CN108416347A - Well-marked target detection algorithm based on boundary priori and iteration optimization - Google Patents
Well-marked target detection algorithm based on boundary priori and iteration optimization Download PDFInfo
- Publication number
- CN108416347A CN108416347A CN201810008543.6A CN201810008543A CN108416347A CN 108416347 A CN108416347 A CN 108416347A CN 201810008543 A CN201810008543 A CN 201810008543A CN 108416347 A CN108416347 A CN 108416347A
- Authority
- CN
- China
- Prior art keywords
- superpixel
- boundary
- background
- image
- model
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000005457 optimization Methods 0.000 title claims abstract description 37
- 238000001514 detection method Methods 0.000 title claims abstract description 18
- 239000011159 matrix material Substances 0.000 claims abstract description 17
- 238000000034 method Methods 0.000 claims description 15
- 238000009499 grossing Methods 0.000 claims description 5
- 238000004364 calculation method Methods 0.000 claims description 4
- 230000003044 adaptive effect Effects 0.000 claims description 3
- 238000003709 image segmentation Methods 0.000 claims description 3
- 238000010187 selection method Methods 0.000 claims description 3
- 125000004432 carbon atom Chemical group C* 0.000 claims 1
- 239000013307 optical fiber Substances 0.000 claims 1
- 230000011218 segmentation Effects 0.000 claims 1
- 239000000284 extract Substances 0.000 description 6
- 238000010586 diagram Methods 0.000 description 4
- 238000004458 analytical method Methods 0.000 description 3
- 238000005516 engineering process Methods 0.000 description 2
- 230000000007 visual effect Effects 0.000 description 2
- 238000013473 artificial intelligence Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000003064 k means clustering Methods 0.000 description 1
- 238000007781 pre-processing Methods 0.000 description 1
- 230000001629 suppression Effects 0.000 description 1
Classifications
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06V—IMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
- G06V10/00—Arrangements for image or video recognition or understanding
- G06V10/20—Image preprocessing
- G06V10/255—Detecting or recognising potential candidate objects based on visual cues, e.g. shapes
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06V—IMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
- G06V10/00—Arrangements for image or video recognition or understanding
- G06V10/40—Extraction of image or video features
- G06V10/44—Local feature extraction by analysis of parts of the pattern, e.g. by detecting edges, contours, loops, corners, strokes or intersections; Connectivity analysis, e.g. of connected components
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Multimedia (AREA)
- Theoretical Computer Science (AREA)
- Computer Vision & Pattern Recognition (AREA)
- Image Analysis (AREA)
Abstract
本发明公开了一种基于边界先验和迭代优化的显著目标检测算法,步骤一、提取特征图像信息,并将图像信息表示为特征矩阵的形式;步骤二、建立一种基于边界先验的区域背景似然度估计模型,通过该模型可准确检测出显著目标的位置和轮廓;步骤三、生成基于迭代优化的显著图增强模型,即迭代地执行前景/背景种子选取和显著值全局优化两个处理。与现有技术相比,本发明的基于边界先验和迭代优化的显著目标检测算法融合了多种显著性特征和线索,可以大幅度提升任何准确度的显著图质量。
The invention discloses a salient target detection algorithm based on boundary prior and iterative optimization. Step 1, extracting feature image information, and expressing the image information in the form of a feature matrix; Step 2, establishing a region based on boundary prior Background likelihood estimation model, through which the position and contour of salient objects can be accurately detected; Step 3, generate a saliency map enhancement model based on iterative optimization, that is, iteratively perform two foreground/background seed selection and saliency global optimization deal with. Compared with the prior art, the salient object detection algorithm based on boundary prior and iterative optimization of the present invention combines various salient features and clues, and can greatly improve the quality of salient maps with any accuracy.
Description
技术领域technical field
本发明涉及人工智能和计算机视觉领域,更具体地,涉及到一种图像显著性目标检 测算法。The present invention relates to the field of artificial intelligence and computer vision, more specifically, relates to a kind of image salient object detection algorithm.
背景技术Background technique
显著目标检测是计算机视觉领域的重要课题之一,其主要任务是模拟人的视觉注意 机制,从图像中快速分割出最容易引人关注的物体或区域。目前,显著目标检测已作为一种重要的图像信息预处理技术被应用到包括图像检索、目标追踪、物体识别等众多领 域中。视觉显著性分析可有效引导图像的冗余抑制,对大数据时代的图像处理具有重要 意义。但由于图像中物体种类繁多、场景复杂多样,设计出一种能适用于各类场景的显 著性分析算法仍是一项极具挑战性的课题。Salient target detection is one of the important topics in the field of computer vision. Its main task is to simulate the human visual attention mechanism and quickly segment the most attractive objects or regions from the image. At present, salient object detection has been used as an important image information preprocessing technology in many fields including image retrieval, object tracking, and object recognition. Visual saliency analysis can effectively guide the redundancy suppression of images, which is of great significance to image processing in the era of big data. However, due to the variety of objects in the image and the complex and diverse scenes, it is still a very challenging task to design a saliency analysis algorithm that can be applied to various scenes.
显著目标检测能够快速准确的提取出显著目标区域。显著性检测的最终目的之一就 是减少后续处理的数据量,以应对目前海量图像数据的挑战。如果显著性检测算法本身的计算时间复杂度就很高的话,那反而会增加后续处理的负担。并且很多情况下图像尽 管很简单,但是显著物体检测算法都不能很好的突出目标和抑制背景,因而无法满足精 度要求。Salient object detection can quickly and accurately extract salient object regions. One of the ultimate goals of saliency detection is to reduce the amount of subsequent processing data to meet the challenges of massive image data. If the computational time complexity of the saliency detection algorithm itself is high, it will increase the burden of subsequent processing. And in many cases, although the image is very simple, the salient object detection algorithm cannot highlight the target and suppress the background well, so it cannot meet the accuracy requirements.
发明内容Contents of the invention
本发明的目的是结合场景深度信息提出一种基于边界先验和迭代优化的显著目标 检测算法,通过建立基于边界先验的区域背景似然度估计模型和建立基于迭代优化的显 著图增强模型这两个阶段来实现显著目标检测。The purpose of the present invention is to propose a salient target detection algorithm based on boundary prior and iterative optimization in combination with scene depth information, by establishing a regional background likelihood estimation model based on boundary prior and a salient map enhancement model based on iterative optimization. Two stages are used to achieve salient object detection.
本发明的一种基于边界先验和迭代优化的显著目标检测算法,该方法包括以下步骤:A kind of salient target detection algorithm based on boundary prior and iterative optimization of the present invention, this method comprises the following steps:
步骤一、提取特征图像信息,并将图像信息表示为特征矩阵的形式;该步骤具体包括以下的处理:Step 1, extract feature image information, and represent the image information as a form of feature matrix; this step specifically includes the following processing:
首先,进行图像分割与区域简化:采用简单线性迭代聚类算法对输入图像进行区域 分割,每个区域被称为一个“超像素”,得到为每一个像素分配所属超像素的编号形成的特征矩阵;First, perform image segmentation and region simplification: the input image is segmented using a simple linear iterative clustering algorithm, and each region is called a "superpixel", and the feature matrix formed by assigning the number of the superpixel to which each pixel belongs is obtained. ;
其次,根据特征矩阵,建立一个无向图模G=(V,E),其中V表示图模型的节点集合,E表示无向边集合。Secondly, according to the feature matrix, an undirected graph model G=(V, E) is established, where V represents the node set of the graph model, and E represents the undirected edge set.
步骤二、建立一种基于边界先验的区域背景似然度估计模型,通过该模型可准确检 测出显著目标的位置和轮廓,该步骤具体包括以下处理:Step 2. Establish a regional background likelihood estimation model based on the boundary prior, through which the position and contour of the salient target can be accurately detected. This step specifically includes the following processing:
首先,建立基于边界先验的区域背景似然度估计模型,具体处理包括:First, establish a regional background likelihood estimation model based on the boundary prior, and the specific processing includes:
找出待研究超像素ri的同质性区域H(ri),H(ri)表示与超像素ri同质的超像素集合;Find the homogeneity region H(ri ) of the superpixel r i to be studied, and H(ri ) represents the superpixel set that is homogeneous with the superpixel r i ;
提取图像的边界超像素集合B;Extract the boundary superpixel set B of the image;
计算边界区域中与ri的同质区域重合的部分占边界区域的比例,即超像素ri的背景 似然度定义为:Calculate the proportion of the boundary area that coincides with the homogeneous area of ri in the boundary area, that is, the background likelihood of the superpixel ri is defined as:
上式中,表示超像素ri的背景似然度,|·|表示超像素或者超像素集合中的像素总 数;In the above formula, Indicates the background likelihood of the superpixel r i , |·|indicates the total number of pixels in the superpixel or superpixel set;
其次,进行同质性概率pij的估计,估计公式如下:Secondly, the homogeneity probability p ij is estimated, and the estimation formula is as follows:
pij=MCs(ri,rj)×MCon(ri,rj)×MSp(ri)p ij =M Cs (r i , r j )×M Con (r i ,r j )×M Sp (r i )
其中,i为待估计超像素索引,j为边界超像素索引,MCs(ri,rj)为超像素对(ri,rj)的 颜色相似性,MCon(ri,rj)为测地线距离的负指数定义超像素对之间的连接平滑度, MSp(ri)为一种全新的中心先验增强模型。为方便之后的计算,用pij构建一个矩阵其中NB是图像边界超像素总数;Among them, i is the superpixel index to be estimated, j is the boundary superpixel index, M Cs (r i , r j ) is the color similarity of the superpixel pair (r i , r j ), M Con (r i , r j ) defines the connection smoothness between pairs of superpixels for the negative exponent of the geodesic distance, and M Sp ( ri ) is a new central prior enhancement model. To facilitate subsequent calculations, use p ij to construct a matrix where N B is the total number of image boundary superpixels;
再者,实现背景图估计与初始显著图生成,即根据上述的区域背景似然度估计模型 生成背景图,转换为初等显著图向量,如下式所示:Furthermore, the estimation of the background image and the generation of the initial saliency map are realized, that is, the background image is generated according to the above-mentioned regional background likelihood estimation model, and converted into an elementary saliency map vector, as shown in the following formula:
其中,其元素为所有边界超像素的归一化面积大小, 表示第j个边界超像素的面积。in, Its elements are the normalized area sizes of all boundary superpixels, Indicates the area of the jth boundary superpixel.
向量用一个与原图等分辨率的背景似然概率图进行呈现,其中灰度值较的部分表示背景区域,灰度值低的部分表示显著目标区域;利用香农自信息的概念将背 景图反转为初始的显著图;自信息计算公式如下:vector Use a background likelihood probability map with the same resolution as the original image, where the part with a higher gray value represents the background area, and the part with a lower gray value represents the salient target area; the background image is reversed using the concept of Shannon's self-information is the initial saliency map; the self-information calculation formula is as follows:
表示一个有较低背景似然度的超像素通常也会包含更多的显著性信息;用表示各超像素i的初始显著程度;i为待估计超像素索引,j为边界超像素索引, N为超像素个数。A superpixel representing a lower background likelihood usually also contains more saliency information; use Indicates the initial salience degree of each superpixel i; i is the superpixel index to be estimated, j is the boundary superpixel index, and N is the number of superpixels.
步骤三、生成基于迭代优化的显著图增强模型,即迭代地执行前景/背景种子选取和显著值全局优化两个处理,具体包括:在每次迭代中,首先用一种基于贝叶斯理论的 种子选取方法,将少数容易识别的显著/背景区域提取出来构成种子集合和并 赋予相应类标签,以引导后续优化过程;然后用一个最小二乘优化模型对类标签、先验 估计和平滑先验三种线索进行融合,使输出结果比上一次迭代输入具有更高的准确性和 完整性。该模型由一个目标函数和若干约束条件组成,其表达式如下:Step 3. Generate a saliency map enhancement model based on iterative optimization, that is, iteratively perform two processes of foreground/background seed selection and saliency value global optimization, specifically including: in each iteration, first use a Bayesian theory-based The seed selection method extracts a small number of easily identifiable salient/background regions to form a seed set and And assign corresponding class labels to guide the subsequent optimization process; then use a least squares optimization model to fuse the three clues of class labels, prior estimates and smoothing priors, so that the output results are more accurate than the previous iteration input. sex and integrity. The model consists of an objective function and several constraints, and its expression is as follows:
在第t次迭代中,超像素ri的显著值表示为上式中上标(·)(t)表示 该变量为第t次迭代中的变量;目标函数是三个最小二乘项的加权和,即先验项、分类项和平滑项,和δi是第t次迭代中的自适应权值,用于平衡上述三项;在约束 条件中,是引导分类的标签值,对于前景种子其值为1,背景种子其值为0,其余超 像素可任意取值。In the t-th iteration, the saliency value of the superpixel r i is denoted as The superscript (·) (t) in the above formula indicates that the variable is the variable in the t-th iteration; the objective function is the weighted sum of three least squares items, namely the prior item, the classification item and the smoothing item, and δi are the adaptive weights in the t-th iteration, which are used to balance the above three items; in the constraints, is the label value for guiding classification. For the foreground seed, its value is 1, for the background seed, its value is 0, and the remaining superpixels can take arbitrary values.
与现有技术相比,本发明的基于边界先验和迭代优化的显著目标检测算法融合了多 种显著性特征和线索,可以大幅度提升任何准确度的显著图质量;本发明的优化模型还具有很强的通用性和纠错能力。Compared with the prior art, the salient object detection algorithm based on boundary prior and iterative optimization of the present invention combines a variety of salient features and clues, which can greatly improve the quality of salient maps with any accuracy; the optimization model of the present invention also It has strong versatility and error correction ability.
附图说明Description of drawings
图1为背景图与初始显著图举例。(a)原图,(b)背景图,(c)初始显著图, (d)一种最先发表的算法MAP的处理结果,(e)真值图;Figure 1 is an example of background image and initial saliency image. (a) original image, (b) background image, (c) initial saliency image, (d) processing result of a first published algorithm MAP, (e) truth image;
图2为一种基于迭代优化的显著图增强模型中各变量之间的关系示意图;Fig. 2 is a schematic diagram of the relationship between variables in a salient map enhancement model based on iterative optimization;
图3为一种基于迭代优化的显著图增强模型背景优化过程示意图;(a)初始显著图,(b)~(d)经1、3、5次迭代优化后的显著图及对应的平均绝对值误差(MAE), (e)真值图。Fig. 3 is a schematic diagram of the background optimization process of a saliency map enhancement model based on iterative optimization; (a) the initial saliency map, (b) to (d) the saliency map after 1, 3, and 5 iterations of optimization and the corresponding average absolute Value error (MAE), (e) Truth map.
图4为一种基于迭代优化的显著图增强模型显著图优化过程示意图;(a)原图和真值图;(b)随机生成显著图(第一、三行)和利用本专利模型优化后的结果(第二、 四行);(c)利用高斯中心先验模型估计出的显著图(第一、三行)和优化结果(第 二、四行);(d)利用CA算法生成的显著图(第一、三行)和优化结果(第二、四 行);(e)利用FT算法生成的显著图(第一、三行)和优化结果(第二、四行);(f) 利用SVO算法生成的显著图(第一、三行)和优化结果(第二、四行);Fig. 4 is a schematic diagram of the saliency map optimization process of a saliency map enhancement model based on iterative optimization; (a) the original image and the true value map; (b) the randomly generated saliency map (the first and third lines) and the optimization using the patent model The results of (the second and fourth lines); (c) the saliency map estimated by using the Gaussian center prior model (the first and third lines) and the optimization results (the second and fourth lines); (d) the saliency map generated by the CA algorithm The saliency map (the first and third lines) and the optimization result (the second and the fourth line); (e) the saliency map (the first and the third line) and the optimization result (the second and the fourth line) generated by the FT algorithm; (f ) The saliency map (lines 1 and 3) and optimization results (lines 2 and 4) generated by the SVO algorithm;
图5为本发明的基于边界先验和迭代优化的显著目标检测算法整体流程示意图。FIG. 5 is a schematic diagram of the overall flow of the salient object detection algorithm based on boundary prior and iterative optimization of the present invention.
具体实施方式Detailed ways
下面将结合附图对本发明的实施方式作进一步的详细描述。Embodiments of the present invention will be further described in detail below in conjunction with the accompanying drawings.
如图5所示,为本发明的一种基于边界先验和迭代优化的显著目标检测算法整体流 程图。该流程具体包括以下步骤:As shown in Figure 5, it is an overall flowchart of a salient target detection algorithm based on boundary prior and iterative optimization of the present invention. The process specifically includes the following steps:
步骤1、为准确识别图像中的显著目标位置及轮廓,提取一些有助于显著性分析的特征图像信息,并将图像信息表示为特征矩阵的形式。该步骤具体包括以下的处理:Step 1. In order to accurately identify the salient target position and contour in the image, extract some feature image information that is helpful for saliency analysis, and express the image information in the form of feature matrix. This step specifically includes the following processing:
首先,进行图像分割与区域简化:采用简单线性迭代聚类(Simple LinearIterative Clustering,SLIC)算法对输入图像进行区域分割,每个区域被称为一个“超像素” (super-pixel)。该算法流程如下:First, perform image segmentation and region simplification: the Simple Linear Iterative Clustering (SLIC) algorithm is used to segment the input image into regions, and each region is called a "super-pixel". The algorithm flow is as follows:
输入:超像素个数K,形状规则度系数mInput: the number of superpixels K, the shape regularity coefficient m
1-1、初始化每个聚类中心,以步长S采样像素;1-1. Initialize each cluster center and sample pixels with a step size S;
1-2、在一个小的局部范围(3×3大小的像素块)内调整聚类中心至梯度(像素点与领域8个像素点差值最大的邻域像素点的方向)最低点(像素点与领域8个像素点差 值最大的邻域像素点);1-2. Adjust the clustering center to the lowest point of the gradient (the direction of the neighborhood pixel with the largest difference between the pixel point and the 8 pixel points in the field) within a small local range (3×3 pixel block) (pixel The neighborhood pixel with the largest difference between the point and the 8 pixels in the domain);
1-3、在每个聚类中心2S×2S范围内,对像素i提取LAB空间颜色特征[Li,ai,bi]和位置特征(xi,yi),并计算像素对(i,j)在上述特征空间中的距离:1-3. Within the 2S×2S range of each cluster center, extract the LAB space color features [L i , a i , b i ] and position features (xi , y i ) for pixel i, and calculate the pixel pair ( The distance of i, j) in the above feature space:
1-4、根据距离dij对像素进行K-means聚类,得到新的聚类中心;1-4. Perform K-means clustering on the pixels according to the distance d ij to obtain a new cluster center;
1-5、计算新的聚类中心与旧的聚类中心之间的L1范数距离E;1-5. Calculate the L1 norm distance E between the new cluster center and the old cluster center;
1-6、E小于一个设定阈值则停止迭代,否则重复步骤1-3、1-4;1-6, stop iteration if E is less than a set threshold, otherwise repeat steps 1-3, 1-4;
输出:特征矩阵,即为每一个像素分配所属超像素的编号形成的矩阵。Output: feature matrix, which is a matrix formed by assigning the number of the superpixel to which each pixel belongs.
其次,建立图模型:所构建的特征矩阵对图像各区域的基本特征进行了独立描述,为了更进一步描述超像素之间的相互关系,本发明还建立了一个无向图模G=(V,E),其 中V表示图模型的节点集合,E表示无向边集合。将每一个超像素视为无向图中的一个 节点(为方便仍表示成ri),满足下述条件的节点对(ri,rj)是相连的:Secondly, establish a graphical model: the constructed feature matrix independently describes the basic features of each region of the image. In order to further describe the relationship between superpixels, the present invention also establishes an undirected graphical model G=(V, E), where V represents the node set of the graph model, and E represents the undirected edge set. Consider each superpixel as a node in the undirected graph (represented as r i for convenience), and the node pairs ( ri , r j ) satisfying the following conditions are connected:
(1)ri和rj相邻;(1) r i and r j are adjacent;
(2)ri和rj虽不相邻,但二者均与节点rk相邻;(2) Although r i and r j are not adjacent, both are adjacent to node r k ;
(3)ri和rj均在图像边界处(包含图像边界像素)。(3) Both r i and r j are at the image boundary (including image boundary pixels).
通过以上节点连接关系的定义可知,本发明所采用的无向图为一种稀疏图。用矩阵 W=[wij]N×N来表示任意超像素对(ri,rj)之间的相似度关系,那么W中绝大多数元素为0。本专利中,相似度矩阵定义如下:It can be known from the above definition of node connection relationship that the undirected graph used in the present invention is a sparse graph. The matrix W=[w ij ] N×N is used to represent the similarity relationship between any superpixel pair (r i , r j ), then most of the elements in W are 0. In this patent, the similarity matrix is defined as follows:
其中,表示第i和j个超像素之间平均颜色的差异;Neig(ri,rj)是一个用来判断节点对(ri,rj)之间是否连接的二值化函数,当ri和rj相连时Neig(ri,rj)=1,否则Neig(ri,rj)=0;λ是用来平衡节点连接权重大小的常数。in, Indicates the difference in average color between the i-th and j-th superpixels; Neig(r i , r j ) is a binarization function used to determine whether a node pair (r i , r j ) is connected, when r i Neig( ri ,r j )=1 when connected to r j , otherwise Neig( ri ,r j )=0; λ is a constant used to balance the weight of node connections.
步骤2、建立一种基于边界先验的区域背景似然度估计模型,通过该模型可准确检测出显著目标的位置和轮廓:Step 2. Establish a regional background likelihood estimation model based on the boundary prior, through which the position and contour of the salient target can be accurately detected:
首先,建立基于边界先验的区域背景似然度估计模型,具体建立流程主要分为以下 三小部分:First, establish a regional background likelihood estimation model based on the boundary prior. The specific establishment process is mainly divided into the following three parts:
2-1、找出待研究超像素ri的同质性区域H(ri),H(ri)表示与超像素ri同质的超像素 集合;2-1. Find the homogeneity region H(ri ) of the superpixel r i to be studied, and H(ri ) represents the set of superpixels that are homogeneous to the superpixel r i ;
2-2、提取图像的边界超像素集合B;2-2. Extracting the boundary superpixel set B of the image;
2-3、计算边界区域中与ri的同质区域重合的部分占边界区域的比例,即超像素ri的 背景似然度定义为:2-3. Calculate the proportion of the part of the boundary area that coincides with the homogeneous area of r i in the boundary area, that is, the background likelihood of the superpixel r i is defined as:
上式中,表示超像素ri的背景似然度,|·|表示超像素或者超像素集合中的像素总数。In the above formula, Indicates the background likelihood of the superpixel r i , |·|indicates the total number of pixels in the superpixel or superpixel set.
其次,进行同质性概率pij的估计:同质性概率pij度量了超像素ri与某一边界超像素 rj属于同质区域的可能性大小,是背景检测中的关键参量。综合考虑颜色相似性、连接平滑度、空间临近性三种因素,同质性概率pij的估计公式如下:Secondly, estimate the homogeneity probability p ij : the homogeneity probability p ij measures the possibility that a superpixel r i and a certain border superpixel r j belong to a homogeneous region, and is a key parameter in background detection. Considering the three factors of color similarity, connection smoothness and spatial proximity, the estimation formula of homogeneity probability p ij is as follows:
pij=MCs(ri,rj)×MCon(ri,rj)×MSp(ri) (4)p ij =M Cs (r i , r j )×M Con (r i ,r j )×M Sp (r i ) (4)
其中,i为待估计超像素索引,j为边界超像素索引,MCs(ri,rj)为超像素对(ri,rj)的 颜色相似性,MCon(ri,rj)为测地线距离的负指数定义超像素(节点)对之间的连接平滑度,MSp(ri)为一种全新的中心先验增强模型。为方便之后的计算,用pij构建一个矩阵其中NB是图像边界超像素总数。受到边界先验的启发,本发明创新地建 立了一种区域级的背景似然度估计模型,从而间接获得对图像所有区域显著性大小的准 确预测结果。Among them, i is the superpixel index to be estimated, j is the boundary superpixel index, M Cs (r i , r j ) is the color similarity of the superpixel pair (r i , r j ), M Con (r i , r j ) defines the connection smoothness between pairs of superpixels (nodes) for the negative exponent of geodesic distance, and M Sp ( ri ) is a new central prior enhancement model. To facilitate subsequent calculations, use p ij to construct a matrix where N B is the total number of image boundary superpixels. Inspired by the boundary prior, the present invention innovatively establishes a region-level background likelihood estimation model, thereby indirectly obtaining accurate prediction results of the saliency of all regions of the image.
再者,实现背景图估计与初始显著图生成,即根据上述的区域背景似然度估计模型 生成背景图,转换为初等显著图:同质性概率矩阵P给出了任一超像素ri与某个边界超像素具有同质性特征的概率大小,依次将所有超像素的背景似然度写成向量其中,表示超像素ri的背景似然度(公式(3))为N个超像素背景似 然度向量形式(公式(5)),根据超像素ri的背景似然度定义式,该向量的值如 下式所示:Furthermore, the estimation of the background image and the generation of the initial saliency map are realized, that is, the background image is generated according to the above-mentioned regional background likelihood estimation model, and converted into an elementary saliency map: the homogeneity probability matrix P gives any superpixel r i and a boundary superpixel With the probability of homogeneity features, the background likelihood of all superpixels is written as a vector in turn in, Denotes the background likelihood of superpixel r i (Equation (3)) is the background likelihood of N superpixels Vector form (formula (5)), according to the definition formula of the background likelihood of superpixel r i , the value of the vector is as follows:
其中,其元素为所有边界超像素的归一化面积大小, 表示第j个边界超像素的面积。in, Its elements are the normalized area sizes of all boundary superpixels, Indicates the area of the jth boundary superpixel.
向量可用一个与原图等分辨率的背景似然概率图进行呈现,如图1所示。图中灰度值较高的部分表示背景区域,灰度值较低的部分表示显著目标区域。背景图与 显著图的意义恰好相反,本专利利用香农自信息的概念将背景图反转为初始的显著图。 自信息是一种很好的显著度计算方式,它表示一个有较低背景似然度的超像素通常也会 包含更多的显著性信息。用表示各超像素的初始显著程度,其值可用如下表达 式计算出,vector It can be presented with a background likelihood probability map with the same resolution as the original image, as shown in Figure 1. The part with higher gray value in the figure represents the background region, and the part with lower gray value represents the salient target region. The meanings of the background map and the saliency map are just opposite, and this patent uses the concept of Shannon's self-information to invert the background map into the initial saliency map. Self-information is a good way to calculate saliency, which means that a superpixel with lower background likelihood usually also contains more saliency information. use Indicates the initial saliency of each superpixel, and its value can be calculated by the following expression,
从图1可以看出,本发明方法很有效地描绘出显著目标的位置和轮廓,虽然本专利仅将其作为初始估计,其效果已经能与目前的先进技术媲美。It can be seen from Figure 1 that the method of the present invention can effectively describe the position and outline of the salient target. Although this patent only uses it as an initial estimate, its effect is already comparable to the current advanced technology.
步骤3、生成基于迭代优化的显著图增强模型,本专利的优化框架迭代地执行前景/背景种子选取和显著值全局优化两个步骤:Step 3. Generate a saliency map enhancement model based on iterative optimization. The optimization framework of this patent iteratively performs two steps: foreground/background seed selection and saliency value global optimization:
在每次迭代中,首先用一种基于贝叶斯理论的种子选取方法,将少数容易识别的显 著/背景区域提取出来构成种子集合和并赋予相应类标签,以引导后续优化过程;然后用一个最小二乘优化模型对类标签、先验估计和平滑先验三种线索进行融合, 使输出结果比上一次迭代输入具有更高的准确性和完整性。该模型由一个目标函数和若 干约束条件组成,其表达式如下:In each iteration, a seed selection method based on Bayesian theory is first used to extract a small number of easily identifiable salient/background regions to form a seed set and And assign corresponding class labels to guide the subsequent optimization process; then use a least squares optimization model to fuse the three clues of class labels, prior estimates and smoothing priors, so that the output result is more accurate than the input of the previous iteration. sex and integrity. The model consists of an objective function and several constraints, and its expression is as follows:
在第t次迭代中,超像素ri的显著值表示为上式中上标(·)(t)表示 该变量为第t次迭代中的变量。目标函数是三个最小二乘项的加权和,即先验项、分类项和平滑项,和δi是第t次迭代中的自适应权值,用于平衡上述三项。在约束 条件中,是引导分类的标签值,对于前景种子其值为1,背景种子其值为0,其余超 像素可任意取值。使得显著图的质量得到质的提升,极大提高初始估计结果的准确性和 完整性。如图4所示,选取了随机生成、高斯模型、以及三种经典算法(CA,FT,SVO) 产生的显著图,虽然这些图并没有很好地表示出显著目标的位置和轮廓,但是经本发明 模型优化之后,输出结果依然能获得很高的准确率。而且本发明也具有很强的纠错能力, 当输入结果精度极低,甚至具有很强误导性的时候,该方法同样能优化出高质量的显著 图。In the t-th iteration, the saliency value of the superpixel r i is denoted as The superscript (·) (t) in the above formula indicates that the variable is the variable in the tth iteration. The objective function is a weighted sum of three least-squares terms, the prior term, the classification term, and the smoothing term, and δi are the adaptive weights in the t-th iteration, which are used to balance the above three terms. Among the constraints, is the label value for guiding classification. For the foreground seed, its value is 1, for the background seed, its value is 0, and the remaining superpixels can take arbitrary values. The quality of the saliency map is qualitatively improved, and the accuracy and completeness of the initial estimation results are greatly improved. As shown in Figure 4, the saliency maps generated by random generation, Gaussian model, and three classical algorithms (CA, FT, SVO) are selected. After the model of the present invention is optimized, the output result can still obtain a high accuracy rate. Moreover, the present invention also has a strong error correction capability, and when the input result has extremely low precision or is even highly misleading, the method can also optimize a high-quality saliency map.
Claims (1)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201810008543.6A CN108416347A (en) | 2018-01-04 | 2018-01-04 | Well-marked target detection algorithm based on boundary priori and iteration optimization |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201810008543.6A CN108416347A (en) | 2018-01-04 | 2018-01-04 | Well-marked target detection algorithm based on boundary priori and iteration optimization |
Publications (1)
Publication Number | Publication Date |
---|---|
CN108416347A true CN108416347A (en) | 2018-08-17 |
Family
ID=63125737
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201810008543.6A Pending CN108416347A (en) | 2018-01-04 | 2018-01-04 | Well-marked target detection algorithm based on boundary priori and iteration optimization |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN108416347A (en) |
Cited By (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN109784216A (en) * | 2018-12-28 | 2019-05-21 | 华南理工大学 | Vehicle-mounted thermal imaging pedestrian detection RoIs extracting method based on probability graph |
CN110211115A (en) * | 2019-06-03 | 2019-09-06 | 大连理工大学 | Light field significance detection implementation method based on depth-guided cellular automaton |
CN110826472A (en) * | 2019-11-01 | 2020-02-21 | 新疆大学 | Image detection method and device |
CN111274964A (en) * | 2020-01-20 | 2020-06-12 | 中国地质大学(武汉) | Detection method for analyzing water surface pollutants based on visual saliency of unmanned aerial vehicle |
CN111696099A (en) * | 2020-06-16 | 2020-09-22 | 北京大学 | General outlier likelihood estimation method based on image edge consistency |
CN111815610A (en) * | 2020-07-13 | 2020-10-23 | 广东工业大学 | A kind of lesion detection method and device for lesion image |
CN112418218A (en) * | 2020-11-24 | 2021-02-26 | 中国地质大学(武汉) | Target area detection method, device, equipment and storage medium |
CN112886571A (en) * | 2021-01-18 | 2021-06-01 | 清华大学 | Decomposition, coordination and optimization operation method and device of electric heating comprehensive energy system based on boundary variable feasible region |
US20210248181A1 (en) * | 2020-02-11 | 2021-08-12 | Samsung Electronics Co., Ltd. | Electronic device and control method thereof |
CN113379785A (en) * | 2021-06-22 | 2021-09-10 | 辽宁工程技术大学 | Salient object detection method fusing boundary prior and frequency domain information |
CN114862891A (en) * | 2022-05-26 | 2022-08-05 | 天津大学 | Salient object detection method based on heuristic boundary optimization |
Citations (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20130223740A1 (en) * | 2012-02-23 | 2013-08-29 | Microsoft Corporation | Salient Object Segmentation |
CN103914834A (en) * | 2014-03-17 | 2014-07-09 | 上海交通大学 | Significant object detection method based on foreground priori and background priori |
US20160104054A1 (en) * | 2014-10-08 | 2016-04-14 | Adobe Systems Incorporated | Saliency Map Computation |
CN105513070A (en) * | 2015-12-07 | 2016-04-20 | 天津大学 | RGB-D salient object detection method based on foreground and background optimization |
CN106203430A (en) * | 2016-07-07 | 2016-12-07 | 北京航空航天大学 | A kind of significance object detecting method based on foreground focused degree and background priori |
CN106373131A (en) * | 2016-08-25 | 2017-02-01 | 上海交通大学 | Edge-based image significant region detection method |
CN106951830A (en) * | 2017-02-23 | 2017-07-14 | 北京联合大学 | A Multi-object Labeling Method for Image Scenes Based on Prior Condition Constraints |
CN106960434A (en) * | 2017-03-03 | 2017-07-18 | 大连理工大学 | A kind of image significance detection method based on surroundedness and Bayesian model |
CN106991678A (en) * | 2017-04-07 | 2017-07-28 | 无锡职业技术学院 | A kind of method of target conspicuousness detection |
CN107330861A (en) * | 2017-07-03 | 2017-11-07 | 清华大学 | Image significance object detection method based on diffusion length high confidence level information |
-
2018
- 2018-01-04 CN CN201810008543.6A patent/CN108416347A/en active Pending
Patent Citations (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20130223740A1 (en) * | 2012-02-23 | 2013-08-29 | Microsoft Corporation | Salient Object Segmentation |
CN103914834A (en) * | 2014-03-17 | 2014-07-09 | 上海交通大学 | Significant object detection method based on foreground priori and background priori |
US20160104054A1 (en) * | 2014-10-08 | 2016-04-14 | Adobe Systems Incorporated | Saliency Map Computation |
CN105513070A (en) * | 2015-12-07 | 2016-04-20 | 天津大学 | RGB-D salient object detection method based on foreground and background optimization |
CN106203430A (en) * | 2016-07-07 | 2016-12-07 | 北京航空航天大学 | A kind of significance object detecting method based on foreground focused degree and background priori |
CN106373131A (en) * | 2016-08-25 | 2017-02-01 | 上海交通大学 | Edge-based image significant region detection method |
CN106951830A (en) * | 2017-02-23 | 2017-07-14 | 北京联合大学 | A Multi-object Labeling Method for Image Scenes Based on Prior Condition Constraints |
CN106960434A (en) * | 2017-03-03 | 2017-07-18 | 大连理工大学 | A kind of image significance detection method based on surroundedness and Bayesian model |
CN106991678A (en) * | 2017-04-07 | 2017-07-28 | 无锡职业技术学院 | A kind of method of target conspicuousness detection |
CN107330861A (en) * | 2017-07-03 | 2017-11-07 | 清华大学 | Image significance object detection method based on diffusion length high confidence level information |
Non-Patent Citations (5)
Title |
---|
SHUWEI HUO 等: "Semi-supervised Saliency Classifier Based on a Linear Feedback Control System Model", 《2017 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS (IJCNN)》 * |
WANGJIANG ZHU 等: "Saliency Optimization from Robust Background Detection", 《2014 IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION》 * |
YICHEN WEI 等: "Geodesic Saliency Using Background Priors", 《ECCV 2012: COMPUTER VISION》 * |
周强强 等: "联合灰色关联度和先验的图像显著性分析", 《系统仿真学报》 * |
范青 等: "自然场景下基于边界先验的图像显著性检测", 《计算机工程》 * |
Cited By (21)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN109784216A (en) * | 2018-12-28 | 2019-05-21 | 华南理工大学 | Vehicle-mounted thermal imaging pedestrian detection RoIs extracting method based on probability graph |
CN109784216B (en) * | 2018-12-28 | 2023-06-20 | 华南理工大学 | Vehicle-mounted thermal imaging pedestrian detection Rois extraction method based on probability map |
CN110211115A (en) * | 2019-06-03 | 2019-09-06 | 大连理工大学 | Light field significance detection implementation method based on depth-guided cellular automaton |
CN110211115B (en) * | 2019-06-03 | 2023-04-07 | 大连理工大学 | Light field significance detection implementation method based on depth-guided cellular automaton |
CN110826472A (en) * | 2019-11-01 | 2020-02-21 | 新疆大学 | Image detection method and device |
CN110826472B (en) * | 2019-11-01 | 2023-06-27 | 新疆大学 | Image detection method and device |
CN111274964A (en) * | 2020-01-20 | 2020-06-12 | 中国地质大学(武汉) | Detection method for analyzing water surface pollutants based on visual saliency of unmanned aerial vehicle |
CN111274964B (en) * | 2020-01-20 | 2023-04-07 | 中国地质大学(武汉) | Detection method for analyzing water surface pollutants based on visual saliency of unmanned aerial vehicle |
US11816149B2 (en) * | 2020-02-11 | 2023-11-14 | Samsung Electronics Co., Ltd. | Electronic device and control method thereof |
US20210248181A1 (en) * | 2020-02-11 | 2021-08-12 | Samsung Electronics Co., Ltd. | Electronic device and control method thereof |
CN111696099B (en) * | 2020-06-16 | 2022-09-27 | 北京大学 | General outlier likelihood estimation method based on image edge consistency |
CN111696099A (en) * | 2020-06-16 | 2020-09-22 | 北京大学 | General outlier likelihood estimation method based on image edge consistency |
CN111815610A (en) * | 2020-07-13 | 2020-10-23 | 广东工业大学 | A kind of lesion detection method and device for lesion image |
CN111815610B (en) * | 2020-07-13 | 2023-09-12 | 广东工业大学 | A method and device for detecting lesions in lesion images |
CN112418218B (en) * | 2020-11-24 | 2023-02-28 | 中国地质大学(武汉) | Target area detection method, device, equipment and storage medium |
CN112418218A (en) * | 2020-11-24 | 2021-02-26 | 中国地质大学(武汉) | Target area detection method, device, equipment and storage medium |
CN112886571B (en) * | 2021-01-18 | 2022-07-08 | 清华大学 | Decomposition, coordination and optimization operation method and device of electric heating comprehensive energy system based on boundary variable feasible region |
CN112886571A (en) * | 2021-01-18 | 2021-06-01 | 清华大学 | Decomposition, coordination and optimization operation method and device of electric heating comprehensive energy system based on boundary variable feasible region |
CN113379785A (en) * | 2021-06-22 | 2021-09-10 | 辽宁工程技术大学 | Salient object detection method fusing boundary prior and frequency domain information |
CN113379785B (en) * | 2021-06-22 | 2024-03-15 | 辽宁工程技术大学 | Saliency target detection method integrating boundary priori and frequency domain information |
CN114862891A (en) * | 2022-05-26 | 2022-08-05 | 天津大学 | Salient object detection method based on heuristic boundary optimization |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN108416347A (en) | Well-marked target detection algorithm based on boundary priori and iteration optimization | |
Romera-Paredes et al. | Recurrent instance segmentation | |
CN109859238B (en) | An online multi-target tracking method based on multi-feature optimal association | |
Chen et al. | Markov models for image labeling | |
CN105809672B (en) | A Multi-object Collaborative Image Segmentation Method Based on Superpixels and Structural Constraints | |
CN109086777B (en) | Saliency map refining method based on global pixel characteristics | |
CN104732545B (en) | The texture image segmenting method with quick spectral clustering is propagated with reference to sparse neighbour | |
CN105809651A (en) | Image saliency detection method based on edge non-similarity comparison | |
Hua et al. | Depth estimation with convolutional conditional random field network | |
CN114677565B (en) | Training method and image processing method and device for feature extraction network | |
Freytag et al. | Labeling examples that matter: Relevance-based active learning with gaussian processes | |
Abdelsamea et al. | A SOM-based Chan–Vese model for unsupervised image segmentation | |
CN111126464A (en) | An Image Classification Method Based on Unsupervised Domain Adversarial Domain Adaptation | |
Moon et al. | Genflow: Generalizable recurrent flow for 6d pose refinement of novel objects | |
Zhang et al. | Planeseg: Building a plug-in for boosting planar region segmentation | |
CN110930413A (en) | Image segmentation method based on weak supervision multi-core classification optimization merging | |
CN110084136A (en) | Context based on super-pixel CRF model optimizes indoor scene semanteme marking method | |
Wan et al. | Modeling noisy annotations for point-wise supervision | |
CN114842330B (en) | Multi-scale background perception pooling weak supervision building extraction method | |
Karimi et al. | Stereo matching by using a new local descriptor based on sign and order in belief propagation algorithm | |
Liu et al. | Attention-embedding mesh saliency | |
Li et al. | Saliency detection via alternative optimization adaptive influence matrix model | |
Guan et al. | A hierarchical multilevel thresholding method for edge information extraction using fuzzy entropy | |
Yan et al. | Repeatable adaptive keypoint detection via self-supervised learning | |
Hassan et al. | Salient object detection based on CNN fusion of two types of saliency models |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
WD01 | Invention patent application deemed withdrawn after publication |
Application publication date: 20180817 |
|
WD01 | Invention patent application deemed withdrawn after publication |