CN108426388A - 吸收式动力与喷射式制冷复合循环系统及其工作方法 - Google Patents

吸收式动力与喷射式制冷复合循环系统及其工作方法 Download PDF

Info

Publication number
CN108426388A
CN108426388A CN201710076056.9A CN201710076056A CN108426388A CN 108426388 A CN108426388 A CN 108426388A CN 201710076056 A CN201710076056 A CN 201710076056A CN 108426388 A CN108426388 A CN 108426388A
Authority
CN
China
Prior art keywords
absorber
liquid
saturated vapor
refrigeration
combined cycle
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201710076056.9A
Other languages
English (en)
Other versions
CN108426388B (zh
Inventor
于泽庭
殷纪强
田民丽
张承慧
韩吉田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shandong University
Original Assignee
Shandong University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shandong University filed Critical Shandong University
Priority to CN201710076056.9A priority Critical patent/CN108426388B/zh
Publication of CN108426388A publication Critical patent/CN108426388A/zh
Application granted granted Critical
Publication of CN108426388B publication Critical patent/CN108426388B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B27/00Machines, plants or systems, using particular sources of energy
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B15/00Sorption machines, plants or systems, operating continuously, e.g. absorption type
    • F25B15/02Sorption machines, plants or systems, operating continuously, e.g. absorption type without inert gas
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B41/00Fluid-circulation arrangements
    • F25B41/30Expansion means; Dispositions thereof
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B49/00Arrangement or mounting of control or safety devices
    • F25B49/04Arrangement or mounting of control or safety devices for sorption type machines, plants or systems
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2600/00Control issues
    • F25B2600/13Pump speed control
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/19Pressures
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A30/00Adapting or protecting infrastructure or their operation
    • Y02A30/27Relating to heating, ventilation or air conditioning [HVAC] technologies
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]
    • Y02B30/62Absorption based systems

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Sorption Type Refrigeration Machines (AREA)
  • Engine Equipment That Uses Special Cycles (AREA)

Abstract

本发明公开了一种吸收式动力和喷射式制冷复合循环系统及其工作方法。该系统包括吸收器,其与泵相连;吸收器依次与回热换热器和锅炉相连;锅炉与精馏塔相连;吸收器还分别与蒸发器以及制冷热交换器相连通;精馏塔的塔顶分别与过热器和喷射器相连,从精馏塔的塔顶排出的一部分饱和蒸汽传输至过热器进行过热,过热后再进入透平进行膨胀做功得到乏汽,乏汽进入制冷热交换器吸热制冷;另一部分进入喷射器进行吸收—喷射制冷,喷射器出口的液体进入冷凝器进行定压冷凝成饱和溶液,然后经第一节流阀节流后进入蒸发器内蒸发制冷;蒸发器出口的一部分饱和蒸汽被喷射器引射,另一部分饱和蒸汽反馈输送至吸收器。该系统保证单效式吸收式制冷机流程且设备简单。

Description

吸收式动力与喷射式制冷复合循环系统及其工作方法
技术领域
本发明属于能动循环领域,尤其涉及一种吸收式动力和喷射式制冷复合循环系统及其工作方法。
背景技术
低温热源包括太阳能、地热能以及工业生产中的余热。这类能源具有储量大、分布广、品位低的特点,难以被开发利用,有些甚至被直接排放到环境中去,浪费十分严重。因此,实现低温热源的合理高效利用,对减少常规化石燃料的消耗,降低有关污染物和温室气体的排放,调整能源消费结构,保护生态环境,建立资源节约型社会具有重要意义。
在实际工程领域中,热源温度比较低时,传统的以水为工质的朗肯循环很难将热量有效地转化为输出功。Kalina提出了以非共沸混合物氨水为工质的一系列动力循环,氨水作为工质的最大特点是其变温相变,这样可以减小换热过程中的传热温差,降低传热过程中的火用(exergy)损失,使得工质与热源之间的换热匹配得到改善,然而,Kalina循环系统无法输出冷量。
除Kalina循环外,高斯瓦米(Goswami)等人提出了同样以氨水为工质的动力循环,和Kalina循环相比,Goswami循环最大的不同在于对外不仅可以输出功,还可以输出冷量,它的原理是将精馏塔出来的高浓度氨蒸汽经过热器过热后进入透平做功,透平排气进入制冷热交换器吸热制冷。然而,Goswami循环利用透平乏汽的显热来制冷,由于气体的比热容较小,故其单位质量工质的制冷量非常有限。
发明内容
为了解决现有技术的缺点,本发明的第一目的是提供一种吸收式动力和喷射式制冷复合循环系统。该系统既可以保证单效式吸收式制冷机流程、设备简单的优点,又可以提高其制冷系数,从而使系统的整体性能得到改善。
本发明的一种吸收式动力和喷射式制冷复合循环系统,包括吸收器,所述吸收器与泵相连;吸收器内的基础工作液经泵加压后,依次进入回热换热器和锅炉分别进行换热和加热;换热后的基础工作液经锅炉加热产生饱和蒸汽传输至精馏塔进行蒸馏,在塔顶得到饱和蒸汽;所述吸收器还分别与蒸发器以及制冷热交换器相连通,吸收器内的液体还吸收来自蒸发器以及制冷热交换器传送来的蒸汽;
精馏塔的塔顶分别与过热器和喷射器相连通,从精馏塔的塔顶排出的一部分饱和蒸汽传输至过热器进行过热,过热后再进入透平进行膨胀做功得到乏汽,最后乏汽进入制冷热交换器吸热制冷;另一部分饱和蒸汽进入喷射器进行吸收—喷射制冷,喷射器出口的液体进入冷凝器进行定压冷凝成饱和溶液,然后经第一节流阀节流后进入蒸发器内蒸发制冷;蒸发器出口的一部分饱和蒸汽被喷射器引射,另一部分饱和蒸汽反馈输送至吸收器。
进一步的,所述锅炉的底部还通过第一管道与回热换热器相连通,用于将锅炉内的一部分液体送至回热换热器进行换热;回热换热器通过第二管道与吸收器相连通,精馏塔的塔底通过第三管道与第二管道相连通,所述第二管道用于将换热后的液体与第三管道内的液体混合后反馈至吸收器。本发明将锅炉内的一部分液体反馈至回热换热器进行换热,换热后的液体与精馏塔的塔底流出的液体混合后送至吸收器,这样用来吸收来自蒸发器以及制冷热交换器传送来的蒸汽,增加了循环制冷量。
进一步的,所述第三管道上设置有第二节流阀。本发明通过控制设置在第三管道上的第二节流阀的开度调节送至吸收器液体的流量大小。
进一步的,所述吸收器内还设置有压力传感器,所述压力传感器与控制器相连,所述控制器与泵相连。本发明利用压力传感器检测吸收器内压力大小并传送至控制器,控制根据接收到压力大小来控制泵的运行频率。
进一步的,所述第二节流阀为电磁阀,所述第二节流阀与控制器相连。这样避免了手动调节,能够通过控制器准确调节第二节流阀的开度大小。
进一步的,所述第一节流阀为电磁阀,所述第一节流阀与控制器相连。这样避免了手动调节,能够通过控制器准确调节第一节流阀的开度大小。
本发明的第二目的是提供一种吸收式动力和喷射式制冷复合循环系统的工作方法。
本发明的吸收式动力和喷射式制冷复合循环系统的工作方法,包括:
将吸收器内的基础工作液经泵加压后,依次进入回热换热器和锅炉分别进行换热和加热;换热后的基础工作液经锅炉加热产生饱和蒸汽传输至精馏塔进行蒸馏,在塔顶得到饱和蒸汽;吸收器内的液体还吸收来自蒸发器以及制冷热交换器传送来的蒸汽;
从精馏塔的塔顶排出的一部分饱和蒸汽传输至过热器进行过热,过热后再进入透平进行膨胀做功得到乏汽,最后乏汽进入制冷热交换器吸热制冷;另一部分饱和蒸汽进入喷射器进行吸收—喷射制冷,喷射器出口的液体进入冷凝器进行定压冷凝成饱和溶液,然后经第一节流阀节流后进入蒸发器内蒸发制冷;蒸发器出口的一部分饱和蒸汽被喷射器引射,另一部分饱和蒸汽反馈输送至吸收器。
进一步的,该方法还包括:锅炉内的一部分液体通过第一管道反馈至回热换热器进行换热,精馏塔的塔底流出的液体经第二管道与换热后的液体在第三管道内混合后反馈至吸收器。
进一步的,该方法还包括:通过控制设置在第三管道上的第二节流阀的开度来调节传送至吸收器内液体的流量大小。
进一步的,该方法还包括:在吸收器内设置压力传感器,压力传感器用于检测吸收器内压力大小并传送至控制器,控制根据接收到压力大小来控制泵的运行频率。
本发明的有益效果为:
(1)本发明的吸收式动力和喷射式制冷复合循环系统,采用吸收-喷射式耦合制冷循环,将Goswami循环和喷射式制冷循环进行耦合集成,增加循环制冷量,既可以保证单效式吸收式制冷机流程、设备简单的优点,又可以提高其制冷系数,从而使系统的整体性能得到改善;
(2)本发明的吸收式动力和喷射式制冷复合循环系统,通过引入喷射器,以消耗一定的热能为代价,却不需要消耗透平的输出功,因而在增加系统输出冷量条件下,提高了制冷循环部分的性能;进入透平的工质为高纯度富氨蒸汽,提高了透平乏汽干度。
(3)该循环系统采用喷射器与透平并联的方式,根据不同需求可以通过进入透平和喷射器的流量比,来调整输出功冷比。
(4)本发明的该吸收式动力和喷射式制冷复合循环系统适用于中低温源制冷循环场合,比如钢铁厂冷凝;此外,本发明的基础工作液为氨水或其他有机工质。
附图说明
构成本发明的一部分的说明书附图用来提供对本发明的进一步理解,本发明的示意性实施例及其说明用于解释本发明,并不构成对本发明的不当限定。
图1是吸收式动力和喷射式制冷复合循环系统实施例一结构图。
图2是吸收式动力和喷射式制冷复合循环系统实施例二结构图。
其中,A:吸收器;P:泵;V-1:第一节流阀;V-2:第二节流阀;R:回热换热器;B:锅炉;REC:精馏塔;S:过热器;EJ:喷射器;C:冷凝器;T:透平;EV:蒸发器;RHE:制冷热交换器。
具体实施方式
应该指出,以下详细说明都是例示性的,旨在对本发明提供进一步的说明。除非另有指明,本文使用的所有技术和科学术语具有与本发明所属技术领域的普通技术人员通常理解的相同含义。
需要注意的是,这里所使用的术语仅是为了描述具体实施方式,而非意图限制根据本发明的示例性实施方式。如在这里所使用的,除非上下文另外明确指出,否则单数形式也意图包括复数形式,此外,还应当理解的是,当在本说明书中使用术语“包含”和/或“包括”时,其指明存在特征、步骤、操作、器件、组件和/或它们的组合。
本发明的吸收式动力和喷射式制冷复合循环系统适用于100-200℃的中低温热源。
图1是吸收式动力和喷射式制冷复合循环系统实施例一结构图。
如图1所示的该实施例中的吸收式动力和喷射式制冷复合循环系统,包括吸收器A,吸收器A内有基础工作液1,所述吸收器A与泵P相连;吸收器A内的基础工作液经泵P加压后,依次进入回热换热器R和锅炉B分别进行换热和加热;换热后的基础工作液经锅炉B加热产生饱和蒸汽传输至精馏塔REC进行蒸馏,在塔顶得到饱和蒸汽5;所述吸收器A还分别与蒸发器EV以及制冷热交换器RHE相连通,吸收器A内的液体还吸收来自蒸发器EV传送来的蒸汽18以及制冷热交换器RHE传送来的蒸汽10;
精馏塔REC的塔顶分别与过热器S和喷射器EJ相连通,从精馏塔REC的塔顶排出饱和蒸汽5中的一部分蒸汽7,传输至过热器S进行过热,过热后的气体8再进入透平T进行膨胀做功得到乏汽9,最后乏汽9进入制冷热交换器吸热制冷RHE;另一部分饱和蒸汽7进入喷射器EJ进行吸收—喷射制冷,喷射器EJ出口的液体15进入冷凝器C进行定压冷凝成饱和溶液16,然后经第一节流阀V-1节流后进入蒸发器EV内蒸发制冷;蒸发器EV出口的一部分饱和蒸汽19被喷射器EJ引射,另一部分饱和蒸汽17反馈输送至吸收器A。
实施例一的吸收式动力和喷射式制冷复合循环系统的工作方法,包括:
将吸收器内注设基础工作液,吸收器内的基础工作液经泵加压后,依次进入回热换热器和锅炉分别进行换热和加热;换热后的基础工作液经锅炉加热产生饱和蒸汽传输至精馏塔进行蒸馏,在塔顶得到饱和蒸汽;吸收器内的液体还吸收来自蒸发器以及制冷热交换器传送来的蒸汽;
从精馏塔的塔顶排出的一部分饱和蒸汽传输至过热器进行过热,过热后再进入透平进行膨胀做功得到乏汽,最后乏汽进入制冷热交换器吸热制冷;另一部分饱和蒸汽进入喷射器进行吸收—喷射制冷,喷射器出口的液体进入冷凝器进行定压冷凝成饱和溶液,然后经第一节流阀节流后进入蒸发器内蒸发制冷;蒸发器出口的一部分饱和蒸汽被喷射器引射,另一部分饱和蒸汽反馈输送至吸收器。
本实施例的吸收式动力和喷射式制冷复合循环系统,通过引入喷射器,以消耗一定的热能为代价,却不需要消耗透平的输出功,因而在增加系统输出冷量条件下,提高了制冷循环部分的性能;进入透平的工质为高纯度富氨蒸汽,提高了透平乏汽干度。该循环系统采用喷射器与透平并联的方式,根据不同需求可以通过进入透平和喷射器的流量比,来调整输出功冷比。
图2是吸收式动力和喷射式制冷复合循环系统实施例二结构图。
如图2所示,从吸收器出来的基础工作液1经泵P加压后先进入回热换热器R换热,然后再进入锅炉B进行加热;经锅炉B加热所产生的饱和蒸汽4进入精馏塔REC内进行精馏,塔顶得到高浓度的富氨饱和蒸汽5,塔底得到稀饱和溶液6;从锅炉底部排出的稀溶液11经回热换热器R换热后与来自精馏塔REC塔底的稀溶液6混合,混合液13经第二节流阀V-2节流后进入吸收器A内,吸收器A内的液体还吸收来自蒸发器EV传送来的蒸汽18以及制冷热交换器RHE传送来的蒸汽10;从精馏塔REC塔顶排出的高纯度饱和蒸汽5一部分经过热器S过热后进入透平T膨胀做功,乏汽9进入制冷热交换器(RHE)吸热制冷,另一部分进入喷射器EJ进行吸收—喷射制冷;进入喷射器(EJ)的工质7引射蒸发器EV出口的一部分饱和蒸汽19,喷射器EJ出口的混合工质15进入冷凝器C定压冷凝成饱和溶液16,然后经第一节流阀V-1节流后进入蒸发器EV内蒸发制冷;蒸发器EV出口的饱和蒸汽18一部分被喷射器EJ引射,另一部分进入吸收器A。
具体地,锅炉的底部还通过第一管道与回热换热器相连通,用于将锅炉内的一部分液体反馈至回热换热器进行换热;回热换热器通过第二管道与吸收器相连通,精馏塔的塔底通过第三管道与第二管道相连通,所述第二管道用于将换热后的液体与第三管道内的液体混合后反馈至吸收器。本发明将锅炉内的一部分液体反馈至回热换热器进行换热,换热后的液体与精馏塔的塔底流出的液体混合后反馈至吸收器,这样用来吸收来自蒸发器以及制冷热交换器传送来的蒸汽,增加了循环制冷量。
在另一实施例中,所述第三管道上设置有第二节流阀。本发明通过控制设置在第三管道上的第二节流阀的开度来调节传送至吸收器内液体的流量大小。
在另一实施例中,所述吸收器内还设置有压力传感器,所述压力传感器与控制器相连,所述控制器与泵相连。本发明利用压力传感器检测吸收器内压力大小并传送至控制器,控制根据接收到压力大小来控制泵的运行频率。
在另一实施例中,所述第二节流阀为电磁阀,所述第二节流阀与控制器相连。这样避免了手动调节,能够通过控制器准确调节第二节流阀的开度大小。
在另一实施例中,所述第一节流阀为电磁阀,所述第一节流阀与控制器相连。这样避免了手动调节,能够通过控制器准确调节第一节流阀的开度大小。
本实施例的吸收式动力和喷射式制冷复合循环系统的工作方法,相对于实施例一还包括:锅炉内的一部分液体通过第一管道反馈至回热换热器进行换热,精馏塔的塔底流出的液体经第二管道与换热后的液体在第三管道内混合后反馈至吸收器。
在另一实施例中,该方法还包括:通过控制设置在第三管道上的第二节流阀的开度来调节传送至吸收器内液体的流量大小。
在另一实施例中,该方法还包括:在吸收器内设置压力传感器,压力传感器用于检测吸收器内压力大小并传送至控制器,控制根据接收到压力大小来控制泵的运行频率。
本发明采用吸收-喷射式耦合制冷循环,将Goswami循环和喷射式制冷循环进行耦合集成,增加循环制冷量,既可以保证单效式吸收式制冷机流程、设备简单的优点,又可以提高其制冷系数,从而使系统的整体性能得到改善;本发明通过引入喷射器,以消耗一定的热能为代价,却不需要消耗透平的输出功,因而在增加系统输出冷量条件下,提高了制冷循环部分的性能;进入透平的工质为高纯度富氨蒸汽,提高了透平乏汽干度。该循环系统采用喷射器与透平并联的方式,根据不同需求可以通过进入透平和喷射器的流量比,来调整输出功冷比。
下面对本发明的一种吸收式动力和喷射式制冷复合循环系统进行建模仿真。
吸收式动力和喷射式制冷复合循环系统的建模以氨动力制冷复合循环系统为例:
在建模之前,作出如下假设:
1)系统处于稳定的工作状态;
2)忽略管道压降以及系统向周围环境的散热;
3)冷凝器出口、吸收器出口、精馏器底部以及锅炉底部的工质为饱和液体;
4)精馏器入口以及顶部出口、喷射器出口、蒸发器出口的工质为饱和气体;
5)吸收器出口的氨液浓度根据其压力和温度计算;
6)精馏器出口的氨的浓度取决于精馏器出口的压力以及温度。
在建模的过程中,本发明的该循环系统的各部件如回热换热器、过热器、透平、泵、喷射器、冷凝器、蒸发器、制冷热交换器都可以作为某一控制容积,这些控制容积都可以利用质量守恒和能量守恒方程来描述;
锅炉、精馏器、吸收器还应包括氨组分的质量守恒。
其中,各部件的质量守恒以及能量守恒方程为:
氨组分的质量守恒方程为:
其中:m、h、W和Q分别表示流量、焓值、功和热量;X表示氨的质量浓度;i、j和k分别表示第i、j和k个设备,其分别为正整数;in和out表示相应设备的进口和出口。
本发明的循环系统输出能量主要包括两个方面,一方面来自透平的输出功,另一方面来自蒸发器以及制冷热交换器所获得的冷量,故循环的联供效率可以定义为:
其中:Wnet为系统对外的输出净功,Qc为系统总的制冷量,Qin为工质经锅炉所吸收的热量。
仿真过程中系统初始参数的输入值如表1所示,该动力制冷复合循环的各状态点参数值如表2所示,该循环的性能结果如表3所示。
表1系统基本参数
表2系统各状态点参数值
表3循环性能结果
通过上述仿真可知,本发明的吸收式动力和喷射式制冷复合循环系统具体以下优点:
1)将Goswami循环和喷射式制冷循环进行耦合集成,增加循环制冷量;
2)通过改变进入透平和喷射器的流量比,调整系统的输出功冷比;
3)通过引入喷射器,以消耗一定的热能为代价,却不需要消耗透平的输出功,因而在增加系统输出冷量条件下,提高了制冷循环部分的性能;
4)进入透平的工质为高纯度富氨蒸汽,提高了透平乏汽干度。
上述虽然结合附图对本发明的具体实施方式进行了描述,但并非对本发明保护范围的限制,所属领域技术人员应该明白,在本发明的技术方案的基础上,本领域技术人员不需要付出创造性劳动即可做出的各种修改或变形仍在本发明的保护范围以内。

Claims (10)

1.一种吸收式动力和喷射式制冷复合循环系统,其特征在于,包括吸收器,所述吸收器与泵相连,吸收器内的基础工作液经泵加压后,依次进入回热换热器和锅炉分别进行换热和加热;换热后的基础工作液经锅炉加热产生饱和蒸汽传输至精馏塔进行蒸馏,在塔顶得到饱和蒸汽;所述吸收器还分别与蒸发器以及制冷热交换器相连通,吸收器内的液体还吸收来自蒸发器以及制冷热交换器传送来的蒸汽;
精馏塔的塔顶分别与过热器和喷射器相连通,从精馏塔的塔顶排出的一部分饱和蒸汽传输至过热器进行过热,过热后再进入透平进行膨胀做功得到乏汽,最后乏汽进入制冷热交换器吸热制冷;另一部分饱和蒸汽进入喷射器进行吸收—喷射制冷,喷射器出口的液体进入冷凝器进行定压冷凝成饱和溶液,然后经第一节流阀节流后进入蒸发器内蒸发制冷;蒸发器出口的一部分饱和蒸汽被喷射器引射,另一部分饱和蒸汽反馈输送至吸收器。
2.如权利要求1所述的一种吸收式动力和喷射式制冷复合循环系统,其特征在于,所述锅炉的底部还通过第一管道与回热换热器相连通,用于将锅炉内的一部分液体送至回热换热器进行换热;回热换热器通过第二管道与吸收器相连通,精馏塔的塔底通过第三管道与第二管道相连通,所述第二管道用于将换热后的液体与第三管道内的液体混合后送至吸收器。
3.如权利要求2所述的一种吸收式动力和喷射式制冷复合循环系统,其特征在于,所述第三管道上设置有第二节流阀。
4.如权利要求1所述的一种吸收式动力和喷射式制冷复合循环系统,其特征在于,所述吸收器内还设置有压力传感器,所述压力传感器与控制器相连,所述控制器与泵相连。
5.如权利要求4所述的一种吸收式动力和喷射式制冷复合循环系统,其特征在于,所述第二节流阀为电磁阀,所述第二节流阀与控制器相连。
6.如权利要求4所述的一种吸收式动力和喷射式制冷复合循环系统,其特征在于,所述第一节流阀为电磁阀,所述第一节流阀与控制器相连。
7.一种如权利要求1-6中任一项所述的吸收式动力和喷射式制冷复合循环系统的工作方法,其特征在于,包括:
将吸收器内的基础工作液经泵加压后,依次进入回热换热器和锅炉分别进行换热和加热;换热后的基础工作液经锅炉加热产生饱和蒸汽传输至精馏塔进行蒸馏,在塔顶得到饱和蒸汽;吸收器内的液体还吸收来自蒸发器以及制冷热交换器传送来的蒸汽;
从精馏塔的塔顶排出的一部分饱和蒸汽传输至过热器进行过热,过热后再进入透平进行膨胀做功得到乏汽,最后乏汽进入制冷热交换器吸热制冷;另一部分饱和蒸汽进入喷射器进行吸收—喷射制冷,喷射器出口的液体进入冷凝器进行定压冷凝成饱和溶液,然后经第一节流阀节流后进入蒸发器内蒸发制冷;蒸发器出口的一部分饱和蒸汽被喷射器引射,另一部分饱和蒸汽反馈输送至吸收器。
8.如权利要求7所述的吸收式动力和喷射式制冷复合循环系统的工作方法,其特征在于,该方法还包括:锅炉内的一部分液体通过第一管道送至回热换热器进行换热,精馏塔的塔底流出的液体经第二管道与换热后的液体在第三管道内混合后送至吸收器。
9.如权利要求8所述的吸收式动力和喷射式制冷复合循环系统的工作方法,其特征在于,该方法还包括:通过控制设置在第三管道上的第二节流阀的开度来调节传送至吸收器内液体的流量大小。
10.如权利要求7所述的吸收式动力和喷射式制冷复合循环系统的工作方法,其特征在于,该方法还包括:在吸收器内设置压力传感器,压力传感器用于检测吸收器内压力大小并传送至控制器,控制根据接收到压力大小来控制泵的运行频率。
CN201710076056.9A 2017-02-13 2017-02-13 吸收式动力与喷射式制冷复合循环系统及其工作方法 Active CN108426388B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201710076056.9A CN108426388B (zh) 2017-02-13 2017-02-13 吸收式动力与喷射式制冷复合循环系统及其工作方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201710076056.9A CN108426388B (zh) 2017-02-13 2017-02-13 吸收式动力与喷射式制冷复合循环系统及其工作方法

Publications (2)

Publication Number Publication Date
CN108426388A true CN108426388A (zh) 2018-08-21
CN108426388B CN108426388B (zh) 2019-12-24

Family

ID=63154985

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201710076056.9A Active CN108426388B (zh) 2017-02-13 2017-02-13 吸收式动力与喷射式制冷复合循环系统及其工作方法

Country Status (1)

Country Link
CN (1) CN108426388B (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109974323A (zh) * 2019-03-05 2019-07-05 中国科学院力学研究所 一种带喷流降温装置的冷热电联供循环方法及系统

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SU497454A1 (ru) * 1974-04-29 1975-12-30 Специальное опытно-конструкторское бюро Института технической теплофизики АН УССР Абсорбционна бромистолитиева холодильна установка
JPS6017232A (ja) * 1983-07-07 1985-01-29 Osaka Gas Co Ltd ガスタ−ビン式駆動装置
CN101949609A (zh) * 2010-10-18 2011-01-19 河南科技大学 一种低温热源驱动的风冷氨水吸收制冷机
CN102230702A (zh) * 2011-06-03 2011-11-02 浙江大学 一种带经济器的两级喷射制冷循环系统
CN102312687A (zh) * 2011-09-16 2012-01-11 东南大学 一种溶液冷却吸收式氨水动力循环装置
CN104456610A (zh) * 2014-12-02 2015-03-25 代元军 一种蒸汽喷射式热泵循环的烟气余热回收系统

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SU497454A1 (ru) * 1974-04-29 1975-12-30 Специальное опытно-конструкторское бюро Института технической теплофизики АН УССР Абсорбционна бромистолитиева холодильна установка
JPS6017232A (ja) * 1983-07-07 1985-01-29 Osaka Gas Co Ltd ガスタ−ビン式駆動装置
CN101949609A (zh) * 2010-10-18 2011-01-19 河南科技大学 一种低温热源驱动的风冷氨水吸收制冷机
CN102230702A (zh) * 2011-06-03 2011-11-02 浙江大学 一种带经济器的两级喷射制冷循环系统
CN102312687A (zh) * 2011-09-16 2012-01-11 东南大学 一种溶液冷却吸收式氨水动力循环装置
CN104456610A (zh) * 2014-12-02 2015-03-25 代元军 一种蒸汽喷射式热泵循环的烟气余热回收系统

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109974323A (zh) * 2019-03-05 2019-07-05 中国科学院力学研究所 一种带喷流降温装置的冷热电联供循环方法及系统
CN109974323B (zh) * 2019-03-05 2020-05-15 中国科学院力学研究所 一种带喷流降温装置的冷热电联供循环方法及系统
US11002468B2 (en) 2019-03-05 2021-05-11 Institute Of Mechanics, Chinese Academy Of Sciences Method and system for circulating combined cooling, heating and power with jet cooling device

Also Published As

Publication number Publication date
CN108426388B (zh) 2019-12-24

Similar Documents

Publication Publication Date Title
CN106766352A (zh) 热/功联合驱动的蒸汽喷射式制冷装置及其制冷方法
CN103542597B (zh) 一种适于回收变温热源的功冷联供系统
Zhang et al. A theoretical study on a novel combined organic Rankine cycle and ejector heat pump
CN107939548A (zh) 新型内燃机余热利用冷热电联供系统及其工作方法
CN102797524B (zh) 一种中低温余热利用冷/功联产系统
CN103322725A (zh) 热泵系统及干燥系统以及方法
CN107525301B (zh) 一种新型吸收-喷射复合制冷系统
CN104180557B (zh) 热电联供、冷电联供与热电‑冷电两用联供系统
CN107906781B (zh) 三压式功冷联供系统及方法
CN201819469U (zh) 小型化吸收式制冷装置
CN104567078B (zh) 一种中间冷却式的两级吸收式制冷系统
CN108426388A (zh) 吸收式动力与喷射式制冷复合循环系统及其工作方法
CN207701188U (zh) 构造冷源能量回收系统及热力发动机系统
CN107421157B (zh) 一种氨吸收式动力和喷射式制冷复合循环系统及方法
CN103994599A (zh) 一种基于气液喷射泵的跨临界喷射制冷系统
CN204460822U (zh) 一种中间冷却式的两级吸收式制冷系统
CN210980197U (zh) 利用稀释热进行空气调节的稀释式制冷热泵系统
CN107328135A (zh) 双蒸发压力氨水浓度可调型动力/制冷联合循环装置
CN107906782B (zh) 一种双吸收型功冷联供循环系统及其方法
CN201163125Y (zh) 吸收式空调系统
CN106352590B (zh) 热动联供系统
CN101871373A (zh) 吸收式汽轮机功冷混合循环系统
CN103398502A (zh) 一种引射高压发生器出口冷剂蒸汽的双效热泵
CN2343552Y (zh) 并联流程直燃三效溴化锂吸收式制冷机
CN104976811A (zh) 双喷射式制冷系统

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant