteration in the inner loop 1, according to the conjugate transposition h i+1 of A 0 -1 corresponding to the specified noise as the output result of step 1 and the channel vector of the current data layer The product of H A 0 -1 h i+1 H (the first item on the right side of the equal sign in formula 7), the first intermediate result of the pre-stored first data layer and and derivable Determine the conjugate transpose of the inversion result A 1 -1 corresponding to the first data layer and the channel vector of the current data layer the product of Further, the first type of intermediate result of the first data layer is generated and stored when determining the precoding matrix corresponding to the first data layer (that is, when the first data layer is the current data layer).
当k+1=2时,为内循环一中第二次迭代,根据第1(已计算)数据层对应的求逆结果A1 -1hi+1 H与当前数据层的信道向量的共轭转置hi+1 H的乘积A1 -1hi+1 H,预存的第2数据层的第一类中间结果和以及可以推得的确定出第2数据层对应的求逆结果A2 -1与当前数据层的信道向量的共轭转置的乘积进一步,第2数据层的第一类中间结果,是在确定第1和2数据层的组合(即第2数据层为当前数据层时)对应的预编码矩阵时,产生并存储的。When k+1=2, it is the second iteration in the inner loop one, according to the inversion result A 1 -1 h i+1 H corresponding to the first (calculated) data layer and the channel vector of the current data layer in common The product A 1 -1 h i+1 H of the yoke transpose h i+1 H , the first-class intermediate result of the pre-stored second data layer and and derivable Determine the conjugate transpose of the inversion result A 2 -1 corresponding to the second data layer and the channel vector of the current data layer the product of Further, the first type of intermediate result of the second data layer is generated and stored when determining the precoding matrix corresponding to the combination of the first and second data layers (that is, when the second data layer is the current data layer).
当k+1=k时,为内循环一中第k次迭代,根据第(k-1)(已计算)数据层对应的求逆结果Ak-1 -1hi+1 H与当前数据层的信道向量的共轭转置hi+1 H的乘积Ak-1 -1hi+1 H,预存的第k数据层的第一类中间结果和以及可以推得的确定出第k数据层对应的求逆结果Ak -1与当前数据层的信道向量的共轭转置的乘积进一步,第k数据层的第一类中间结果,是在确定第1至k数据层的组合(即第k数据层为当前数据层时)对应的预编码矩阵时,产生并存储的。When k+1=k, it is the kth iteration in the inner loop one, according to the inversion result A k-1 -1 h i+1 H corresponding to the (k-1)th (calculated) data layer and the current data The product A k-1 -1 h i+1 H of the conjugate transpose h i+1 H of the channel vector of the layer, the first-class intermediate result of the pre-stored k-th data layer and and derivable Determine the conjugate transpose of the inversion result A k -1 corresponding to the kth data layer and the channel vector of the current data layer the product of Further, the first type of intermediate result of the kth data layer is generated and stored when determining the precoding matrix corresponding to the combination of the 1st to kth data layers (that is, when the kth data layer is the current data layer).
当k+1=k+1时,为内循环一中第k+1次迭代,根据第k(已计算)数据层对应的求逆结果Ak -1hi+1 H与当前数据层的信道向量的共轭转置hi+1 H的乘积Ak -1hi+1 H,预存的第(k+1)数据层的第一类中间结果和以及可以推得的确定出第k+1数据层对应的求逆结果Ak+1 -1与当前数据层的信道向量的共轭转置的乘积进一步,第k+1数据层的第一类中间结果,是在确定第1至(k+1)数据层的组合(即第k+1数据层为当前数据层时)对应的预编码矩阵时,产生并存储的。When k+1=k+1, it is the k+1th iteration in the inner loop one, according to the inversion result A k -1 h i+1 H corresponding to the kth (calculated) data layer and the current data layer The product A k -1 h i+1 H of the conjugate transpose h i+1 H of the channel vector, the first-class intermediate result of the pre-stored (k+1)th data layer and and derivable Determine the conjugate transpose of the inversion result A k+1 -1 corresponding to the k+1th data layer and the channel vector of the current data layer the product of Further, the first type of intermediate result of the k+1th data layer is when determining the precoding matrix corresponding to the combination of the 1st to (k+1) data layers (that is, when the k+1th data layer is the current data layer) , generated and stored.
直到k+1=i时,为内循环一中第i次(最后一次)迭代,根据第i-1(已计算)数据层对应的求逆结果Ai-1 -1hi+1 H与当前数据层的信道向量的共轭转置hi+1 H的乘积Ai-1 -1hi+1 H,预存的第i数据层的第一类中间结果和以及可以推得的确定出第i数据层对应的求逆结果Ai -1与当前数据层的信道向量的共轭转置的乘积进一步,第i数据层的第一类中间结果,是在确定第1至i数据层的组合(即第i数据层为当前数据层时)对应的预编码矩阵时,产生并存储的。Until k+1=i, it is the i-th (last) iteration in inner loop one, according to the inversion result A i - 1-1 h i+1 H corresponding to the i-1th (calculated) data layer and The product A i-1 -1 h i+1 H of the conjugate transpose h i+1 H of the channel vector of the current data layer, the first-class intermediate result of the pre-stored i-th data layer and and derivable Determine the conjugate transpose of the inversion result A i -1 corresponding to the i-th data layer and the channel vector of the current data layer the product of Further, the first type of intermediate result of the i-th data layer is generated and stored when determining the precoding matrix corresponding to the combination of the 1st to i-th data layers (that is, when the i-th data layer is the current data layer).
更优的,图2b为图2a中的第二步骤的分解步骤的一个实例的示意图,表明上述公式(7)等号右边的多项式的计算步骤,可以划分为第1-4步。步骤1中的计算结果为一个数值;步骤2中的计算结果为一个数值;步骤3中的结果为一个向量;步骤4为一个向量减去另一个向量,相当于向量的加法运算。More preferably, Fig. 2b is a schematic diagram of an example of the decomposition steps of the second step in Fig. 2a, showing that the calculation steps of the polynomial on the right side of the above formula (7) can be divided into steps 1-4. step 1 The calculation result of is a value; in step 2 The calculation result of is a value; in step 3 The result of is a vector; step 4 is to subtract one vector from another vector, which is equivalent to the addition operation of vectors.
可以看出,图2a的步骤二中和都是作为整体参与循环迭代计算的,其中为向量,为数值而不是向量或矩阵。因此,本发明实施例的内循环一中不涉及矩阵(或向量)的求逆运算,矩阵(或向量)的乘法运算大大减少,计算复杂度较低,计算量较小,计算速度较快,效率较高。It can be seen that in step 2 of Figure 2a and are all involved in the loop iteration calculation as a whole, where as a vector, as numbers rather than vectors or matrices. Therefore, the inner loop 1 of the embodiment of the present invention does not involve matrix (or vector) inversion operation, the multiplication operation of matrix (or vector) is greatly reduced, the calculation complexity is low, the calculation amount is small, and the calculation speed is fast. Higher efficiency.
图2a中的步骤三包括:根据步骤二的输出最后一个已计算(第i)数据层对应的求逆结果Ai -1与当前(第i+1)数据层的信道向量的共轭转置的乘积利用下述公式(8)确定出当前(第i+1)数据层的信道向量hi+1与该乘积、相乘后的结果:Step 3 in Figure 2a includes: according to the output of step 2, the conjugate transposition of the inversion result A i -1 corresponding to the last calculated (i-th) data layer and the channel vector of the current (i+1) data layer the product of Use the following formula (8) to determine the result of multiplying the channel vector h i +1 of the current (i+1) data layer with the product:
进而,根据上述公式(8)求得的相乘后的结果确定出该相乘后的结果加一的倒数 Furthermore, the multiplied result obtained according to the above formula (8) Determine the result of the multiplication plus one reciprocal
更优的,将该倒数以及作为步骤二输出结果的上述乘积作为当前数据层的第一类中间结果存入第一缓存器(缓存器1),供确定包含后续数据层的数据层组合对应的预编码矩阵时使用,具体地供确定后续数据层(后续所有数据层)的第一类中间结果时使用。More optimal, the reciprocal and the product of the above as the output of step two Stored in the first buffer (buffer 1) as the first type of intermediate results of the current data layer, it is used for determining the precoding matrix corresponding to the data layer combination that includes the subsequent data layer, specifically for determining the subsequent data layer (all subsequent data layers) data layer) for first-class intermediate results.
图2a的第二缓存器(缓存器2)中预存有最后一个已计算数据层的第二类中间结果。对于第i(最后一个已计算)数据层的第二类中间结果,包括:第i数据层对应的求逆结果Ai -1分别与第1至i数据层的信道向量的共轭转置(h1 H、…、hk H、hk+1 H、…、hi H)的乘积Ai - 1h1 H、…、Ai -1hk H、Ai -1hk+1 H、…、Ai -1hi H。进一步,最后一个已计算(第i)数据层对应的求逆结果、分别与之前各已计算数据层的信道向量的共轭转置的乘积,作为第i数据层对应的第二类中间结果,是在确定第1-i数据层的组合对应的预编码矩阵时,产生并存储的。The second type of intermediate result of the last calculated data layer is pre-stored in the second buffer (buffer 2) in FIG. 2a. For the second type of intermediate results of the i-th (last calculated) data layer, it includes: the conjugate transpose of the inversion result A i -1 corresponding to the i-th data layer and the channel vector of the first to i data layers ( h 1 H , ..., h k H , h k+1 H , ..., h i H ) product A i - 1 h 1 H , ..., A i -1 h k H , A i -1 h k+1 H , . . . , A i −1 h i H . Further, the product of the inversion result corresponding to the last calculated (i-th) data layer and the conjugate transpose of the channel vectors of the previous calculated data layers is used as the second-type intermediate result corresponding to the i-th data layer, It is generated and stored when determining the precoding matrix corresponding to the combination of the 1-i data layers.
内循环二包括图2a中的步骤四。图2a的步骤四计算Ai+1 -1h1 H、…、Ai+1 -1hk H、Ai+1 - 1hk+1 H、…、Ai+1 -1hi+1 H中,根据步骤二和三的当前数据层的第一类中间结果中的乘积和倒数,即最后一个已计算数据层对应的求逆结果与当前数据层的信道向量的共轭转置的乘积以及该乘积与当前数据层的信道向量相乘后加一的倒数以及作为最后一个已计算数据层的第i数据层对应的求逆结果Ai -1分别与各已计算数据层和当前数据层中任一数据层的信道向量的共轭转置的乘积利用下述公式(9),确定出当前数据层对应的求逆结果Ai+1 -1、分别与各已计算数据层和当前数据层中任意数据层的的信道向量的共轭转置的乘积 Inner loop two includes step four in Fig. 2a. Step 4 of Figure 2a calculates A i+1 -1 h 1 H , ..., A i+1 -1 h k H , A i+1 - 1 h k+1 H , ..., A i+1 -1 h i +1 In H , according to the product and reciprocal of the first type of intermediate results of the current data layer in steps 2 and 3, that is, the conjugate transposition of the inversion result corresponding to the last calculated data layer and the channel vector of the current data layer the product of And the product is multiplied with the channel vector of the current data layer and then the reciprocal of one And the conjugate transposition of the inversion result A i -1 corresponding to the i-th data layer as the last calculated data layer and the channel vector of each calculated data layer and any data layer in the current data layer the product of Using the following formula (9), determine the inversion result A i+1 -1 corresponding to the current data layer, and the conjugate transpose of the channel vector of each calculated data layer and any data layer in the current data layer respectively the product of
公式(9)中为预先确定的;j的取值范围为1至i的正整数。In formula (9) is predetermined; the value range of j is a positive integer from 1 to i.
较佳地,当j=1至i中任一数值时,根据最后一个已计算数据层对应的求逆结果与当前数据层的信道向量的共轭转置的乘积以及该乘积与当前数据层的信道向量相乘后加一的倒数以及第二缓存器中预存的Ai -1h1 H、…、Ai -1hk H、Ai -1hk+1 H、…、Ai -1hi H,利用公式(9),确定出当前数据层对应的求逆结果、分别与各已计算数据层的信道向量的共轭转置的乘积Ai+1 -1h1 H、…、Ai+1 -1hk H、Ai+1 -1hk+1 H、…、Ai+1 -1hi H。Preferably, when j=any value from 1 to i, according to the product of the inversion result corresponding to the last calculated data layer and the conjugate transpose of the channel vector of the current data layer And the product is multiplied with the channel vector of the current data layer and then the reciprocal of one and A i -1 h 1 H , ..., A i -1 h k H , A i -1 h k+1 H , ..., A i -1 h i H prestored in the second buffer, using the formula (9 ), determine the inversion result corresponding to the current data layer, and the product A i+1 -1 h 1 H ,..., A i+1 -1 h k of the conjugate transpose of the channel vector of each calculated data layer H , A i+1 -1 h k+1 H , ..., A i+1 -1 h i H .
当使得j=i+1时,根据最后一个已计算数据层对应的求逆结果与当前数据层的信道向量的共轭转置的乘积以及该乘积与当前数据层的信道向量相乘后加一的倒数以及预先确定出的利用公式(9),确定出当前数据层对应的求逆结果、与当前数据层的信道向量的共轭转置的乘积Ai+1 -1hi+1 H。When making j=i+1, according to the product of the inversion result corresponding to the last calculated data layer and the conjugate transpose of the channel vector of the current data layer And the product is multiplied with the channel vector of the current data layer and then the reciprocal of one and the predetermined Using formula (9), the product A i+1 -1 h i+1 H of the inversion result corresponding to the current data layer and the conjugate transpose of the channel vector of the current data layer is determined.
将确定出的当前数据层对应的求逆结果、分别与各已计算数据层和当前数据层的信道向量的共轭转置h1 H、…、hk H、hk+1 H、…、hi+1 H的乘积Ai+1 -1h1 H、…、Ai+1 -1hk H、Ai+1 -1hk+1 H、…、Ai+1 -1hi+1 H,作为当前数据层和各已计算数据层的组合对应的预编码矩阵。The determined inversion result corresponding to the current data layer, and the conjugate transposition h 1 H , ..., h k H , h k+1 H , ..., The product of h i+1 H A i+1 -1 h 1 H , ..., A i+1 -1 h k H , A i+1 -1 h k+1 H , ..., A i+1 -1 h i+1 H , as the precoding matrix corresponding to the combination of the current data layer and each calculated data layer.
更优的,图2c为图2a中第四步骤的分解步骤的一个实例的示意图,图2c表明上述公式(9)等号右边的多项式的计算步骤可以划分为第1-4步。步骤1中的计算结果为一个数值;步骤2中的计算结果为一个数值;步骤3中的结果为一个向量;步骤4为一个向量减去另一个向量,相当于向量的加法运算。进一步,Ai+1 -1hi+1 H需要的Ai -1hi+1 H已经在步骤三中获得。More preferably, Fig. 2c is a schematic diagram of an example of the decomposition steps of the fourth step in Fig. 2a. Fig. 2c shows that the calculation steps of the polynomial on the right side of the above formula (9) can be divided into steps 1-4. step 1 The calculation result of is a value; in step 2 The calculation result of is a value; in step 3 The result of is a vector; step 4 is to subtract one vector from another vector, which is equivalent to the addition operation of vectors. Further, A i -1 h i+1 H required by A i +1 -1 h i +1 H has been obtained in step three.
可以看出,图2a的步骤四中和都是作为整体参与循环迭代计算的,为向量,为数值而不是向量或矩阵。因此,本发明实施例的内循环一中不涉及矩阵(或向量)的求逆运算,矩阵(或向量)的乘法运算大大减少,计算复杂度较低,计算量较小,计算速度较快,效率较高。It can be seen that in step 4 of Figure 2a and They are all involved in the iterative calculation of the loop as a whole, as a vector, as numbers rather than vectors or matrices. Therefore, the inner loop 1 of the embodiment of the present invention does not involve matrix (or vector) inversion operation, the multiplication operation of matrix (or vector) is greatly reduced, the calculation complexity is low, the calculation amount is small, and the calculation speed is fast. Higher efficiency.
从而得到当前(第i+1)数据层和各已计算(第1至i)数据层的组合对应的预编码矩阵,即第1至当前(第i+1)数据层的组合对应的预编码矩阵。Thus, the precoding matrix corresponding to the combination of the current (i+1) data layer and each calculated (1st to i) data layer is obtained, that is, the precoding matrix corresponding to the combination of the 1st to the current (i+1) data layer matrix.
当从确定出的用户配对集合中选择的数据层就是1至i+1个数据层时,得到(i+1)数据层所有用户的预编码向量,组成i+1个数据层的组合对应的预编码矩阵;i+1个数据层的组合对应的预编码矩阵中第j个数据层对应的(用户的)预编码向量为 When the data layers selected from the determined user pairing set are 1 to i+1 data layers, the precoding vectors of all users in the (i+1) data layer are obtained to form the corresponding combination of i+1 data layers Precoding matrix; the (user's) precoding vector corresponding to the jth data layer in the precoding matrix corresponding to the combination of i+1 data layers is
更优的,将当前数据层和各已计算数据层的组合对应的预编码矩阵中,当前数据层对应的求逆结果、分别与各已计算数据层和当前数据层的信道向量的共轭转置的乘积,例如当前数据层为第i+1数据层时,即为Ai+1 -1h1 H、…、Ai+1 -1hk H、Ai+1 -1hk+1 H、…、Ai+1 -1hi+1 H,作为当前数据层对应的第二类中间结果,存储到第二类缓存器(缓存器2)中,供确定包含后续数据层的数据层组合对应的预编码矩阵时使用,具体地供确定后续数据层的第二类中间结果时使用,进一步供确定后一个数据层的第二类中间结果时使用。More optimally, in the precoding matrix corresponding to the combination of the current data layer and each calculated data layer, the inversion result corresponding to the current data layer, and the conjugate conversion of the channel vectors of each calculated data layer and the current data layer respectively For example, when the current data layer is the i+1th data layer, it is A i+1 -1 h 1 H ,..., A i+1 -1 h k H , A i+1 -1 h k+ 1 H ,..., A i+1 -1 h i+1 H , as the second-type intermediate results corresponding to the current data layer, are stored in the second-type buffer (buffer 2) for determining the data that includes the subsequent data layer It is used when the data layer combines the corresponding precoding matrix, specifically used when determining the second-type intermediate result of the subsequent data layer, and further used when determining the second-type intermediate result of the subsequent data layer.
较佳地,可以采用存储器用于存储第一、二类中间结果。Preferably, a memory can be used to store the first and second types of intermediate results.
较佳地,存储器可以是缓存器或其他类型的存储器。Preferably, the memory may be a buffer or other types of memory.
较佳地,由于本发明可以在基站系统中的不同模块中实现,存储器根据本发明所在基站系统中的实现模块的不同,可以是不同类型的存储器。具体地,本发明可以在DSP芯片模块、MIPS核模块、或FPGA等模块实现。Preferably, since the present invention can be implemented in different modules in the base station system, the memory can be different types of memory according to the different implementation modules in the base station system where the present invention is located. Specifically, the present invention can be implemented in modules such as DSP chip modules, MIPS core modules, or FPGAs.
可以理解,直接利用预先存储的上述第一类中间结果和第二类中间结果,可以节省即时计算第一类中间结果和第二类中间结果的步骤,有利于节省运算量,提升计算速度和效率。It can be understood that directly using the above-mentioned first-type intermediate results and second-type intermediate results stored in advance can save the steps of instant calculation of the first-type intermediate results and the second-type intermediate results, which is conducive to saving computation and improving calculation speed and efficiency .
之后,根据迭代确定出的数据层的组合的预编码矩阵,确定出用户调度结果;根据该用户调度结果向对应的用户终端设备进行数据传输。数据层的组合选自备选多用户配对集合。Afterwards, a user scheduling result is determined according to the iteratively determined combined precoding matrix of the data layer; data transmission is performed to a corresponding user terminal device according to the user scheduling result. The combination of data layers is selected from a set of candidate multi-user pairings.
具体地,可以是使用根据迭代确定出的数据层的组合的预编码矩阵作为针对至少一个用户信道(分配给至少一个用户终端设备的信道)的数据传输时所使用的用户调度结果中的预编码矩阵。Specifically, it may be to use the combined precoding matrix of the data layer determined according to iterations as the precoding in the user scheduling result used for data transmission of at least one user channel (a channel allocated to at least one user terminal equipment) matrix.
可以是使用根据迭代确定出的数据层的组合的预编码矩阵为基础计算出的相应信干噪比确定的调制编码方案,作为针对至少一个用户信道的数据传输时所使用的用户调度结果中的调制编码方案。It may be a modulation and coding scheme determined by using a corresponding signal-to-interference-noise ratio calculated based on the combined precoding matrix of the data layer determined iteratively, as a user scheduling result used for data transmission of at least one user channel Modulation coding scheme.
可以是使用根据迭代确定出的数据层的组合的预编码矩阵为基础计算出的MU调度数据层数作为用户调度结果中的MU-MIMO传输数据层数。The number of MU scheduling data layers calculated based on the precoding matrix of the combination of data layers determined iteratively may be used as the number of MU-MIMO transmission data layers in the user scheduling result.
可以是使用根据迭代确定出的数据层的组合的预编码矩阵为基础计算出的MU-MIMO的配对用户信道,作为用户调度结果中的MU-MIMO传输的配对用户信道。The paired user channel of MU-MIMO calculated based on the precoding matrix of the combination of data layers determined iteratively may be used as the paired user channel of MU-MIMO transmission in the user scheduling result.
可以是使用根据迭代确定出的数据层的组合的预编码矩阵为基础计算出的其他与MU-MIMO传输相关的传输方式,作为用户调度结果中的其他传输方式。Other transmission modes related to MU-MIMO transmission calculated based on the precoding matrix of the combination of data layers determined iteratively may be used as other transmission modes in the user scheduling result.
根据该用户调度结果中的预编码矩阵、调制编码方案、MU-MIMO传输数据层数、MU-MIMO传输的配对用户信道、和/或其他传输方式,向对应的用户终端设备(用户信道)进行数据传输。According to the precoding matrix, modulation and coding scheme, MU-MIMO transmission data layer number, MU-MIMO transmission paired user channel, and/or other transmission modes in the user scheduling result, the corresponding user terminal equipment (user channel) is sent data transmission.
下面以基于ZF算法的预编码矩阵确定方法为例,对于选自备选多用户配对集合中的数据层的组合,具体介绍迭代确定出该数据层的组合的预编码矩阵的方法。Taking the precoding matrix determination method based on ZF algorithm as an example, for the combination of data layers selected from the candidate multi-user pairing set, the method of iteratively determining the precoding matrix of the data layer combination is specifically introduced.
具体地,主要介绍基于ZF算法的预编码矩阵确定方法与基于MMSE算法的预编码矩阵确定方法的不同之处。Specifically, the difference between the method for determining the precoding matrix based on the ZF algorithm and the method for determining the precoding matrix based on the MMSE algorithm is mainly introduced.
当采用破零算法确定预编码矩阵时,确定出各已计算数据层所对应的聚合信道矩阵的共轭转置与各已计算数据层所对应的聚合信道矩阵的乘积矩阵、与以小量做对角线元素的对角方阵的和矩阵的逆矩阵,作为已计算数据层所对应的求逆结果。When the zero-breaking algorithm is used to determine the precoding matrix, the product matrix of the conjugate transpose of the aggregated channel matrix corresponding to each calculated data layer and the aggregated channel matrix corresponding to each calculated data layer, and The inverse matrix of the diagonal sum matrix of diagonal elements, as the result of the inversion corresponding to the computed data layer.
ZF算法计算至少一个用户传输时的预编码矩阵公式如上述公式(1)所述,重复如下:The ZF algorithm calculates the precoding matrix formula when at least one user transmits as described in the above formula (1), and repeats as follows:
WZF=HH(HHH)-1………………………………………··(公式1)W ZF =H H (HH H ) -1 ………………………………………………………………………………………………………………………(Formula 1)
上述公式(1)中,HH表示矩阵H的共轭转置(hermit),A-1表示矩阵A的逆(inversion)。In the above formula (1), H H represents the conjugate transpose (hermit) of the matrix H, and A −1 represents the inversion of the matrix A (inversion).
通过在被求逆的矩阵中加入一项σ2I,使得By adding an item σ 2 I to the matrix being inverted, such that
WZF≈(σ2I+HHH)-1HH=WMMSE………………………··(公式10)W ZF ≈(σ 2 I+H H H) -1 H H =W MMSE ……………………… (Formula 10)
上述公式(2)中σ2为很小的一个数,I为单位矩阵,使得被求逆的矩阵HHH满秩。此时,求WZF转化为求WMMSE。In the above formula (2), σ 2 is a very small number, and I is an identity matrix, so that the inverse matrix H H H is full rank. At this time, calculating W ZF is transformed into calculating W MMSE .
接下来的具体操作步骤同上述基于MMSE算法的预编码矩阵确定方法相一致,此处不再赘述。The following specific operation steps are consistent with the above-mentioned method for determining the precoding matrix based on the MMSE algorithm, and will not be repeated here.
下面以基于SLNR算法的预编码矩阵确定方法为例,对于选自备选多用户配对集合中的数据层的组合,具体介绍迭代确定出该数据层的组合的预编码矩阵的方法。Taking the precoding matrix determination method based on the SLNR algorithm as an example, for the combination of data layers selected from the candidate multi-user pairing set, the method of iteratively determining the precoding matrix of the data layer combination is specifically introduced.
具体地,主要介绍基于SLNR算法的预编码矩阵确定方法与基于MMSE算法的预编码矩阵确定方法的不同之处。Specifically, the difference between the method for determining the precoding matrix based on the SLNR algorithm and the method for determining the precoding matrix based on the MMSE algorithm is mainly introduced.
当采用最小信漏噪声比SLNR算法确定预编码矩阵时,确定出各已计算数据层所对应的聚合信道矩阵的共轭转置与各已计算数据层所对应的聚合信道矩阵的乘积矩阵、与以干扰噪声功率值做对角线元素的对角方阵的和矩阵的逆矩阵,作为已计算数据层所对应的求逆结果。When the minimum signal-leakage-to-noise ratio SLNR algorithm is used to determine the precoding matrix, the product matrix of the conjugate transpose of the aggregated channel matrix corresponding to each calculated data layer and the aggregated channel matrix corresponding to each calculated data layer, and Use the interference noise power value as the inverse matrix of the sum matrix of the diagonal square matrix of the diagonal elements, as the inverse result corresponding to the calculated data layer.
SLNR算法计算假设至少一个用户传输时的预编码矩阵公式如上述公式(3)所述,重复如下:The SLNR algorithm calculation assumes that the precoding matrix formula when at least one user transmits is as described in the above formula (3), and is repeated as follows:
公式(3)中HH表示矩阵H的共轭转置(hermit),A-1表示矩阵A的逆(inversion),eigenvector(A)表示矩阵A的特征向量,max(.)表示求最大的元素,I为单位矩阵,σ为MMSE因子。In formula (3), H H represents the conjugate transpose (hermit) of matrix H, A -1 represents the inverse (inversion) of matrix A, eigenvector(A) represents the eigenvector of matrix A, and max(.) represents the maximum element, I is the identity matrix, and σ is the MMSE factor.
此时对于第k个用户,可以存在At this time, for the kth user, there can be
其中norm(.)表示向量归一化。等式(a)利用了SLNR的定义,等式(b)利用了矩阵求逆引理。对于特征值分解公式USVH=A,当矩阵A的秩为1时,A的第一列进行归一化后就得到了矩阵U的第一列,等式(c)利用了这一点。Where norm(.) represents vector normalization. Equation (a) utilizes the definition of SLNR, and equation (b) utilizes the matrix inversion lemma. For the eigenvalue decomposition formula USV H =A, when the rank of matrix A is 1, the first column of A is normalized to obtain the first column of matrix U, and the equation (c) takes advantage of this.
可以看出,SLNR与MMSE完全等效It can be seen that SLNR is completely equivalent to MMSE
接下来具体操作步骤同上述基于MMSE算法的预编码矩阵确定方法相一致,此处不再赘述。The following specific operation steps are consistent with the above-mentioned method for determining the precoding matrix based on the MMSE algorithm, and will not be repeated here.
基于上述基于用户调度的数据传输方法,本发明实施例提供了一种基于用户调度的数据传输装置,该装置的内部结构的框架示意图如图3所示,包括:数据层组合确定模块301、预编码矩阵确定模块302和调度传输模块303。Based on the above data transmission method based on user scheduling, an embodiment of the present invention provides a data transmission device based on user scheduling. The frame diagram of the internal structure of the device is shown in FIG. A coding matrix determination module 302 and a scheduling transmission module 303 .
其中,数据层组合确定模块301用于基于获取的用户终端设备的信息,从备选多用户配对集合中确定出对应的数据层的组合。Wherein, the data layer combination determining module 301 is configured to determine a corresponding data layer combination from the candidate multi-user pairing set based on the acquired information of the user terminal equipment.
预编码矩阵确定模块302用于迭代确定出数据层的组合的预编码矩阵。The precoding matrix determining module 302 is configured to iteratively determine the combined precoding matrix of the data layers.
调度传输模块303用于根据预编码矩阵确定用户调度结果,并根据用户调度结果向对应的用户终端设备进行数据传输。The scheduling transmission module 303 is configured to determine the user scheduling result according to the precoding matrix, and perform data transmission to the corresponding user terminal equipment according to the user scheduling result.
较佳地,用户终端设备的信息,包括下述至少一项:信道状态信息、重传反馈信息、业务相关信息。Preferably, the information of the user terminal equipment includes at least one of the following: channel state information, retransmission feedback information, and service-related information.
较佳地,预编码矩阵确定模块302具体用于每个外循环迭代过程中,基于当前数据层的信道向量、和各已计算数据层的组合对应的预编码矩阵,确定出各已计算数据层和当前数据层的组合对应的预编码矩阵;直到外循环的次数大于从备选多用户配对集合中确定出的对应数据层的个数,结束外循环;其中,已计算数据层为已参与过预编码矩阵确定的数据层。Preferably, the precoding matrix determination module 302 is specifically used in each outer loop iteration process, based on the channel vector of the current data layer and the precoding matrix corresponding to the combination of each calculated data layer, to determine the calculated data layer The precoding matrix corresponding to the combination of the current data layer; until the number of times of the outer loop is greater than the number of corresponding data layers determined from the candidate multi-user pairing set, the outer loop is ended; wherein, the calculated data layer is already participated in The data layer determined by the precoding matrix.
较佳地,预编码矩阵确定模块302具体用于利用内循环一,根据指定的求逆结果与当前数据层的信道向量的共轭转置的乘积,迭代确定出最后一个已计算数据层对应的求逆结果与当前数据层的信道向量的共轭转置的乘积;进而确定出乘积与当前数据层的信道向量相乘后加一的倒数;最后一个已计算数据层为与当前数据层相邻且靠前一个的数据层;利用内循环二,根据当前数据层涉及的乘积和倒数,以及最后一个已计算数据层对应的求逆结果、分别与各已计算数据层的信道向量的共轭转置的乘积,确定出当前数据层对应的求逆结果、分别与各已计算数据层和当前数据层的信道向量的共轭转置的乘积,作为当前数据层和各已计算数据层的组合对应的预编码矩阵。Preferably, the precoding matrix determination module 302 is specifically configured to use the inner loop one to iteratively determine the corresponding The product of the inverse result and the conjugate transpose of the channel vector of the current data layer; then determine the reciprocal of the product multiplied by the channel vector of the current data layer and then add one; the last calculated data layer is adjacent to the current data layer and the previous data layer; using inner loop 2, according to the product and reciprocal involved in the current data layer, and the inversion result corresponding to the last calculated data layer, and the conjugate conversion of the channel vector of each calculated data layer The product of the position, determine the inversion result corresponding to the current data layer, and the product of the conjugate transpose of the channel vector of each calculated data layer and the current data layer respectively, as the combined correspondence of the current data layer and each calculated data layer The precoding matrix of .
较佳地,预编码矩阵确定模块302具体用于在内循环一中第一次迭代过程中,根据指定的初始求逆结果和当前数据层的信道向量的共轭转置的乘积,确定出第一个已计算数据层对应的求逆结果与当前数据层的信道向量的共轭转置的乘积;在内循环一中后续的每个迭代过程中,对于每个已计算数据层,根据前一个已计算数据层对应的求逆结果与当前数据层的信道向量的共轭转置的乘积,确定出该已计算数据层对应的求逆结果与当前数据层的信道向量的共轭转置的乘积;直到确定出最后一个已计算数据层对应的求逆结果与当前数据层的信道向量的共轭转置的乘积,结束内循环一。Preferably, the precoding matrix determination module 302 is specifically configured to determine the first iteration according to the product of the specified initial inversion result and the conjugate transpose of the channel vector of the current data layer during the first iteration of the inner loop one. The product of the inversion result corresponding to a calculated data layer and the conjugate transpose of the channel vector of the current data layer; in each subsequent iteration in inner loop 1, for each calculated data layer, according to the previous The product of the inverse result corresponding to the calculated data layer and the conjugate transpose of the channel vector of the current data layer is determined, and the product of the inverse result corresponding to the calculated data layer and the conjugate transpose of the channel vector of the current data layer is determined ; Until the product of the inversion result corresponding to the last calculated data layer and the conjugate transpose of the channel vector of the current data layer is determined, the inner loop one is ended.
较佳地,预编码矩阵确定模块302具体用于根据前一个已计算数据层对应的求逆结果与当前数据层的信道向量的共轭转置的乘积,以及预存的各已计算数据层各自的第一类中间结果,确定出该已计算数据层对应的求逆结果与当前数据层的信道向量的共轭转置的乘积;其中,每个已计算数据层的第一类中间结果,包括:前一个已计算数据层对应的求逆结果与该已计算数据层的信道向量的共轭转置的乘积,和前一个已计算数据层对应的求逆结果、与该已计算数据层的信道向量及其共轭转置相乘后加一的倒数。Preferably, the precoding matrix determination module 302 is specifically configured to use the product of the inversion result corresponding to the previous calculated data layer and the conjugate transpose of the channel vector of the current data layer, and the respective pre-stored calculated data layers The first type of intermediate result determines the product of the inversion result corresponding to the calculated data layer and the conjugate transpose of the channel vector of the current data layer; wherein, the first type of intermediate result of each calculated data layer includes: The product of the inverse result corresponding to the previous calculated data layer and the conjugate transpose of the channel vector of the calculated data layer, and the inverse result corresponding to the previous calculated data layer, and the channel vector of the calculated data layer The reciprocal of multiplied by its conjugate transpose plus one.
较佳地,预编码矩阵确定模块302具体用于针对第k+1已计算数据层,根据作为前一个已计算数据层的第k数据层对应的求逆结果Ak -1、与作为当前数据层的第i+1数据层的信道向量的共轭转置的乘积以及前一个已计算数据层对应的求逆结果Ak -1与该已计算数据层的信道向量的共轭转置的乘积和前一个已计算数据层对应的求逆结果Ak -1、与该已计算数据层的信道向量hk+1及其共轭转置相乘后加一的倒数利用上述公式(7)确定出该已计算数据层对应的求逆结果Ak+1 -1与当前数据层的信道向量的共轭转置的乘积公式(7)中是预先确定的;k+1的取值范围为1至i。Preferably, the precoding matrix determination module 302 is specifically configured to, for the k+1th calculated data layer, according to the inversion result A k -1 corresponding to the kth data layer as the previous calculated data layer, and the current data The conjugate transpose of the channel vector of the i+1th data layer of the layer the product of And the conjugate transpose of the inversion result A k -1 corresponding to the previous calculated data layer and the channel vector of the calculated data layer the product of The inversion result A k -1 corresponding to the previous calculated data layer, the channel vector h k+1 of the calculated data layer and its conjugate transpose Reciprocal of multiplication plus one Use the above formula (7) to determine the conjugate transposition of the inversion result A k+1 -1 corresponding to the calculated data layer and the channel vector of the current data layer the product of In formula (7) is predetermined; the range of k+1 is 1 to i.
较佳地,预编码矩阵确定模块302具体用于根据作为当前数据层的第i+1数据层的乘积和倒数以及作为最后一个已计算数据层的第i数据层对应的求逆结果Ai -1分别与各已计算数据层和当前数据层中任一数据层的信道向量的共轭转置的乘积利用上述公式(9),确定出当前数据层对应的求逆结果Ai+1 -1、分别与各已计算数据层和当前数据层中任意数据层的信道向量的共轭转置的乘积公式(9)中为预先确定的;j的取值范围为1至i+1。Preferably, the precoding matrix determination module 302 is specifically configured to use and countdown And the conjugate transposition of the inversion result A i -1 corresponding to the i-th data layer as the last calculated data layer and the channel vector of each calculated data layer and any data layer in the current data layer the product of Using the above formula (9), determine the inversion result A i+1 -1 corresponding to the current data layer, and the conjugate transpose of the channel vector of each calculated data layer and any data layer in the current data layer respectively the product of In formula (9) is predetermined; the value range of j is from 1 to i+1.
较佳地,预编码矩阵确定模块302还用于将通过内循环一确定出的当前数据层涉及的乘积和倒数,作为当前数据层的第一类中间结果进行存储,供确定后续数据层的第一类中间结果时使用;将通过内循环二确定出的当前数据层对应的求逆结果、分别与各已计算数据层和当前数据层的信道向量的共轭转置的乘积,作为当前数据层的第二类中间结果进行存储,供确定后续数据层的第二类中间结果时使用。Preferably, the precoding matrix determination module 302 is also used to store the product and reciprocal involved in the current data layer determined by the inner loop one as the first type of intermediate result of the current data layer, for determining the first type of intermediate results of the subsequent data layer. Used for a class of intermediate results; the product of the inversion result corresponding to the current data layer determined by the inner loop 2, and the conjugate transpose of each calculated data layer and the channel vector of the current data layer is used as the current data layer The intermediate results of the second type are stored for use when determining the intermediate results of the second type in the subsequent data layer.
较佳地,预编码矩阵确定模块302还用于根据确定预编码矩阵时所采用的算法,确定出已计算数据层所对应的求逆结果的类型。Preferably, the precoding matrix determining module 302 is further configured to determine the type of the inversion result corresponding to the calculated data layer according to the algorithm adopted when determining the precoding matrix.
较佳地,预编码矩阵确定模块302具体用于当采用破零算法确定预编码矩阵时,确定出各已计算数据层所对应的聚合信道矩阵的共轭转置与各已计算数据层所对应的聚合信道矩阵的乘积矩阵、与以小量做对角线元素的对角方阵的和矩阵的逆矩阵,作为已计算数据层所对应的求逆结果;当采用最小均方误差算法、或最小信漏噪声比算法确定预编码矩阵时,确定出各已计算数据层所对应的聚合信道矩阵的共轭转置与各已计算数据层所对应的聚合信道矩阵的乘积矩阵、与以干扰噪声功率值做对角线元素的对角方阵的和矩阵的逆矩阵,作为已计算数据层所对应的求逆结果。Preferably, the precoding matrix determination module 302 is specifically configured to determine that the conjugate transpose of the aggregated channel matrix corresponding to each calculated data layer corresponds to each calculated data layer when the zero-breaking algorithm is used to determine the precoding matrix. The product matrix of the aggregate channel matrix of , and the inverse matrix of the sum matrix of the diagonal square matrix with a small number of diagonal elements, as the inversion result corresponding to the calculated data layer; when using the minimum mean square error algorithm, or When the minimum signal-to-leakage-to-noise ratio algorithm determines the precoding matrix, determine the product matrix of the conjugate transpose of the aggregated channel matrix corresponding to each calculated data layer and the aggregated channel matrix corresponding to each calculated data layer, and the interference noise The power value is used as the inverse matrix of the diagonal square matrix of the diagonal elements and the matrix, as the inverse result corresponding to the calculated data layer.
上述数据层组合确定模块301、预编码矩阵确定模块302和调度传输模块303功能的实现方法,可以参数上述基于用户调度的数据传输方法的具体内容,此处不再赘述。The methods for realizing the functions of the data layer combination determination module 301, the precoding matrix determination module 302, and the scheduling transmission module 303 may refer to the specific content of the data transmission method based on user scheduling, and will not be repeated here.
图4为现有的预编码矩阵确定方法与本发明中的预编码矩阵确定方法进行对比实验的一个实例的示意图。Fig. 4 is a schematic diagram of an example of a comparative experiment between the existing method for determining a precoding matrix and the method for determining a precoding matrix in the present invention.
假定基站天线数目为NT,当计算选自备选多用户配对集合的数据层组合中第i层数据层的配对时,使用最常用的Cholesky分解法的预编码算法,需要大概2i(i2-1)/3+(6i2+2i)NT次实数乘法。Cholesky分解法对应的实数乘法的次数,与数据层数之间存在2-3次方的关系。Assuming that the number of base station antennas is N T , when calculating the pairing of the i-th data layer in the data layer combination selected from the candidate multi-user pairing set, using the most commonly used precoding algorithm of the Cholesky decomposition method requires about 2i(i 2 -1)/3+(6i 2 +2i)N T times real number multiplication. There is a 2-3 power relationship between the number of real number multiplications corresponding to the Cholesky decomposition method and the number of data layers.
而本发明对应的复杂度大约为(16i-8)NT次实数乘法,实数乘法的次数与数据层数之间是线性关系。可见本发明,相比于基于Cholesky分解法的技术方案,确定预编码矩阵的复杂度大大降低。However, the corresponding complexity of the present invention is approximately (16i-8) N T times of real number multiplications, and the number of real number multiplications is linearly related to the number of data layers. It can be seen that in the present invention, compared with the technical solution based on the Cholesky decomposition method, the complexity of determining the precoding matrix is greatly reduced.
图4所示为64个发送天线和16个数据层的基站采用Cholesky分解法和本方案的方法的矩阵(向量)之间的乘法数目对比。在确定出第一层数据层对应的预编码矩阵的过程中,本方案能降低11.3%的复杂度,当计算至共16层数据层时,本方案能降低78.3%的复杂度,效果非常明显。Fig. 4 shows the comparison of the number of multiplications between the matrices (vectors) of the base station with 64 transmitting antennas and 16 data layers using the Cholesky decomposition method and the method of this solution. In the process of determining the precoding matrix corresponding to the first data layer, this scheme can reduce the complexity by 11.3%. When calculating to a total of 16 data layers, this scheme can reduce the complexity by 78.3%. The effect is very obvious .
本技术领域技术人员可以理解,本发明包括涉及用于执行本申请中所述操作中的一项或多项的设备。这些设备可以为所需的目的而专门设计和制造,或者也可以包括通用计算机中的已知设备。这些设备具有存储在其内的计算机程序,这些计算机程序选择性地激活或重构。这样的计算机程序可以被存储在设备(例如,计算机)可读介质中或者存储在适于存储电子指令并分别耦联到总线的任何类型的介质中,所述计算机可读介质包括但不限于任何类型的盘(包括软盘、硬盘、光盘、CD-ROM、和磁光盘)、ROM(Read-Only Memory,只读存储器)、RAM(Random Access Memory,随即存储器)、EPROM(Erasable ProgrammableRead-Only Memory,可擦写可编程只读存储器)、EEPROM(Electrically ErasableProgrammable Read-Only Memory,电可擦可编程只读存储器)、闪存、磁性卡片或光线卡片。也就是,可读介质包括由设备(例如,计算机)以能够读的形式存储或传输信息的任何介质。Those skilled in the art will appreciate that the present invention includes devices related to performing one or more of the operations described in this application. These devices may be specially designed and fabricated for the required purposes, or they may include known devices found in general purpose computers. These devices have computer programs stored therein that are selectively activated or reconfigured. Such a computer program can be stored in a device (e.g., computer) readable medium, including but not limited to any type of medium suitable for storing electronic instructions and respectively coupled to a bus. Types of disks (including floppy disks, hard disks, CDs, CD-ROMs, and magneto-optical disks), ROM (Read-Only Memory, read-only memory), RAM (Random Access Memory, random memory), EPROM (Erasable Programmable Read-Only Memory, Erasable Programmable Read-Only Memory), EEPROM (Electrically Erasable Programmable Read-Only Memory, Electrically Erasable Programmable Read-Only Memory), flash memory, magnetic card or optical card. That is, a readable medium includes any medium that stores or transmits information in a form readable by a device (eg, a computer).
本技术领域技术人员可以理解,可以用计算机程序指令来实现这些结构图和/或框图和/或流图中的每个框以及这些结构图和/或框图和/或流图中的框的组合。本技术领域技术人员可以理解,可以将这些计算机程序指令提供给通用计算机、专业计算机或其他可编程数据处理方法的处理器来实现,从而通过计算机或其他可编程数据处理方法的处理器来执行本发明公开的结构图和/或框图和/或流图的框或多个框中指定的方案。Those skilled in the art will understand that computer program instructions can be used to implement each block in these structural diagrams and/or block diagrams and/or flow diagrams and combinations of blocks in these structural diagrams and/or block diagrams and/or flow diagrams . Those skilled in the art can understand that these computer program instructions can be provided to general-purpose computers, professional computers, or processors of other programmable data processing methods for implementation, so that the computer or processors of other programmable data processing methods can execute the present invention. A scheme specified in a block or blocks of a structure diagram and/or a block diagram and/or a flow diagram of the invention disclosure.
本技术领域技术人员可以理解,本发明中已经讨论过的各种操作、方法、流程中的步骤、措施、方案可以被交替、更改、组合或删除。进一步地,具有本发明中已经讨论过的各种操作、方法、流程中的其他步骤、措施、方案也可以被交替、更改、重排、分解、组合或删除。进一步地,现有技术中的具有与本发明中公开的各种操作、方法、流程中的步骤、措施、方案也可以被交替、更改、重排、分解、组合或删除。Those skilled in the art can understand that the various operations, methods, and steps, measures, and solutions in the processes discussed in the present invention can be replaced, changed, combined, or deleted. Further, other steps, measures, and schemes in the various operations, methods, and processes that have been discussed in the present invention may also be replaced, changed, rearranged, decomposed, combined, or deleted. Further, steps, measures, and schemes in the prior art that have operations, methods, and processes disclosed in the present invention can also be alternated, changed, rearranged, decomposed, combined, or deleted.
以上所述仅是本发明的部分实施方式,应当指出,对于本技术领域的普通技术人员来说,在不脱离本发明原理的前提下,还可以做出若干改进和润饰,这些改进和润饰也应视为本发明的保护范围。The above descriptions are only part of the embodiments of the present invention. It should be pointed out that those skilled in the art can make some improvements and modifications without departing from the principles of the present invention. It should be regarded as the protection scope of the present invention.
Claims (13)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201710087367.5A CN108462518A (en) | 2017-02-17 | 2017-02-17 | Data transmission method and device based on user's scheduling |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201710087367.5A CN108462518A (en) | 2017-02-17 | 2017-02-17 | Data transmission method and device based on user's scheduling |
Publications (1)
Publication Number | Publication Date |
---|---|
CN108462518A true CN108462518A (en) | 2018-08-28 |
Family
ID=63228919
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201710087367.5A Pending CN108462518A (en) | 2017-02-17 | 2017-02-17 | Data transmission method and device based on user's scheduling |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN108462518A (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN111954306A (en) * | 2020-07-08 | 2020-11-17 | 北京瀚诺半导体科技有限公司 | Hybrid transmission method and system based on time slot and packet scheduling |
CN112311430A (en) * | 2019-07-23 | 2021-02-02 | 三星电子株式会社 | Method for generating precoder in multi-user multiple-input and multiple-output communication system |
-
2017
- 2017-02-17 CN CN201710087367.5A patent/CN108462518A/en active Pending
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN112311430A (en) * | 2019-07-23 | 2021-02-02 | 三星电子株式会社 | Method for generating precoder in multi-user multiple-input and multiple-output communication system |
CN112311430B (en) * | 2019-07-23 | 2024-09-03 | 三星电子株式会社 | Method for generating precoder in multi-user multiple input and multiple output communication system |
CN111954306A (en) * | 2020-07-08 | 2020-11-17 | 北京瀚诺半导体科技有限公司 | Hybrid transmission method and system based on time slot and packet scheduling |
CN111954306B (en) * | 2020-07-08 | 2024-02-27 | 北京瀚诺半导体科技有限公司 | Hybrid transmission method and system based on time slot and packet scheduling |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US8098755B2 (en) | Method and system for beamforming in a multiple user multiple input multiple output (MIMO) communication system using a codebook | |
CN102308508B (en) | Adaptive precoding codebooks for wireless communications | |
WO2019096071A1 (en) | Communication method, communication apparatus, and system | |
CN102546088B (en) | A kind of block diagonalization method for precoding and device | |
TWI406523B (en) | Method and system for codebook design of mimo pre-coders with finite rate channel state information feedback | |
CN106603130B (en) | Digital-analog hybrid precoding method in large-scale MIMO system | |
CN107332596B (en) | Zero forcing-based millimeter wave communication system hybrid precoding method | |
JP5620521B2 (en) | Channel state information feedback method and system | |
US20220385343A1 (en) | Information transmission method and apparatus | |
JP5274664B2 (en) | Method for precoding a signal for transmission in a wireless MIMO system | |
CN114642019A (en) | Method for acquiring channel information | |
CN111865377A (en) | Method for indicating and determining precoding matrix and communication device | |
Jamali et al. | A low-complexity recursive approach toward code-domain NOMA for massive communications | |
CN111757382B (en) | Method for indicating channel state information and communication device | |
CN107809275A (en) | A kind of Limited Feedback mixing method for precoding based on millimeter wave mimo system | |
CN107707284B (en) | A Hybrid Precoding Method Based on Channel Statistics Codebook Quantization Feedback | |
CN101695008A (en) | Multi-user multi-antenna two-stage limited feedback method | |
CN102647220B (en) | MIMO (multiple input multiple output) precoding control method based on lattice-basis reduction | |
CN105743559A (en) | Hybrid beam-forming and space-time coding multi-user downlink transmission method in Massive MIMO (Multiple Input Multiple Output) system | |
CN109039402B (en) | User Compression Based Interference Alignment Method for MIMO Topology | |
CN101854234A (en) | MIMO system and its downlink optimization method | |
WO2017059448A1 (en) | System and method for resolving channel sparsity in multiple-input multiple-output systems using (re)configurable antennas | |
CN107659348B (en) | SLNR and THP mixed adaptive precoding design method | |
CN108462518A (en) | Data transmission method and device based on user's scheduling | |
CN108667490A (en) | A kind of channel state information feedback method and device |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
WD01 | Invention patent application deemed withdrawn after publication |
Application publication date: 20180828 |
|
WD01 | Invention patent application deemed withdrawn after publication |