CN108458932B - 一种利用电磁感应技术测量砂砾料动态三轴试样局部变形的方法 - Google Patents

一种利用电磁感应技术测量砂砾料动态三轴试样局部变形的方法 Download PDF

Info

Publication number
CN108458932B
CN108458932B CN201810375957.2A CN201810375957A CN108458932B CN 108458932 B CN108458932 B CN 108458932B CN 201810375957 A CN201810375957 A CN 201810375957A CN 108458932 B CN108458932 B CN 108458932B
Authority
CN
China
Prior art keywords
sample
lead ring
loop coil
test
measurement
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201810375957.2A
Other languages
English (en)
Other versions
CN108458932A (zh
Inventor
邹德高
季晓檬
桑勇
赵健龙
周晨光
刘京茂
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dalian University of Technology
Original Assignee
Dalian University of Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dalian University of Technology filed Critical Dalian University of Technology
Priority to CN201810375957.2A priority Critical patent/CN108458932B/zh
Publication of CN108458932A publication Critical patent/CN108458932A/zh
Application granted granted Critical
Publication of CN108458932B publication Critical patent/CN108458932B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N3/00Investigating strength properties of solid materials by application of mechanical stress
    • G01N3/08Investigating strength properties of solid materials by application of mechanical stress by applying steady tensile or compressive forces
    • G01N3/10Investigating strength properties of solid materials by application of mechanical stress by applying steady tensile or compressive forces generated by pneumatic or hydraulic pressure
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N1/00Sampling; Preparing specimens for investigation
    • G01N1/28Preparing specimens for investigation including physical details of (bio-)chemical methods covered elsewhere, e.g. G01N33/50, C12Q
    • G01N1/286Preparing specimens for investigation including physical details of (bio-)chemical methods covered elsewhere, e.g. G01N33/50, C12Q involving mechanical work, e.g. chopping, disintegrating, compacting, homogenising
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2203/00Investigating strength properties of solid materials by application of mechanical stress
    • G01N2203/0014Type of force applied
    • G01N2203/0016Tensile or compressive
    • G01N2203/0019Compressive
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2203/00Investigating strength properties of solid materials by application of mechanical stress
    • G01N2203/003Generation of the force
    • G01N2203/0042Pneumatic or hydraulic means
    • G01N2203/0048Hydraulic means
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2203/00Investigating strength properties of solid materials by application of mechanical stress
    • G01N2203/02Details not specific for a particular testing method
    • G01N2203/022Environment of the test
    • G01N2203/023Pressure
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2203/00Investigating strength properties of solid materials by application of mechanical stress
    • G01N2203/02Details not specific for a particular testing method
    • G01N2203/026Specifications of the specimen
    • G01N2203/0262Shape of the specimen
    • G01N2203/0266Cylindrical specimens
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2203/00Investigating strength properties of solid materials by application of mechanical stress
    • G01N2203/02Details not specific for a particular testing method
    • G01N2203/06Indicating or recording means; Sensing means
    • G01N2203/0617Electrical or magnetic indicating, recording or sensing means
    • G01N2203/0635Electrical or magnetic indicating, recording or sensing means using magnetic properties
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2203/00Investigating strength properties of solid materials by application of mechanical stress
    • G01N2203/02Details not specific for a particular testing method
    • G01N2203/06Indicating or recording means; Sensing means
    • G01N2203/067Parameter measured for estimating the property
    • G01N2203/0682Spatial dimension, e.g. length, area, angle

Landscapes

  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Investigating Strength Of Materials By Application Of Mechanical Stress (AREA)

Abstract

一种利用电磁感应技术测量砂砾料动态三轴试样局部变形的方法属于土工试验技术领域。该方法采用电磁感应原理,基于中型三轴试验仪测量三轴试样体内部局部变形,试验设备中的颗粒状磁体位于试样体内部;环形线圈置于压力室内部,围绕试样体;线圈外接信号放大器、滤波器、电压积分器。方法包括:采用中型三轴试验仪中常规试验方法制备试样,埋置磁体,完成试样成型;安装架设线圈等设备;对试样进行安装、通气、饱和、固结,与加载装置连接;在试验加压情况下,对量测装置进行标定后进行试验,获取试验数据。本发明结构合理、装配简单、试验操作方便并能够减小试验过程中对试样的干扰,同时又能够准确测量砂砾料三轴试样内部感兴趣局部变形的方法。

Description

一种利用电磁感应技术测量砂砾料动态三轴试样局部变形的 方法
技术领域
本发明属于土工试验技术领域,涉及土工三轴试验试样局部应变的测量方法,尤其涉及一种利用电磁感应技术测量砂砾料动态三轴试样局部变形的方法。
背景技术
在砂砾料动态三轴试验工程中,由于刚性试样帽和底座与试样之间存在摩擦力,限制试样的端部轴向和侧向变形的发展,而试样的中间部分不受此摩擦力的约束,随着试验的进行,试样或是被压成鼓形或是被挤成颈状形,试样整体轴向应变发展不够均匀。同时,在试验过程中,试样加载杆与试样帽之间以及试样两端的试样帽、透水石、滤纸和试样之间的接触面会产生压密变形,这种变形叠加到试样的变形上必然会影响轴向变形测量结果的准确性和可信度。在一般三轴试验中,使用外置位移计测量其应变发展,测量试样平均应变值,由于各局部应变是不一致,使用平均应变值作为参考量是不合理的。由于试样中部是不受到端部效应的影响,且试样中部的受力状态与实际工程中土体单元受力状态更为一致,因此需要精确地测量试样中部各局部的轴向变形。
目前,很多学者针对局部变形测量的方法做了相关研究,主要采用两类测量方法:接触式测量和非接触式测量。接触式测量方法可采用直线位移传感器(LVDT)、悬臂式局部位移计(Cantilever-LDT)、局部位移计(LDT)等;非接触式测量方法一般采用激光量测系统(PSD)、数字图像测量技术(PIV)等。
接触式测量主要是在试样体表面布置局部位移计、应变片或者激光装置,进行直接测量。非接触式测量主要是采用图像测量技术,测量试样体表面场局部应变。以上两种测试方法均存在各自的缺陷与不足,接触式测量需要在试样体表面相应位置安装一定数量位移计,应变片等,来测量该部位的变形,在试验过程一定程度上干扰试样变形的发展,通常是不适用在试样发生大变形的场合。同时,由于动态试验情况下对测试设备会有扰动,测量准确性和精度会受到影响。非接触式测量在试验过程中不会对试样体产生干扰,但是非接触式测量是利用图像分析试样表面应变的发展状况,由于试样体表面颗粒与乳胶膜之间存在摩擦错位的现象,因而表面应变发展与实际试样体内部应变发展不一致,测量准确性和精度存在一定的不确定性。
由此可见,目前亟需一种不影响试样应变变化,又能准确测量试样内部局部应变的方法。
发明内容
本发明的目的在于克服现有技术和方法的缺点和不足,提供一种结构合理、装配简单、试验操作方便并能够减小试验过程中对试样的干扰,同时又能够准确测量砂砾料三轴试样内部感兴趣局部变形的方法,该方法解决了砂砾料动态三轴试验试样体内部局部应变测量的难题及加水加压条件下设备适用性的难题。
为了达到上述目的,本发明的技术方案为:
一种利用电磁感应技术测量砂砾料动态三轴试样局部变形的方法,包括以下步骤:
(1)采用中型三轴试验仪,按《土工试验规程》(SL237-1999)中常规试验方法制备试样9,在需测量局部上端埋置颗粒状磁体A7,下端埋置颗粒状磁体B14,完成试样9成型。
(2)安装架设可调节环形线圈位置系统A、B等设备。
(3)按《土工试验规程》(SL237-1999)中常规试验方法对试样9进行安装,通气,饱和,固结,连接好加载装置。
(4)在试验加压情况下,对量测装置进行标定。
(5)进行试验,获取试验数据。
与现有技术相比,本发明的有益效果是:
(1)非接触式的测量,不会扰动试样体:该测量方法所需设备简单易得,安装测试过程简单易行,外置线圈与采集设备构造简单,对试样体本身不会产生干扰。试验采用磁体尺寸与所用土料颗粒尺寸相当,形似于土体颗粒,加入试样体中,不会影响试样体基本变形特性;同时,磁体埋置部位灵活,可以根据需要测量部位进行埋置,埋置方法简单,无需额外设备。
(2)由于磁体埋置位置是在试样体内部,可以直接测量试样体内部局部变形(一般外置传感器或者图像处理方法都是测量表面场的变形)。
(3)装置标定过程在压力室内部加水加压条件下进行,设备防水耐压,不受试验条件限制,标定结果更为可靠。后期针对所获取的数据,计算位移及应变的方法简单,不需要额外的复杂算法,减少后处理工作量。
(4)测量变形的范围较大,大变形测量也适用:本发明精度较高,不仅适用于小变形的测量还适用于大变形的测量,动态试验的频率不会对数据采集产生影响,适用性更广,为砂砾料动态试验局部变形的测量提供了准确、高效的方法,推动了土力学及砂砾料变形特性研究的发展,具有良好的推广价值。
附图说明
图1是试验装置正视图。
图2是试样测量装置剖面图。
图3是试样测量装置及该方法基本原理图。
图4是试验用料级配图。
图5是平均轴向应变与局部轴向应变时程曲线对比图。
图中:1连接轴;2中型三轴仪压力室上盘;3丝杠A;4螺母A;5导环A;6环形线圈A;7颗粒状磁体A;8导环B;9试样;10丝杠B;11螺母B;12导环C;13环形线圈B;14颗粒状磁体B;15导环D;16试样帽;17试样底座;18压力室柱A;19压力室柱B;20压力室柱C;21信号放大器;22滤波器;23电压积分器;24电脑。
具体实施方式
以下结合具体实施例对本发明做进一步说明。
一种利用电磁感应技术测量砂砾料动态三轴试样局部变形的方法,该方法采用的基本原理是电磁感应原理,基于中型三轴试验仪测量三轴试样体内部局部变形。
该方法基于的电磁感应原理简单介绍如下:电磁感应原理:闭合电路在磁场里做切割磁感线的运动时,电路中就会产生感应电动势,产生的感应电动势称为感应电压。
计算电动势,如公式(1)所示:
E=B·L·v (1)
其中,B表示磁场强度,由于使用磁场强度较大,且在测量过程中,位移相对较小,可以认为磁场强度为定值;L为线圈的长度(闭合电路的长度);v表示颗粒状磁体移动的速度(实际表示试验内部应变发展的速度);E表示感应电动势,即电压值。
由获取电压信号,经电压积分器获得位移信号,电压积分器处理原理如公式(2)(3)所示:
其中,B表示磁场强度,由于使用磁场强度较大,且在测量过程中,位移相对较小,可以认为磁场强度为定值;L为线圈的长度(闭合电路的长度);v表示颗粒状磁体移动的速度(实际表示试验内部应变发展的速度);E表示感应电动势,即电压值;S(t)表示位移;t0、t1表示时间点;v(t)表示速度,与上述颗粒状磁体移动速度相同。
该方法基于中型三轴试验仪实现,包括:两套可调节移动式环形线圈系统A、B,颗粒状磁体A7、颗粒状磁体B14、信号放大器21、滤波器22、电压积分器23、电脑24。
一种利用电磁感应技术测量砂砾料动态三轴试样局部变形的方法包括以下步骤:
(1)采用中型三轴试验设备,按《土工试验规程》(SL237-1999)中常规试验方法制备三轴试样9。本实施例采用砂砾料完成相关试验,砂砾料级配如图4所示。本实施例采用分层湿击法制备试样9,试样9整体分层,根据需要测试局部的位置,设置层数,根据经验,至少设置为6层(本实施例中设置六层),逐层击实,每一层高度一致,根据试验规程称取每一层所需土料,依次击实第一层、第二层,击实至指定高度后,使用刮刀将顶部刮毛,在中心处放置颗粒状磁体B14,使其半嵌入土层中,继续加入第三层土料,继续击实,至第四层击实完毕,使用前述方法安置颗粒状磁体A7,继续击实剩余土料,至整个试样9击实完毕。
(2)在压力室柱A18从上至下架设导环A5和导环D15,压力室柱B19从上至下架设导环B8和导环C12;将导环A5与导环B8置于同一水平面,将环形线圈A6与导环A5和导环B8连接;将导环C12和导环D15置于同一水平面,将环形线圈B13与导环C12和导环D15连接。将丝杠A5和丝杠B10上端锚固在中型三轴仪压力室上盘2指定位置,通过螺母A4将导环A5、导环B8和环形线圈A6组合体锚固在丝杠A3下端,旋拧螺母A4,移动上述组合体,将组合体置于试样帽上方;通过螺母B11将导环C12、导环D15和环形线圈B13组合体锚固在丝杠B10下端,旋拧螺母B11,将组合体置于试样帽上方。将环形线圈A6和环形线圈B13依次与信号放大器21、滤波器22、电压积分器23、电脑24连接,完成量测设备组装。信号放大器21将采集获取的电压值信号进行放大处理,滤波器22是对信号中的噪声进行有效滤除,得到一个特定频率的电压信号;电压积分器23是对电压信号(速度信号)进行积分处理得到位移信号。
(3)按《土工试验规程》(SL237-1999)中常规试验方法对试样9进行安装。将试样9放置于底座17上,在试样9上端安置试样帽16,绑扎乳胶膜,完成试样安装。
(4)根据试样体内颗粒状磁体A7和颗粒状磁体B14的具体位置,旋拧螺母A4,移动导环A5、导环B8和环形线圈A6组合体,使环形线圈A6中心位置与颗粒状磁体A7位置重合,拧紧螺母A4,限定环形线圈A6位置;旋拧螺母B11,移动导环C12、导环D15和环形线圈B13组合体,使环形线圈B13中心位置与颗粒状磁体B14位置重合,拧紧螺母B12,限定环形线圈B14位置。
(5)按《土工试验规程》(SL237-1999)中常规试验方法,压力室外置压力罩,密封连接,向压力室内注水,加压至30kPa,对试样9进行通气、饱和、固结;将连接轴1与液压加载系统连接。
(6)在试验开始前,压力室加水加压条件下,对量测装置进行现场标定。
(7)试验开始,同时激发加载程序和采集程序,全过程记录试验数据,至试验结束。
(8)试验过程中,随着试样9变形发展,颗粒状磁体A7移动,环形线圈A6切割磁感线,产生感应电压,由电压积分器获得位移信号S1;颗粒状磁体B14移动,环状线圈B13切割磁感线,产生感应电压,由电压积分器获得位移信号S2。利用公式(4)计算出应变值ε。
其中,s1、s2表示某局部位移,H表示两局部中心点之间位移;ε表示应变。
如图5所示,实线部分表示由外置位移计数据计算得平均轴向应变时程曲线,虚线部分表示由该方法计算得本实施例试样9局部轴向应变时程曲线。
以上所述实施例仅表达了本发明的实施方式,但并不能因此而理解为对本发明专利的范围的限制,应当指出,对于本领域的技术人员来说,在不脱离本发明构思的前提下,还可以做出若干变形和改进,这些均属于本发明的保护范围。

Claims (1)

1.一种利用电磁感应技术测量砂砾料动态三轴试样局部变形的方法,其特征在于,该方法基于中型三轴试验仪实现,颗粒状磁体埋置在试样体内部,置于需量测位置上下端,试样外围布置两套独立可调节环形线圈位置系统A、B,此测量方法为非接触式测量,测量过程中不会扰动试样体,且能够直接测量试样体内部的局部变形,方法具体包括以下步骤:
1)采用中型三轴试验设备,按编号为SL237-1999的《土工试验规程》中常规试验方法制备三轴试样(9),采用砂砾料完成相关试验,采用分层湿击法制备试样(9),试样(9)整体分层,根据需要测试局部的位置,设置层数,至少设置为6层,逐层击实,每一层高度一致,根据试验规程称取每一层所需土料,依次击实第一层、第二层,击实至指定高度后,使用刮刀将顶部刮毛,在中心处放置颗粒状磁体B(14),使其半嵌入土层中,继续加入第三层土料,继续击实,至第四层击实完毕,使用前述方法安置颗粒状磁体A(7),继续击实剩余土料,至整个试样(9)击实完毕;
2)在压力室柱A(18)从上至下架设导环A(5)和导环D(15),压力室B(19)从上至下架设导环B(8)和导环C(12),导环A(5)与导环B(8)位于同一水平面,将环形线圈A(6)与导环A(5)和导环B(8)连接;导环C(12)和导环D(15)位于同一水平面,将环形线圈B(13)与导环C(12)和导环D(15)连接,将丝杠A(5)和丝杠B(10)上端锚固在中型三轴仪压力室上盘(2)指定位置,通过螺母A(4)将导环A(5)、导环B(8)和环形线圈A(6)组合体锚固在丝杠A(3)下端,旋拧螺母A(4),移动上述组合体,将组合体置于试样帽上方;通过螺母B(11)将导环C(12)、导环D(15)和环形线圈B(13)组合体锚固在丝杠B(10)上,旋拧螺母B(11),移动上述组合体,将组合体置于试样帽上方,将环形线圈A(6)和环形线圈B(13)依次与信号放大(21)、滤波器(22)、电压积分器(23)、电脑(24)连接,完成量测设备组装,信号放大器(21)将采集获取的电压值信号进行放大处理,滤波器(22)是对信号中的噪声进行有效滤除,得到一个特定频率的电压信号;电压积分器(23)是对电压信号或速度信号进行积分处理得到位移信号;
3)按编号为SL237-1999的《土工试验规程》中常规试验方法对试样(9)进行安装,将试样(9)放置于底座(17)上,安置试样帽(16),绑扎乳胶膜,完成试样安装;
4)根据试样体内颗粒状磁体A(7)和颗粒状磁体B(14)的具体位置,旋拧螺母A(4),移动导环A(5)、导环B(8)和环形线圈A(6)组合体,使环形线圈A(6)中心位置与颗粒状磁体A(7)位置重合,拧紧螺母A(4),限定环形线圈A(6)位置;旋拧螺母B(11),移动导环C(12)、导环D(15)和环形线圈B(13)组合体,使环形线圈B(13)中心位置与颗粒状磁体B(14)位置重合,拧紧螺母B(12),限定环形线圈B(14)位置;
(5)按编号为SL237-1999的《土工试验规程》中常规试验方法,压力室外置压力罩,密封连接,向压力室内注水,加压至30kPa,对试样(9)进行通气、饱和、固结;将连接轴(1)与液压加载系统连接;
(6)在试验开始前,压力室加水加压条件下,对量测装置进行现场标定;
(7)试验开始,同时激发加载程序和采集程序,全过程记录试验数据,至试验结束;
(8)试验过程中,随着试样(9)变形发展,颗粒状磁体A(7)移动,环形线圈A(6)切割磁感线,产生感应电压,由电压积分器获得位移信号S1;颗粒状磁体B(14)移动,环状线圈B(13)切割磁感线,产生感应电压,由电压积分器获得位移信号S2,利用公式(1)计算出应变值ε;
其中,s1、s2表示某局部位移,H表示两局部中心点之间位移;ε表示应变。
CN201810375957.2A 2018-04-20 2018-04-20 一种利用电磁感应技术测量砂砾料动态三轴试样局部变形的方法 Active CN108458932B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201810375957.2A CN108458932B (zh) 2018-04-20 2018-04-20 一种利用电磁感应技术测量砂砾料动态三轴试样局部变形的方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201810375957.2A CN108458932B (zh) 2018-04-20 2018-04-20 一种利用电磁感应技术测量砂砾料动态三轴试样局部变形的方法

Publications (2)

Publication Number Publication Date
CN108458932A CN108458932A (zh) 2018-08-28
CN108458932B true CN108458932B (zh) 2019-11-19

Family

ID=63235939

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201810375957.2A Active CN108458932B (zh) 2018-04-20 2018-04-20 一种利用电磁感应技术测量砂砾料动态三轴试样局部变形的方法

Country Status (1)

Country Link
CN (1) CN108458932B (zh)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1362979A3 (en) * 2002-05-17 2004-04-28 JFE Engineering Corporation Pig for measuring the shape of a pipeline
CN103901096A (zh) * 2012-12-27 2014-07-02 天津欣维检测技术有限公司 一种非平整表面工件无损探测设备
CN203965255U (zh) * 2014-07-28 2014-11-26 国家海洋标准计量中心 计量式水静压力试验系统
CN105352426A (zh) * 2015-10-08 2016-02-24 中国矿业大学 可测量表面变形和内部损伤的复合功能薄膜及其使用方法
CN105547825A (zh) * 2016-01-21 2016-05-04 山东大学 单轴压缩过程中岩样损伤的监测装置及监测方法
CN106644745A (zh) * 2016-09-07 2017-05-10 大连理工大学 一种恒荷加载或卸载的智能三联土工三轴仪
CN107121489A (zh) * 2017-04-12 2017-09-01 南昌航空大学 一种交流电磁场检测仪
CN107449879A (zh) * 2017-07-25 2017-12-08 中国海洋石油总公司 岩石三轴压裂装置

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1362979A3 (en) * 2002-05-17 2004-04-28 JFE Engineering Corporation Pig for measuring the shape of a pipeline
CN103901096A (zh) * 2012-12-27 2014-07-02 天津欣维检测技术有限公司 一种非平整表面工件无损探测设备
CN203965255U (zh) * 2014-07-28 2014-11-26 国家海洋标准计量中心 计量式水静压力试验系统
CN105352426A (zh) * 2015-10-08 2016-02-24 中国矿业大学 可测量表面变形和内部损伤的复合功能薄膜及其使用方法
CN105547825A (zh) * 2016-01-21 2016-05-04 山东大学 单轴压缩过程中岩样损伤的监测装置及监测方法
CN106644745A (zh) * 2016-09-07 2017-05-10 大连理工大学 一种恒荷加载或卸载的智能三联土工三轴仪
CN107121489A (zh) * 2017-04-12 2017-09-01 南昌航空大学 一种交流电磁场检测仪
CN107449879A (zh) * 2017-07-25 2017-12-08 中国海洋石油总公司 岩石三轴压裂装置

Also Published As

Publication number Publication date
CN108458932A (zh) 2018-08-28

Similar Documents

Publication Publication Date Title
CN105444731B (zh) 一种交通荷载下路基变形监测模型装置和实验方法
CN106836317B (zh) 一种考虑土塞效应的沉桩模型试验装置及其应用
CN102900063B (zh) 用于探测淤泥的动力孔压静力触探探头
CN105510153A (zh) 一种大型土体界面剪切试验模型及试验方法
CN105424910B (zh) 一种土体分层沉降测量装置
CN108593421B (zh) 一种动态三轴试验试样内部局部应变测量的反向标定装置和方法
CN106192969A (zh) 一种基于球型全流孔压触探贯入仪及其固结系数评价方法
CN102759491B (zh) 堆石体碾压密度测定方法及装置
CN107907589A (zh) 高压三轴声学测试系统
CN107587530B (zh) 一种斜桩动力p-y曲线的测量装置及测量方法
CN110029648A (zh) 一种用于深厚回填土地基的深层沉降观测装置及使用方法
Askarinejad et al. A novel technique to monitor subsurface movements of landslides
CN108458932B (zh) 一种利用电磁感应技术测量砂砾料动态三轴试样局部变形的方法
CN205538822U (zh) 一种基于隧道磁电阻传感器的无损检测装置
CN201443081U (zh) 地基承载力填土密实度现场检测仪
CN203465238U (zh) 非饱和土土水特性快速定量检测传感器
CN206479268U (zh) 用于黄土及软土的压入式三向土压力传感器
Gheibi et al. The relation between static Young’s modulus and dynamic bulk modulus of granular materials and the role of stress history
Wang et al. Relationship between grain crushing and excess pore pressure generation by sandy soils in ring-shear tests
CN207300760U (zh) 一种大型原位三轴剪切试验装置
Al-Hussaini et al. Investigation of K0 testing in cohesionless soils
CN105629319A (zh) 确定地层元素测井标准谱及相对灵敏度的装置和方法
CN113791068B (zh) 一种隧道底部连续注浆抬升模型试验装置
CN105971024B (zh) 一种模型桩基动力响应的测试方法
Sparrow et al. Behavior of a soil mass under dynamic loading

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant