CN108424921B - 一种降低尼古丁转化率的cyp82e10基因错义突变体m594及其应用 - Google Patents

一种降低尼古丁转化率的cyp82e10基因错义突变体m594及其应用 Download PDF

Info

Publication number
CN108424921B
CN108424921B CN201810360473.0A CN201810360473A CN108424921B CN 108424921 B CN108424921 B CN 108424921B CN 201810360473 A CN201810360473 A CN 201810360473A CN 108424921 B CN108424921 B CN 108424921B
Authority
CN
China
Prior art keywords
cyp82e10
nicotine conversion
conversion rate
mutant
leu
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201810360473.0A
Other languages
English (en)
Other versions
CN108424921A (zh
Inventor
李文正
宋中邦
李梅云
王丙武
高玉龙
吴兴富
隋学艺
赵璐
李永平
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yunnan Academy of Tobacco Agricultural Sciences
Original Assignee
Yunnan Academy of Tobacco Agricultural Sciences
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yunnan Academy of Tobacco Agricultural Sciences filed Critical Yunnan Academy of Tobacco Agricultural Sciences
Priority to CN201810360473.0A priority Critical patent/CN108424921B/zh
Publication of CN108424921A publication Critical patent/CN108424921A/zh
Application granted granted Critical
Publication of CN108424921B publication Critical patent/CN108424921B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/0004Oxidoreductases (1.)
    • C12N9/0071Oxidoreductases (1.) acting on paired donors with incorporation of molecular oxygen (1.14)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/82Vectors or expression systems specially adapted for eukaryotic hosts for plant cells, e.g. plant artificial chromosomes (PACs)
    • C12N15/8241Phenotypically and genetically modified plants via recombinant DNA technology
    • C12N15/8242Phenotypically and genetically modified plants via recombinant DNA technology with non-agronomic quality (output) traits, e.g. for industrial processing; Value added, non-agronomic traits
    • C12N15/8243Phenotypically and genetically modified plants via recombinant DNA technology with non-agronomic quality (output) traits, e.g. for industrial processing; Value added, non-agronomic traits involving biosynthetic or metabolic pathways, i.e. metabolic engineering, e.g. nicotine, caffeine

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Zoology (AREA)
  • Biotechnology (AREA)
  • Organic Chemistry (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Wood Science & Technology (AREA)
  • Molecular Biology (AREA)
  • General Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • Biochemistry (AREA)
  • Microbiology (AREA)
  • General Health & Medical Sciences (AREA)
  • Plant Pathology (AREA)
  • Biophysics (AREA)
  • Physics & Mathematics (AREA)
  • Cell Biology (AREA)
  • Nutrition Science (AREA)
  • Medicinal Chemistry (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)
  • Breeding Of Plants And Reproduction By Means Of Culturing (AREA)

Abstract

本发明公开了一种尼古丁转化率的CYP82E10基因错义突变体M594及其应用。所述的降低尼古丁转化率的CYP82E10基因错义突变体M594相对于核苷酸序列为SEQ ID NO.1所示的CYP82E10基因,所述的降低尼古丁转化率的CYP82E10基因错义突变体M594含有的CYP82E10基因序列中342位的C被T取代发生了点突变,所述的降低尼古丁转化率的CYP82E10基因错义突变体M594的核苷酸序列如SEQ ID NO.2所示。应用为所述的降低尼古丁转化率的CYP82E10基因错义突变体M594在获得尼古丁低转化率的烟草植株中的应用。本发明所述的降低尼古丁转化率的CYP82E10基因错义突变体M594获得的云烟87材料中,叶片尼古丁转化率分别比对照下降约55%,显著降低了尼古丁的转化率。

Description

一种降低尼古丁转化率的CYP82E10基因错义突变体M594及其 应用
技术领域
本发明属于遗传工程技术领域,具体涉及一种降低尼古丁转化率的CYP82E10基因错义突变体M594及其应用。
背景技术
尼古丁(nicotine)、去甲基尼古丁(nornicotine)、假木贼碱(anabasine)、和新烟碱(anatabine)是烟草(Nicotiana tobacum)中主要的生物碱,其中尼古丁是首要的生物碱,占生物碱总含量的90-95%,去甲基尼古丁含量通常低于总生物碱的3.5%,是尼古丁通过去甲基化反应转化生成。去甲基尼古丁能够对人体健康产生危害,主要表现在它是卷烟烟气中潜在致癌物质亚硝基去甲基尼古丁(nitrosonornicotine, NNN)的合成前体,可能导致食管癌、口腔癌的发生。去甲基尼古丁也能直接诱导吸烟者血浆中蛋白的异常糖基化,也有研究表明它能与常用类固醇类药物发生共价反应,影响药效和毒性。因此,减少尼古丁转化生成去甲基尼古丁,即降低尼古丁转化率是烟草减害的重要目标。
国际上有两种类型的烟草在生产中广泛应用,白肋烟和烤烟,其中白肋烟生产主要在西方发达国家及南美洲,我国主要种植烤烟。白肋烟CYP82E2亚家族的CYP82E4CYP82E5CYP82E10基因能够编码具有活性的尼古丁去甲基酶,是尼古丁转化的关键酶。Gavilano等通过RNAi技术抑制白肋烟强“转化株”CYP82E4及其同源基因的表达,去甲基尼古丁合成受到显著抑制,转基因植株的尼古丁转化率最低只有0.8%,甚至低于白肋烟“非转化株”普遍大约3-5%的转化率。Julio等人在1132个EMS诱变突变株中筛选得到10株在CYP82E4基因座发生点突变的烟草,其中无义突变及错义突变株中尼古丁转化率降至极其微量水平。Lewis等人用EMS诱变的方法分别获得了CYP82E4CYP82E5CYP82E10发生突变的白肋烟材料,发现CYP82E5CYP82E10基因突变不影响尼古丁转化率,三个基因同时突变的突变株中尼古丁转化率远远低于对照株。上述研究表明白肋烟中CYP82E4是决定尼古丁转化率的关键基因,CYP82E5CYP82E10基因无明显影响。
烤烟是中式卷烟的主要原料,降低其尼古丁转化率进而降低NNN含量对中式卷烟减害有重要意义。但迄今为止关于烤烟去甲基尼古丁合成的研究较少,烤烟与白肋烟的合成机制是否一致目前尚无文献报道,如何降低烤烟尼古丁转化率仍需探索。
发明内容
本发明的第一目的在于提供一种降低尼古丁转化率的CYP82E10基因错义突变体M594;第二目的在于提供所述的降低尼古丁转化率的CYP82E10基因错义突变体M594的应用。
本发明的第一目的是这样实现的,所述的降低尼古丁转化率的CYP82E10基因错义突变体M594相对于核苷酸序列为SEQ ID NO.1所示的CYP82E10基因,所述的降低尼古丁转化率的CYP82E10基因错义突变体M594含有的CYP82E10基因序列中342位的C被T取代发生了点突变,所述的降低尼古丁转化率的CYP82E10基因错义突变体M594的核苷酸序列如SEQ IDNO.2所示。
本发明的第二目的是这样实现的,所述的降低尼古丁转化率的CYP82E10基因错义突变体M594在获得尼古丁低转化率的烟草植株中的应用。
本发明所述的降低尼古丁转化率的CYP82E10基因错义突变体M594获得的云烟87材料中,叶片尼古丁转化率分别比对照下降约55%,显著降低了尼古丁的转化率。
附图说明
图1为CYP82E10基因突变毛细管电泳检测;
图2为突变体材料M594测序结果比对;
图3为突变体材料的测序峰图;
图4为突变体材料尼古丁转化率分析。
具体实施方式
下面结合实施例和附图对本发明作进一步的说明,但不以任何方式对本发明加以限制,基于本发明教导所作的任何变换或替换,均属于本发明的保护范围。
本发明所述的降低尼古丁转化率的CYP82E10基因错义突变体M594相对于核苷酸序列为SEQ ID NO.1所示的CYP82E10基因,所述的降低尼古丁转化率的CYP82E10基因错义突变体M594含有的CYP82E10基因序列中342位的C被T取代发生了点突变,所述的降低尼古丁转化率的CYP82E10基因错义突变体M594的核苷酸序列如SEQ ID NO.2所示。
所述的降低尼古丁转化率的CYP82E10基因错义突变体M594编码的氨基酸序列如SEQ ID NO.3所示。
本发明所述降低尼古丁转化率的CYP82E10基因错义突变体M594的应用为所述的降低尼古丁转化率的CYP82E10基因错义突变体M594在获得尼古丁低转化率的烟草植株中的应用。
实施例1
烤烟突变体库创制
一、烤烟种子EMS处理
烤烟(品种:云烟87)种子用50%的市售商品漂白液浸泡12分钟后,用去离子水快速清洗,并在去离子水中浸泡12小时。弃去离子水,加入等体积0.5% EMS(甲基磺酸乙酯)处理12小时。弃处理液,加入去离子水清洗6-8次,每次约1分钟。种子收集于布氏漏斗,抽干待用。
二、M1植株田间种植
EMS处理完毕种子播种于漂浮盘,每穴一粒种子,出苗后移栽至田间,正常农艺措施管理。现蕾后单株套袋编号收种获得M2种子。
三、突变体基因组DNA提取及混样
利用试剂盒提取基因组DNA,步骤如下:
称取0.1g鲜样,液氮研磨、细碎后,转入2.0 ml样品管中,立即加入600μL AP1缓冲液和4μL RNaseA贮存液(100 mg/ml)。65℃中水浴处理10分钟,期间颠倒EP管2-3次。加入190μL AP2缓冲液,混匀置于冰上5分钟, 14000 rpm室温离心5分钟。吸取上清液至QIAshredder Mini柱,14000 rpm室温离心2分钟。取450—650μL过滤液至2.0ml离心管中,再加入675-900μL的缓冲液AP3/E。取650μL混合物至2 ml的DNeasy柱内,室温以≥8000rpm离心1-2分钟。将上述的DNeasy柱放入新的2 ml收集管中,加入500 μL AW缓冲液,以≥8000rpm离心2分钟,丢弃流出液,再用AW缓冲液重复清洗一次。将DNeasy柱放在1.5 ml离心管中,加入100μL AE缓冲液,室温放置5分钟,离心所得滤液即为基因组DNA。
大田种植约2200份M2代EMS突变体植株,采集叶片并利用上述方法提取基因组DNA,将所有样品DNA浓度稀释至40 ng/μl,最终建立M2代云烟87突变体的DNA库,每8份DNA混样,构成8倍混合池,保存于96孔板中。
实施例2
CYP82E10基因突变体筛选
一、Tilling引物
CYP82E10基因有两个外显子,利用Tilling技术筛选第一个外显子区域的突变体。根据目地基因的基因组序列,
正向引物为CYP82E10_Tilling_F:GTCAAATACCACCTCTTAATAGTAA,
反向引物为CYP82E10_Tilling_R:AAAAGTCCCTATTGGTAGGAAGTGC。
二、PCR扩增条件
PCR 反应体系如下:总体积为10 μL,其中20 ng/μL DNA 样品1.0 μL、10×PCRbuffer 1.0 μL, dNTPs 0.8 μL,引物各0.16 μL, Taq DNA酶0.1 μL,ddH2O 6.78 μL。
PCR 反应程序如下: 95℃预变性3 分钟;94℃变性30 秒,62℃退火30 秒(每个循环下降1℃),72℃延伸90 秒,运行7 个循环;94℃变性30 秒,58℃退火30 秒,72℃延伸90秒,运行40 个循环;最后72℃延伸5 分钟。PCR 扩增产物可以在4℃保存。
三、PCR产物酶切及电泳
利用CEL I酶特异性切割异源双链的特性,对PCR产物进行酶切,酶切体系如下:PCR 产物4 μL, 10×buffer 1μL,CEL I酶 0.5μL,补充H2O至总体积为10μL。酶切体系利用自动毛细管电泳系统进行分离,分离条件如下:样品上样电压为9KV,上样30 sec,Marker的上样电压为7.5KV,上样5sec,预电泳电压9KV,分离电泳电压9 kv,运行时间80 min,电泳结果用Prosize 2.0软件分析。Tilling筛选共获得11个突变株,其中突变单株M594发生L115F突变,结果见表1和图1。
表1 云烟87突变体库中CYP82E10基因突变体分析
Figure DEST_PATH_IMAGE001
实施例3
CYP82E10基因错义突变验证
一、M3代突变体基因组DNA提取及PCR扩增
根据M2代植株Tilling筛选结果,选择CYP82E10基因目标区域发生突变单株的种子(M3代),在育苗盘中播种。采用试剂盒法提取幼苗叶片基因组DNA。以CYP82E10_Tilling_F和CYP82E10_Tilling_R引物,以基因组DNA为模板扩增CYP82E10基因第一个外显子区域。PCR 反应体系如下:总体积为25 μL,其中20 ng/μL DNA 样品1.0 μL、10×PCR buffer 2.5μL, dNTPs 2 μL,引物各0.5 μL, Taq DNA酶0.3 μL,ddH2O 18.2 μL。PCR 反应程序如下:95℃预变性3 分钟;94℃变性30 秒,55℃退火30 秒(每个循环下降1℃),72℃延伸90 秒,运行30 个循环; 72℃延伸5 分钟。PCR 扩增产物可以在4℃保存。
二、PCR产物TOPO克隆及测序
PCR产物回收后连接pTOPO载体(Invitrogen),体系如下:PCR产物4μL,pCR-BluntII-TOPO质粒1μL,salt Solution 1μL。反应组分25℃孵育30min,转E.coli.感受态细胞中混匀,冰浴30min,42℃热休克90sec后立即放入冰浴中2min,加入0.35mL的LB液体培养基,37℃ 210rpm振荡培养1h。离心1min(7500rpm),弃上清至约100μl混匀,均匀涂布于Km抗性培养基上,37℃过夜培养。选择阳性克隆提取质粒后进行Sanger测序,结果见图2和图3。
实施例4
CYP82E10基因错义突变体尼古丁转化率分析
一、突变体材料样品制备
烟草生长至成熟期,取整株烟叶样品60 ℃烘干,粉碎过60目筛待测。准确称取烟样0.5 g于50 mL离心管中,加入5 mL 10%的NaOH溶液,摇匀,浸泡15 min,加入20 mL含内标的萃取液,超声60 min,在离心机上5000 r/min离心5 min,取2 mL下层二氯甲烷清液过装有2 g无水硫酸钠的微孔过滤器后,用气相色谱-串联质谱仪分析。
二、叶片去甲基尼古丁含量分析
采用GC-MS-MS法分析叶片中去甲基尼古丁含量。传输线温度:230℃,离子源温度:210 ℃;电离模式:电子轰击电离(EI);轰击能量:70 eV;灯丝电流:50 μA,电子倍增器电压1200 V;碰撞气:氩气(纯度≥99.999%);碰撞池压力:0.3Pa);溶剂延迟时间:4 min;数据采集模式:MRM。保留时间(min):10.48;定量离子对:119﹥92;碰撞能(eV) :15;定性离子对:119﹥65;碰撞能(eV): 25; 驻留时间(s): 0.15。M4代植株中,M594材料尼古丁转化率是云烟87的45%。尼古丁转化率=[去甲基尼古丁/去甲基尼古丁+尼古丁]*100%,具体结果见图4。
SEQUENCE LISTING
<110> 云南省烟草农业科学研究院
<120> 一种降低尼古丁转化率的CYP82E10基因错义突变体M594及其应用
<130> 2018
<160> 5
<170> PatentIn version 3.3
<210> 1
<211> 1554
<212> DNA
<213> CYP82E10基因
<400> 1
atggtttctc ccgtagaagc catcgtagga ctagtaactc ttacacttct cttctacttc 60
atacggacca aaaaatctca aaaaccttca aaaccattac caccgaaaat ccccggaggg 120
tggccggtaa tcggccatct tttctatttc gatgacgaca gcgacgaccg tccattagca 180
cgaaaactcg gagacttagc tgacaaatac ggcccggttt tcacttttcg gctaggcctt 240
ccgcttgtgt tagttgtaag cagttacgaa gctataaaag actgcttctc tacaaatgat 300
gccattttct ccaatcgtcc agcttttctt tatggcgaat accttggcta caataatgcc 360
atgctatttt tgacaaaata cggaccttac tggcgaaaaa atagaaaatt agtcattcag 420
gaagttctct gtgctagtcg tctcgaaaaa ttgaagcacg tgagatttgg tgaaattcag 480
acgagcatta agaatttata cactcgaatt gatggaaatt cgagtacgat aaatctaacc 540
gattggttag aagaattgaa ttttggtctg atcgtgaaaa tgatcgctgg gaaaaattat 600
gaatccggta aaggagatga acaagtggag agatttagga aagcgtttaa ggattttata 660
attttatcaa tggagtttgt gttatgggat gcttttccaa ttccattgtt caaatgggtg 720
gattttcaag gccatgttaa ggccatgaaa aggacattta aggatataga ttctgttttt 780
cagaattggt tagaggaaca tgtcaagaaa aaagaaaaaa tggaggttaa tgcagaagga 840
aatgaacaag atttcattga tgtggtgctt tcaaaaatga gtaatgaata tcttgatgaa 900
ggctactctc gtgatactgt cataaaagca acagtgttta gtttagtctt ggatgctgcg 960
gacacagttg ctcttcacat gaattgggga atggcattat tgataaacaa tcaacatgcc 1020
ttgaagaaag cgcaagaaga gatagataaa aaagttggta aggatagatg ggtagaagag 1080
agtgatatta aggatttggt atacctccaa actattgtta aagaagtgtt acgattatat 1140
ccaccgggac ctttattagt accccatgaa aatgtagagg attgtgttgt tagtggatat 1200
cacattccta aagggactag actattcgcg aacgttatga aattacagcg cgatcctaaa 1260
ctctggtcaa atcctgataa gttcgatcca gagagatttt tcgctgctga tattgacttt 1320
cgtggtcaac actatgagtt tatcccattt ggttctggaa gacgatcttg tccggggatg 1380
acttatgcaa tgcaagtgga acacctaaca atcgcacact tgatccaggg tttcaattac 1440
aaaactccaa atgacgagcc cttggatatg aaggaaggtg caggattaac tatacgtaag 1500
gtaaatccta tagaagtggt aattacgcct cgcctgacac ctgagcttta ttaa 1554
<210> 2
<211> 1554
<212> DNA
<213> 突变体M594的核苷酸序列
<400> 2
atggtttctc ccgtagaagc catcgtagga ctagtaactc ttacacttct cttctacttc 60
atacggacca aaaaatctca aaaaccttca aaaccattac caccgaaaat ccccggaggg 120
tggccggtaa tcggccatct tttctatttc gatgacgaca gcgacgaccg tccattagca 180
cgaaaactcg gagacttagc tgacaaatac ggcccggttt tcacttttcg gctaggcctt 240
ccgcttgtgt tagttgtaag cagttacgaa gctataaaag actgcttctc tacaaatgat 300
gccattttct ccaatcgtcc agcttttctt tatggcgaat actttggcta caataatgcc 360
atgctatttt tgacaaaata cggaccttac tggcgaaaaa atagaaaatt agtcattcag 420
gaagttctct gtgctagtcg tctcgaaaaa ttgaagcacg tgagatttgg tgaaattcag 480
acgagcatta agaatttata cactcgaatt gatggaaatt cgagtacgat aaatctaacc 540
gattggttag aagaattgaa ttttggtctg atcgtgaaaa tgatcgctgg gaaaaattat 600
gaatccggta aaggagatga acaagtggag agatttagga aagcgtttaa ggattttata 660
attttatcaa tggagtttgt gttatgggat gcttttccaa ttccattgtt caaatgggtg 720
gattttcaag gccatgttaa ggccatgaaa aggacattta aggatataga ttctgttttt 780
cagaattggt tagaggaaca tgtcaagaaa aaagaaaaaa tggaggttaa tgcagaagga 840
aatgaacaag atttcattga tgtggtgctt tcaaaaatga gtaatgaata tcttgatgaa 900
ggctactctc gtgatactgt cataaaagca acagtgttta gtttagtctt ggatgctgcg 960
gacacagttg ctcttcacat gaattgggga atggcattat tgataaacaa tcaacatgcc 1020
ttgaagaaag cgcaagaaga gatagataaa aaagttggta aggatagatg ggtagaagag 1080
agtgatatta aggatttggt atacctccaa actattgtta aagaagtgtt acgattatat 1140
ccaccgggac ctttattagt accccatgaa aatgtagagg attgtgttgt tagtggatat 1200
cacattccta aagggactag actattcgcg aacgttatga aattacagcg cgatcctaaa 1260
ctctggtcaa atcctgataa gttcgatcca gagagatttt tcgctgctga tattgacttt 1320
cgtggtcaac actatgagtt tatcccattt ggttctggaa gacgatcttg tccggggatg 1380
acttatgcaa tgcaagtgga acacctaaca atcgcacact tgatccaggg tttcaattac 1440
aaaactccaa atgacgagcc cttggatatg aaggaaggtg caggattaac tatacgtaag 1500
gtaaatccta tagaagtggt aattacgcct cgcctgacac ctgagcttta ttaa 1554
<210> 3
<211> 517
<212> PRT
<213> 突变体M594编码的氨基酸序列
<400> 3
Met Val Ser Pro Val Glu Ala Ile Val Gly Leu Val Thr Leu Thr Leu
1 5 10 15
Leu Phe Tyr Phe Ile Arg Thr Lys Lys Ser Gln Lys Pro Ser Lys Pro
20 25 30
Leu Pro Pro Lys Ile Pro Gly Gly Trp Pro Val Ile Gly His Leu Phe
35 40 45
Tyr Phe Asp Asp Asp Ser Asp Asp Arg Pro Leu Ala Arg Lys Leu Gly
50 55 60
Asp Leu Ala Asp Lys Tyr Gly Pro Val Phe Thr Phe Arg Leu Gly Leu
65 70 75 80
Pro Leu Val Leu Val Val Ser Ser Tyr Glu Ala Ile Lys Asp Cys Phe
85 90 95
Ser Thr Asn Asp Ala Ile Phe Ser Asn Arg Pro Ala Phe Leu Tyr Gly
100 105 110
Glu Tyr Phe Gly Tyr Asn Asn Ala Met Leu Phe Leu Thr Lys Tyr Gly
115 120 125
Pro Tyr Trp Arg Lys Asn Arg Lys Leu Val Ile Gln Glu Val Leu Cys
130 135 140
Ala Ser Arg Leu Glu Lys Leu Lys His Val Arg Phe Gly Glu Ile Gln
145 150 155 160
Thr Ser Ile Lys Asn Leu Tyr Thr Arg Ile Asp Gly Asn Ser Ser Thr
165 170 175
Ile Asn Leu Thr Asp Trp Leu Glu Glu Leu Asn Phe Gly Leu Ile Val
180 185 190
Lys Met Ile Ala Gly Lys Asn Tyr Glu Ser Gly Lys Gly Asp Glu Gln
195 200 205
Val Glu Arg Phe Arg Lys Ala Phe Lys Asp Phe Ile Ile Leu Ser Met
210 215 220
Glu Phe Val Leu Trp Asp Ala Phe Pro Ile Pro Leu Phe Lys Trp Val
225 230 235 240
Asp Phe Gln Gly His Val Lys Ala Met Lys Arg Thr Phe Lys Asp Ile
245 250 255
Asp Ser Val Phe Gln Asn Trp Leu Glu Glu His Val Lys Lys Lys Glu
260 265 270
Lys Met Glu Val Asn Ala Glu Gly Asn Glu Gln Asp Phe Ile Asp Val
275 280 285
Val Leu Ser Lys Met Ser Asn Glu Tyr Leu Asp Glu Gly Tyr Ser Arg
290 295 300
Asp Thr Val Ile Lys Ala Thr Val Phe Ser Leu Val Leu Asp Ala Ala
305 310 315 320
Asp Thr Val Ala Leu His Met Asn Trp Gly Met Ala Leu Leu Ile Asn
325 330 335
Asn Gln His Ala Leu Lys Lys Ala Gln Glu Glu Ile Asp Lys Lys Val
340 345 350
Gly Lys Asp Arg Trp Val Glu Glu Ser Asp Ile Lys Asp Leu Val Tyr
355 360 365
Leu Gln Thr Ile Val Lys Glu Val Leu Arg Leu Tyr Pro Pro Gly Pro
370 375 380
Leu Leu Val Pro His Glu Asn Val Glu Asp Cys Val Val Ser Gly Tyr
385 390 395 400
His Ile Pro Lys Gly Thr Arg Leu Phe Ala Asn Val Met Lys Leu Gln
405 410 415
Arg Asp Pro Lys Leu Trp Ser Asn Pro Asp Lys Phe Asp Pro Glu Arg
420 425 430
Phe Phe Ala Ala Asp Ile Asp Phe Arg Gly Gln His Tyr Glu Phe Ile
435 440 445
Pro Phe Gly Ser Gly Arg Arg Ser Cys Pro Gly Met Thr Tyr Ala Met
450 455 460
Gln Val Glu His Leu Thr Ile Ala His Leu Ile Gln Gly Phe Asn Tyr
465 470 475 480
Lys Thr Pro Asn Asp Glu Pro Leu Asp Met Lys Glu Gly Ala Gly Leu
485 490 495
Thr Ile Arg Lys Val Asn Pro Ile Glu Val Val Ile Thr Pro Arg Leu
500 505 510
Thr Pro Glu Leu Tyr
515
<210> 4
<211> 25
<212> DNA
<213> CYP82E10_Tilling_F
<400> 4
gtcaaatacc acctcttaat agtaa 25
<210> 5
<211> 25
<212> DNA
<213> CYP82E10_Tilling_R
<400> 5
aaaagtccct attggtagga agtgc 25

Claims (2)

1.一种降低尼古丁转化率的CYP82E10基因错义突变体M594,其特征在于,相对于核苷酸序列为SEQ ID NO.1所示的CYP82E10基因,所述降低尼古丁转化率的CYP82E10基因错义突变体M594含有的CYP82E10基因序列中342位的C被T取代发生了点突变,所述降低尼古丁转化率的CYP82E10基因错义突变体M594的核苷酸序列如SEQ ID NO.2所示、其氨基酸序列如SEQ ID NO.3所示。
2.一种根据权利要求1所述降低尼古丁转化率的CYP82E10基因错义突变体M594在获得尼古丁低转化率的烟草植株中的应用,烟草植株的品种为云烟87。
CN201810360473.0A 2018-04-20 2018-04-20 一种降低尼古丁转化率的cyp82e10基因错义突变体m594及其应用 Active CN108424921B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201810360473.0A CN108424921B (zh) 2018-04-20 2018-04-20 一种降低尼古丁转化率的cyp82e10基因错义突变体m594及其应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201810360473.0A CN108424921B (zh) 2018-04-20 2018-04-20 一种降低尼古丁转化率的cyp82e10基因错义突变体m594及其应用

Publications (2)

Publication Number Publication Date
CN108424921A CN108424921A (zh) 2018-08-21
CN108424921B true CN108424921B (zh) 2021-04-20

Family

ID=63161487

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201810360473.0A Active CN108424921B (zh) 2018-04-20 2018-04-20 一种降低尼古丁转化率的cyp82e10基因错义突变体m594及其应用

Country Status (1)

Country Link
CN (1) CN108424921B (zh)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106459923A (zh) * 2014-05-08 2017-02-22 菲利普莫里斯产品有限公司 植物中烟碱向降烟碱转化的减少
CN106659232A (zh) * 2014-03-03 2017-05-10 北卡罗莱纳州立大学 烟草近交和杂种植物以及由其制得的烟草产品
WO2018067985A1 (en) * 2016-10-07 2018-04-12 Altria Client Services Llc Composition and methods for producing tobacco plants and products having reduced tobacco-specific nitrosamines (tsnas)

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106659232A (zh) * 2014-03-03 2017-05-10 北卡罗莱纳州立大学 烟草近交和杂种植物以及由其制得的烟草产品
CN106459923A (zh) * 2014-05-08 2017-02-22 菲利普莫里斯产品有限公司 植物中烟碱向降烟碱转化的减少
WO2018067985A1 (en) * 2016-10-07 2018-04-12 Altria Client Services Llc Composition and methods for producing tobacco plants and products having reduced tobacco-specific nitrosamines (tsnas)

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
Three nicotine demethylase genes mediate nornicotine biosynthesis in Nicotiana tabacum L.: Functional characterization of the CYP82E10 gene;Ramsey S. Lewis等;《Phytochemistry》;20101025;第71卷;第1988-1998页 *
烟草CYP82E4v1基因调控降烟碱的生物合成;赵丹等;《烟草科技》;20141231(第8期);第68-86页 *

Also Published As

Publication number Publication date
CN108424921A (zh) 2018-08-21

Similar Documents

Publication Publication Date Title
US11877556B2 (en) Compositions and methods for minimizing nornicotine synthesis in tobacco
US20210045310A1 (en) Alteration of tobacco alkaloid content through modification of specific cytochrome p450 genes
EP2537939B1 (en) Tobacco plants having reduced nicotine demethylase activity
US11213004B2 (en) Reducing cadmium accumulation in field grown tobacco plants
US8637731B2 (en) Nicotiana nucleic acid molecules and uses thereof
US11602118B2 (en) Methods and compositions related to improved nitrogen utilization efficiency in tobacco
US20140190498A1 (en) Nicotiana nucleic acid molecules and uses thereof
US11849695B2 (en) Development of tobacco varieties with no or significantly reduced anatabine content
CN108463103B (zh) 烟草黄连素桥酶样核酸的靶向诱变
JP2024045135A (ja) 変化したアルカロイドレベルを有するタバコ植物および製品を産生するためのpmt操作に基づく組成物および方法
WO2021113337A1 (en) Compositions and methods for producing tobacco plants and products having altered alkaloid levels
CN106636146B (zh) 一种降低尼古丁转化率的cyp82e5基因突变体及其应用
CN108424921B (zh) 一种降低尼古丁转化率的cyp82e10基因错义突变体m594及其应用
CN108424922B (zh) 一种降低尼古丁转化率的cyp82e10基因错义突变体m271及其应用
US20140224269A1 (en) Tobacco Having Reduced Amounts of Amino Acids and Methods for Producing Such Lines
US20210230627A1 (en) Methods and compositions related to improved nitrogen use efficiency

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant