CN108428781A - Planar strip type nanometer thermoelectric generator for microcontroller - Google Patents

Planar strip type nanometer thermoelectric generator for microcontroller Download PDF

Info

Publication number
CN108428781A
CN108428781A CN201810208070.4A CN201810208070A CN108428781A CN 108428781 A CN108428781 A CN 108428781A CN 201810208070 A CN201810208070 A CN 201810208070A CN 108428781 A CN108428781 A CN 108428781A
Authority
CN
China
Prior art keywords
type
thermoelectric
microcontroller
arm
thermoelectric pile
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
CN201810208070.4A
Other languages
Chinese (zh)
Inventor
廖小平
陈友国
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Southeast University
Original Assignee
Southeast University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Southeast University filed Critical Southeast University
Priority to CN201810208070.4A priority Critical patent/CN108428781A/en
Publication of CN108428781A publication Critical patent/CN108428781A/en
Withdrawn legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N10/00Thermoelectric devices comprising a junction of dissimilar materials, i.e. devices exhibiting Seebeck or Peltier effects
    • H10N10/80Constructional details
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N10/00Thermoelectric devices comprising a junction of dissimilar materials, i.e. devices exhibiting Seebeck or Peltier effects

Landscapes

  • Hybrid Cells (AREA)

Abstract

The planar strip type nanometer thermoelectric generator for microcontroller of the present invention, substrate is N-type silicon chip, makes the p-type arm 2 for having thermoelectric pile, the N-type arm 3 of thermoelectric pile, polymethyl methacrylate 4, the first nitride spacer 5, metallic aluminium connecting line 6, the second nitride spacer 7 and heat sink 8.Wherein, positive and negative electrode is attached as shown in Figure 2, p-type thermoelectric arm 2 and N-type thermoelectric arm 3 are connected by metallic aluminium 6, specifically thermoelectric pile is made of a series of p-type polysilicon nano line cluster and N-type polycrystalline silicon nano line cluster, refers to the partial enlargement in Fig. 2.This generator passes through heat to electricity conversion, the thermosteresis power generated when can work microcontroller recycles, the thermal conductivity of the silicon nanometer of use is far below conventional bulk, it realizes and maintains electronics transport on one side, inhibit heat conveying on one side, thermopower generation efficiency is improved, finally, the electric energy generated in the above process can also be the low power consuming devices power supply near microcontroller.

Description

Planar strip type nanometer thermoelectric generator for microcontroller
Technical field
The present invention proposes a kind of planar strip type nanometer thermoelectric generator for microcontroller, belongs to microelectron-mechanical The technical field of system (MEMS).
Background technology
One of revolution of processor is exactly to apply multinuclear and multithreading, and multinuclear is usually answered in notebook and server With also occurring being used for some computation-intensive applications, such as industrial equipment and automobile application etc. in microcontroller field.But It is that the development of microcontroller is also faced with new challenge, is exactly the extension that power consumption and memory bandwidth restrict core.It is higher and higher Power consumption also bring a large amount of thermosteresis, while causing the decline of its reliability.
According to Seebeck effect, micro thermocouple use different semi-conducting material manufacturings, principle very simple, as long as Thermocouple both ends have the temperature difference just to have constant electric power output, and the main problem that micro thermocouple battery to be solved is Wherefrom obtain heat source.
Using the planar strip type nanometer thermoelectric generator of microcontroller, the thermal conductivity of the silicon nanometer of use is far below tradition Body material may be implemented to maintain electronics to transport on one side, inhibit heat conveying on one side, to greatly improve thermoelectric power generation effect Rate is of great significance in thermoelectric power generation functionization.The thermosteresis power generated when by working microcontroller returns It receives.By heat to electricity conversion, the waste of the energy can not only be reduced, heat dissipation can also be enhanced and improves reliability, is finally generated Electric energy can also be the low power consuming devices power supply near microcontroller.
Invention content
Technical problem:The object of the present invention is to provide a kind of planar strip type nanometer thermoelectric power generations for microcontroller Machine, thermoelectric energy collects selection long strip type, because it uses planar technology to process, has simple for process, the techniques collection such as be easy to CMOS At the advantages of.Under complicated working environment, select thermoelectric (al) type energy collection technology that thermal energy can be directly changed into electric energy, and have Have it is compact-sized, without series of advantages such as abrasion, No leakage, cleaning, noiseless, long lifespan, reliability height.
Technical solution:In order to solve the above technical problems, the present invention proposes a kind of planar strip type for microcontroller Nanometer thermoelectric generator.N-type silicon substrate is selected, a concentration of 1.0E15cm-3 of p-doped, resistivity is about 2 Ω cm.It is carried out before making Twin polishing, and impregnated in 0.55% HF acid solutions, remove the impurity such as metallic particles.Then LPCVD techniques are used to grow A layer thickness is the polysilicon of 2um, coats photoresist, makes the doping window of p-type thermoelectric arm and N-type thermoelectric arm by lithography, right respectively After the corresponding region of polysilicon carries out the doping of N-type phosphonium ion and the doping of p-type boron ion, p-type thermoelectric arm and N-type thermoelectricity are formed Arm.Then, spin coating a layer thickness is the polyimides of 3um, and photoetching molding forms polysilicon nanometer using electron beam lithography Line, as shown in the inset in fig. 2.Then polyimide layer is removed, one strata methyl methacrylate of spin coating fills thermoelectricity The stability of electric generator structure is improved in gap between idol.Then the nitrogen for using pecvd process to grow a layer thickness for 0.1um SiClx layer, as the first nitride spacer, the electrode that thermocouple is made for lower step process is prepared.Next, carrying out electrode Contact zone photoetching outputs window with LAM490 dry etching silicon nitrides, and evaporation one layer of metal Al of growth coats photoresist, retain Specific pattern photoresist, uses H3PO4:CH3COOH:HNO3=100:10:1 anti-carves metal Al, by p-type thermoelectric arm 2 and N-type heat Electric arm 3 is connected with metallic aluminium, is illustrated in fig. 2 shown below, and photoresist is then removed.Use pecvd process growth regulation nitride again Silicon separation layer, thickness 0.1um, as dielectric insulation layer.The Al metal layers that finally plating a layer thickness is 2um, as device Heat sink.
The operation principle of thermoelectric generator is as follows:When applying certain temperature difference in generator hot and cold side, heat can be from warm End face is injected, and after thermoelectric pile, is finally discharged from cold end face, and certain Temperature Distribution is formed on thermoelectric generator. Since there are certain thermal resistances for thermoelectric pile, the corresponding temperature difference is will produce between the cold and hot node of thermoelectric pile, is imitated based on Seebeck It answers the both ends of thermoelectric pile that can export the potential directly proportional to the temperature difference, power output can be achieved after connection load.
This generator is used in microcontroller, and thermoelectric energy collects selection long strip type, because it uses planar technology to process, tool Have the advantages that simple for process, to be easy to the techniques such as CMOS integrated.Under complicated working environment, thermoelectric (al) type energy collection technology is selected Thermal energy can be directly changed into electric energy, but with it is compact-sized, without abrasion, No leakage, cleaning, noiseless, long lifespan, reliability High series of advantages.
Advantageous effect:The present invention has the following advantages relative to existing generator:
1. former using ripe CMOS technology and MEMS technology manufacture in the nanometer thermoelectric generator technique of the present invention Reason, it is simple in structure, can batch micro operations, can with microelectronic circuit realize single-chip integration;
2. the thermal conductivity for the silicon nanometer that the nanometer thermoelectric generator of the present invention uses is far below conventional bulk, may be implemented Electronics transport is maintained on one side, inhibits heat conveying on one side, to greatly improve thermopower generation efficiency, in thermoelectric power generation practicality It is of great significance in change;
3. the nanometer thermoelectric generator of the present invention uses nano thread structure, due to nanostructure, quantum limitation effect generates Engery level cracking can improve the Seebeck coefficient of material;Meanwhile higher interphase density can scatter sound inside nanostructure Son reduces lattice thermal conductivity, to effectively improving thermoelectric figure of merit coefficient ZT, the i.e. energy conversion efficiency of thermoelectric material;
4. the nanometer thermoelectric generator machine of the present invention uses surface manufacturing process, vertical after being successfully prepared to use, be conducive to The temperature difference of thermoelectricity is realized;
5. the nanometer thermoelectric generator of the present invention does not have movable member, reliability is high, and service life is long, Maintenance free.
Description of the drawings
Fig. 1 is the planar strip type nanometer thermoelectric generator sectional view that the present invention is used for microcontroller;
Fig. 2 is the planar strip type nanometer thermoelectric generator thermoelectricity structure top view that the present invention is used for microcontroller;
Figure includes:N-type silicon substrate 1, the p-type arm 2 of thermoelectric pile, the N-type arm 3 of thermoelectric pile, polymethyl methacrylate 4, First nitride spacer 5, metallic aluminium connecting line 6, the second nitride spacer 7, heat sink 8.
Specific implementation mode
The following further describes the specific embodiments of the present invention with reference to the drawings.
Referring to Fig. 1-2, the present invention proposes a kind of planar strip type nanometer thermoelectric generator for microcontroller.Selection N-type silicon substrate 1, a concentration of 1.0E15cm-3 of p-doped, resistivity are about 2 Ω cm.Twin polishing is carried out before making, and 0.55% HF acid solutions in impregnate, remove the impurity such as metallic particles.Then the polycrystalline for using LPCVD techniques to grow a layer thickness for 2um Silicon coats photoresist, makes the doping window of p-type thermoelectric arm and N-type thermoelectric arm by lithography, is carried out respectively to the corresponding region of polysilicon N-type phosphonium ion is adulterated with after the doping of p-type boron ion, forms p-type thermoelectric arm 2 and N-type thermoelectric arm 3.Then, spin coating a layer thickness For the polyimides of 3um, photoetching molding forms polysilicon nanowire, such as the amplifier section in Fig. 2 using electron beam lithography It is shown.Then polyimide layer is removed, one strata methyl methacrylate 4 of spin coating fills the gap between thermocouple, improves hair The stability of electric machine structure.Then the silicon nitride layer for using pecvd process to grow a layer thickness for 0.1um, as the first nitridation Silicon separation layer 5, the electrode that thermocouple is made for lower step process are prepared.Next, carrying out electrode contact zone photoetching, LAM490 is used Dry etching silicon nitride, outputs window, and evaporation one layer of metal Al of growth coats photoresist, retain specific pattern photoresist, use H3PO4:CH3COOH:HNO3=100:10:1 anti-carves metal Al, and p-type thermoelectric arm 2 is connect with the metallic aluminium 6 of N-type thermoelectric arm 3 Get up, as shown in Fig. 2, then removes photoresist.Again using pecvd process growth regulation phenodiazine SiClx separation layer 7, thickness is 0.1um, as dielectric insulation layer.The Al metal layers that finally plating a layer thickness is 2um, the heat sink 8 as device.
The operation principle of thermoelectric generator is as follows:When applying certain temperature difference in generator hot and cold side, heat can be from warm End face is injected, and after thermoelectric pile, is finally discharged from cold end face, and certain Temperature Distribution is formed on thermoelectric generator. Since there are certain thermal resistances for thermoelectric pile, the corresponding temperature difference is will produce between the cold and hot node of thermoelectric pile, is imitated based on Seebeck It answers the both ends of thermoelectric pile that can export the potential directly proportional to the temperature difference, power output can be achieved after connection load.
This generator is used in microcontroller, and thermoelectric energy collects selection long strip type, because it uses planar technology to process, tool Have the advantages that simple for process, to be easy to the techniques such as CMOS integrated.Under complicated working environment, thermoelectric (al) type energy collection technology is selected Thermal energy can be directly changed into electric energy, but with it is compact-sized, without abrasion, No leakage, cleaning, noiseless, long lifespan, reliability High series of advantages.By heat to electricity conversion, the thermosteresis power generated when can work microcontroller recycles, this is not Energy waste can be only reduced, heat dissipation can also be enhanced and improves reliability, finally, the electric energy generated in the above process can also be Low power consuming devices power supply near microcontroller.
The preparation method of the planar strip type nanometer thermoelectric generator for microcontroller of the present invention is as follows:
1) N-type silicon substrate 1 is selected, a concentration of 1.0E15cm-3 of p-doped, resistivity is about 2 Ω cm.It is carried out before making two-sided Polishing, and impregnated in 0.55% HF acid solutions, remove the impurity such as metallic particles;
2) use LPCVD techniques to grow a layer thickness for 2 μm of polysilicon, coat photoresist, make by lithography p-type thermoelectric arm and The doping window of N-type thermoelectric arm;
3) doping of N-type phosphonium ion is carried out to the corresponding region of polysilicon respectively and p-type boron ion is adulterated, form thermoelectric pile P-type arm 2 and N-type arm 3;
4) spin coating a layer thickness is the polyimides of 3um, and photoetching molding forms polysilicon using electron beam lithography and receives Rice noodles;
5) polyimides is removed, one strata methyl methacrylate 4 of spin coating fills the gap between thermocouple, improves power generation The stability of machine structure;
6) silicon nitride layer for using pecvd process to grow a layer thickness for 0.1um, as the first nitride spacer 5;
7) electrode contact zone photoetching outputs window with LAM490 dry etching silicon nitrides;
8) one layer of metal Al of evaporation growth, coats photoresist, retains specific pattern photoresist, uses H3PO4:CH3COOH: HNO3=100:10:1 anti-carves metal Al, and p-type thermoelectric arm 2 and the metallic aluminium 6 of N-type thermoelectric arm 3 are connected;
9) pecvd process growth regulation phenodiazine SiClx separation layer 7, thickness 0.1um, as dielectric insulation layer are used;
10) the Al metal layers that plating a layer thickness is 2um, the heat sink 8 as device;
Distinguish whether be the structure standard it is as follows:
The planar strip type nanometer thermoelectric generator for microcontroller of the present invention, substrate are N-type silicon chip 1, and making has The p-type arm 2 of thermoelectric pile, the N-type arm 3 of thermoelectric pile, polymethyl methacrylate 4, the first nitride spacer 5, metallic aluminium connection Line 6, the second nitride spacer 7 and heat sink 8.Wherein, positive and negative electrode is attached as shown in Figure 2, by metallic aluminium 6 by P Type thermoelectric arm 2 is connected with N-type thermoelectric arm 3, and specifically thermoelectric pile is by a series of p-type polysilicon nano line cluster and N-type What polysilicon nanowire cluster was constituted, refer to the partial enlargement in Fig. 2, last PECVD growth regulations phenodiazine SiClx separation layer 7, plating Heat sink 8 of a layer thickness Al metal layers as device.The thermal conductivity of the silicon nanometer of use is far below conventional bulk, can be with It realizes and maintains electronics transport on one side, inhibit heat conveying on one side, to greatly improve thermopower generation efficiency, in thermoelectric power generation It is of great significance in functionization.
The structure for meeting conditions above is considered as the planar strip type nanometer thermoelectric power generation for microcontroller of the present invention Machine.

Claims (2)

1. a kind of planar strip type nanometer thermoelectric generator for microcontroller, it is characterized in that:The nanometer thermoelectric mechanism of power generation Make in N-type silicon substrate (1), the p-type arm (2) for having thermoelectric pile, the N-type arm (3) of thermoelectric pile, polymethylacrylic acid are made on substrate Methyl esters (4), the first nitride spacer (5), metallic aluminium connecting line (6), the second nitride spacer (7) and heat sink (8), In, thermoelectric pile is made of a series of p-type polysilicon nano line cluster and N-type polycrystalline silicon nano line cluster;The p-type arm of thermoelectric pile (2) and the number of nanowires that contains of the polysilicon nanowire cluster in the N-type arm of thermoelectric pile (3) is 50-200, polysilicon nanowire It is formed by deep-UV lithography, a diameter of 1-100nm, is highly 2-10um;Thermoelectric pile electrode material is gold, metallic plate (8) material For aluminium;The thermal conductivity of the Nano thin film of use is far below conventional bulk, may be implemented to maintain electronics to transport on one side, press down on one side Heating capacity conveys, to greatly improve thermopower generation efficiency.
2. a kind of planar strip type nanometer thermoelectric generator for microcontroller according to claim 1, it is characterized in that: The generator is used in microcontroller, and thermoelectric energy collects selection long strip type, because it uses planar technology to process, has technique letter List is easy to the integrated advantage of the techniques such as CMOS;Under complicated working environment, select thermoelectric (al) type energy collection technology can be by thermal energy It is directly changed into electric energy, the thermosteresis power generated when can work microcontroller recycles, this can not only reduce energy Source wastes, and can also enhance heat dissipation and improve reliability, and finally, the electric energy generated in the above process can also be near microcontroller Low power consuming devices power supply.
CN201810208070.4A 2018-03-14 2018-03-14 Planar strip type nanometer thermoelectric generator for microcontroller Withdrawn CN108428781A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201810208070.4A CN108428781A (en) 2018-03-14 2018-03-14 Planar strip type nanometer thermoelectric generator for microcontroller

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201810208070.4A CN108428781A (en) 2018-03-14 2018-03-14 Planar strip type nanometer thermoelectric generator for microcontroller

Publications (1)

Publication Number Publication Date
CN108428781A true CN108428781A (en) 2018-08-21

Family

ID=63158356

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201810208070.4A Withdrawn CN108428781A (en) 2018-03-14 2018-03-14 Planar strip type nanometer thermoelectric generator for microcontroller

Country Status (1)

Country Link
CN (1) CN108428781A (en)

Similar Documents

Publication Publication Date Title
US9209375B2 (en) Methods and devices for controlling thermal conductivity and thermoelectric power of semiconductor nanowires
US9735022B2 (en) Arrays of long nanostructures in semiconductor materials and methods thereof
JP2009539261A (en) Thermoelectric nanotube array
Kwong et al. Vertical silicon nanowire platform for low power electronics and clean energy applications
KR20100056478A (en) Nanostructures having high performance thermoelectric properties
CN108428782A (en) Polysilicon nanowire thermocouple Mini-thermoelectric generator in radio frequency transceiver
KR101680766B1 (en) Thermoelectric device and Array of Thermoelectric device
KR20110064702A (en) Core-shell nanowire with uneven structure and thermoelectric device using the same
Pennelli Top-down fabrication of silicon nanowire devices for thermoelectric applications: properties and perspectives
CN108428781A (en) Planar strip type nanometer thermoelectric generator for microcontroller
CN108447971A (en) Vertical square-column-shaped nanometer thermoelectric generator for microcontroller
CN108512488A (en) Long strip type thermoelectricity and PN junction nano photoelectric integrated electricity generator in radio frequency transceiver
Li et al. Enhanced efficiency of graphene-silicon Schottky junction solar cell through pyramid arrays texturation
RU180604U1 (en) THERMOELECTRIC ELEMENT
CN108540048A (en) Thermoelectricity optoelectronic integration nano energy collector in self energizing wireless sensing node
CN110444654A (en) A kind of three-dimensional light thermoelectric conversion element
Pennelli et al. Fabrication techniques for thermoelectric devices based on nanostructured silicon
CN110690846B (en) Photo-thermal-electric conversion device based on inclined silicon nanowires
CN110459669B (en) Quasi-one-dimensional nano-structure thermoelectric material, device and preparation method thereof
CN109192816B (en) The manufacturing method and solar battery of solar battery
CN109216480B (en) A kind of p type single crystal silicon battery and its manufacturing method
CN1262008C (en) AND gate logic device with monowall carbon nano tube strucure and mfg. method
CN108418505A (en) Square-column-shaped thermoelectricity and PN junction nano photoelectric integrated electricity generator in radio frequency transceiver
Li Porous Silicon Formed by metal assisted chemical etching for thermoelectric power generator
Trung et al. Flexible thermoelectric power generator based on electrochemical deposition process

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
WW01 Invention patent application withdrawn after publication

Application publication date: 20180821

WW01 Invention patent application withdrawn after publication