CN108414972A - A kind of mobile robot RFID localization methods based on phase property - Google Patents
A kind of mobile robot RFID localization methods based on phase property Download PDFInfo
- Publication number
- CN108414972A CN108414972A CN201810384983.1A CN201810384983A CN108414972A CN 108414972 A CN108414972 A CN 108414972A CN 201810384983 A CN201810384983 A CN 201810384983A CN 108414972 A CN108414972 A CN 108414972A
- Authority
- CN
- China
- Prior art keywords
- phase
- information
- mobile robot
- rfid
- periodic
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000000034 method Methods 0.000 title claims abstract description 39
- 230000004807 localization Effects 0.000 title claims 2
- 230000000737 periodic effect Effects 0.000 claims abstract description 28
- 238000004364 calculation method Methods 0.000 claims abstract description 9
- 238000005259 measurement Methods 0.000 claims description 23
- 230000009466 transformation Effects 0.000 claims description 8
- 238000013519 translation Methods 0.000 claims description 8
- 238000005457 optimization Methods 0.000 claims description 5
- 238000005516 engineering process Methods 0.000 description 4
- 230000007613 environmental effect Effects 0.000 description 3
- 238000003491 array Methods 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 230000006872 improvement Effects 0.000 description 2
- 238000004891 communication Methods 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000013507 mapping Methods 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 230000008569 process Effects 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01S—RADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
- G01S5/00—Position-fixing by co-ordinating two or more direction or position line determinations; Position-fixing by co-ordinating two or more distance determinations
- G01S5/02—Position-fixing by co-ordinating two or more direction or position line determinations; Position-fixing by co-ordinating two or more distance determinations using radio waves
- G01S5/0284—Relative positioning
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06K—GRAPHICAL DATA READING; PRESENTATION OF DATA; RECORD CARRIERS; HANDLING RECORD CARRIERS
- G06K7/00—Methods or arrangements for sensing record carriers, e.g. for reading patterns
- G06K7/0008—General problems related to the reading of electronic memory record carriers, independent of its reading method, e.g. power transfer
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Radar, Positioning & Navigation (AREA)
- Remote Sensing (AREA)
- Artificial Intelligence (AREA)
- Computer Vision & Pattern Recognition (AREA)
- Theoretical Computer Science (AREA)
- Position Fixing By Use Of Radio Waves (AREA)
- Control Of Position, Course, Altitude, Or Attitude Of Moving Bodies (AREA)
Abstract
本发明属于无线定位领域,并具体公开了一种基于相位特征的移动机器人RFID定位方法,包括如下步骤:S1RFID读写器在移动机器人运动时,与目标物上安装的RFID标签形成射频回路,RFID读写器测量RFID射频回路的相位信息和信号波长信息;S2将周期非连续的相位信息转化为连续非周期的相位信息,并获取RFID读写器天线的位置信息;S3构建解缠相位‑位置模型,将信号波长信息、连续非周期的相位信息以及天线的位置信息代入解缠相位‑位置模型中,计算获得RFID标签相对于移动机器人的位置信息,以此实现目标物的定位。本发明具有定位精度高、抗干扰能力强、计算量小、系统简单等优点。
The invention belongs to the field of wireless positioning, and specifically discloses a mobile robot RFID positioning method based on phase characteristics, including the following steps: when the mobile robot moves, the S1 RFID reader-writer forms a radio frequency loop with the RFID tag installed on the target object, and the RFID The reader measures the phase information and signal wavelength information of the RFID radio frequency loop; S2 converts the periodic non-continuous phase information into continuous non-periodic phase information, and obtains the position information of the RFID reader antenna; S3 constructs the unwrapped phase-position Model, the signal wavelength information, continuous aperiodic phase information and antenna position information are substituted into the unwrapped phase-position model, and the position information of the RFID tag relative to the mobile robot is calculated to achieve the positioning of the target. The invention has the advantages of high positioning accuracy, strong anti-interference ability, small calculation amount, simple system and the like.
Description
技术领域technical field
本发明属于无线定位领域,更具体地,涉及一种基于相位特征的移动机器人RFID定位方法。The invention belongs to the field of wireless positioning, and more particularly relates to an RFID positioning method for a mobile robot based on phase characteristics.
背景技术Background technique
RFID(Radio Frequency Identification),即射频识别技术,是一种构建物联网的无线通信技术,无源超高频RFID凭借其唯一ID、低成本、长距离、不需要电池等优势,已经广泛应用于仓储管理等。基于RFID的定位技术可以极大的提高物品管理的效率,近十年来,基于RFID的室内定位系统和方法不断被提出。其中,信号强度(RSSI)和相位是RFID定位中最主要的两种射频信息。RFID (Radio Frequency Identification), that is, radio frequency identification technology, is a wireless communication technology for building the Internet of Things. Passive UHF RFID has been widely used due to its unique ID, low cost, long distance, and no need for batteries. warehouse management, etc. RFID-based positioning technology can greatly improve the efficiency of item management. In the past ten years, RFID-based indoor positioning systems and methods have been continuously proposed. Among them, signal strength (RSSI) and phase are the two most important radio frequency information in RFID positioning.
由于多径效应等环境干扰的存在,信号强度的衰减以及天线和标签的距离的映射关系并不可靠,并且信号强度的距离分辨率较为粗糙,所以基于信号强度的方法多会采用参考标签,需要提前在环境中布置好参考标签系统,并标定参考标签的位置信息,系统即为复杂。Due to the existence of environmental interference such as multipath effects, the attenuation of signal strength and the mapping relationship between the distance between the antenna and the tag are not reliable, and the distance resolution of the signal strength is relatively rough, so the method based on signal strength often uses reference tags. Arrange the reference tag system in the environment in advance, and calibrate the position information of the reference tag, the system is complex.
相位信息本质是一种信号传播时延信息,对距离的敏感度较高,达2°/mm。基于达到角度(AOA)和基于合成孔径(SAR)是两种最主要的相位式定位方法,其中,AOA方法利用天线阵列之间的相位差信息计算标签与天线之间的角度,多个天线阵列可通过计算各个方向角度的交点得到标签位置,AOA方法需要天线之间的距离小于半波长,但是方向性天线本身尺寸较大,该要求往往难以满足;而SAR方法利用移动的天线构成对标签的合成孔径观测,该方法可以从各个方向对标签进行观测,环境干扰对定位的影响得以降低,定位精度较高,由于该类方法一般是基于相位-距离周期性数学模型,标签位置解算过程往往具有较大的计算负荷,实时性受到限制。The essence of phase information is a kind of signal propagation delay information, which is highly sensitive to distance, up to 2°/mm. Angle of Arrival (AOA) and Synthetic Aperture (SAR) are the two main phase-based positioning methods. Among them, the AOA method uses the phase difference information between the antenna arrays to calculate the angle between the tag and the antenna. Multiple antenna arrays The position of the tag can be obtained by calculating the intersection point of each direction angle. The AOA method requires the distance between the antennas to be less than half a wavelength, but the size of the directional antenna itself is large, and this requirement is often difficult to meet; while the SAR method uses a moving antenna to form a target for the tag. Synthetic aperture observation, this method can observe tags from all directions, the influence of environmental interference on positioning can be reduced, and the positioning accuracy is high. With a large calculation load, the real-time performance is limited.
发明内容Contents of the invention
针对现有技术的以上缺陷或改进需求,本发明提供了一种基于相位特征的移动机器人RFID定位方法,其利用携带RFID读写器的移动机器人解算安装有RFID标签的目标物相对于移动机器人的位置信息,具有定位精度高、抗干扰能力强、计算量小、系统简单等优点。In view of the above defects or improvement needs of the prior art, the present invention provides a mobile robot RFID positioning method based on phase characteristics, which utilizes a mobile robot carrying an RFID reader to calculate the relative position of a target object equipped with an RFID tag relative to the mobile robot. It has the advantages of high positioning accuracy, strong anti-interference ability, small calculation amount, and simple system.
为实现上述目的,本发明提出了一种基于相位特征的移动机器人RFID定位方法,该方法包括如下步骤:In order to achieve the above object, the present invention proposes a mobile robot RFID positioning method based on phase features, the method comprises the following steps:
S1设置于移动机器人上的RFID读写器在移动机器人运动时,与目标物上安装的RFID标签形成射频回路,RFID读写器持续测量RFID射频回路的相位信息和信号波长信息,该相位信息为周期非连续信息;S1 The RFID reader installed on the mobile robot forms a radio frequency loop with the RFID tag installed on the target when the mobile robot is moving. The RFID reader continuously measures the phase information and signal wavelength information of the RFID radio frequency loop. The phase information is Periodic discontinuous information;
S2将周期非连续的相位信息转化为连续非周期的相位信息,并获取RFID读写器天线的位置信息;S2 converts the periodic non-continuous phase information into continuous non-periodic phase information, and obtains the position information of the RFID reader antenna;
S3构建解缠相位-位置模型,将所述的信号波长信息、连续非周期的相位信息以及RFID读写器天线的位置信息代入解缠相位-位置模型中,计算获得RFID标签相对于移动机器人的位置信息,以此实现目标物的定位。S3 constructs the unwrapped phase-position model, substitutes the signal wavelength information, continuous non-periodic phase information and the position information of the RFID reader antenna into the unwrapped phase-position model, and calculates the position of the RFID tag relative to the mobile robot Position information to realize the positioning of the target.
作为进一步优选的,步骤S2中利用相位解缠算法将周期非连续相位信息转化为连续非周期的相位信息具体为:令γ(1)=θ(1),并开始如下循环,直到将所有周期非连续相位信息转化为连续非周期相位信息:As a further preference, in step S2, using the phase unwrapping algorithm to convert periodic non-continuous phase information into continuous non-periodic phase information is specifically: Let γ (1) = θ (1) , and start the following loop until all the periodic The discontinuous phase information is transformed into continuous aperiodic phase information:
当θ(i)-θ(i-1)>Ψ时,令γ(i)=γ(i-1)+(θ(i)-θ(i-1))-2π;When θ (i) -θ (i-1) >Ψ, let γ (i) = γ (i-1) + (θ (i) -θ (i-1) )-2π;
当θ(i)-θ(i-1)<-Ψ时,令γ(i)=γ(i-1)+(θ(i)-θ(i-1))+2π;When θ (i) -θ (i-1) <-Ψ, let γ (i) = γ (i-1) +(θ (i) -θ (i-1) )+2π;
当-Ψ≤θ(i)-θ(i-1)≤Ψ时,令γ(i)=γ(i-1)+(θ(i)-θ(i-1));When -Ψ≤θ (i) -θ (i-1) ≤Ψ, let γ (i) = γ (i-1) + (θ (i) -θ (i-1) );
其中,θ(i)是第i个相位测量时刻测得的相位,γ(i)是第i个相位测量时刻测得的相位对应的实际解缠相位,Ψ为0~2π中的任意值,i=2~N,N为相位信息数量。Among them, θ (i) is the phase measured at the i-th phase measurement moment, γ (i) is the actual unwrapped phase corresponding to the phase measured at the i-th phase measurement moment, Ψ is any value from 0 to 2π, i=2˜N, N is the number of phase information.
作为进一步优选的,步骤S2中利用航迹推测法与旋转平移变换得到天线的位置信息,具体为:根据上一时刻i-1的移动机器人方位信息及移动机器人内部的惯性传感器信息,通过递推计算得到当前时刻i的移动机器人方位信息;根据当前时刻i的移动机器人方位信息通过旋转平移变换方程得到当前时刻RFID读写器天线的位置信息。As a further preference, in step S2, the position information of the antenna is obtained by using the dead reckoning method and the rotation-translation transformation, specifically: according to the orientation information of the mobile robot at the last moment i-1 and the inertial sensor information inside the mobile robot, through recursion The position information of the mobile robot at the current moment i is calculated; according to the position information of the mobile robot at the current time i, the position information of the RFID reader antenna at the current moment is obtained through the rotation-translation transformation equation.
作为进一步优选的,所述旋转平移变换方程式具体为:As a further preference, the rotation-translation transformation equation is specifically:
其中,(x(i),y(i),th(i))是第i个相位测量时刻对应的移动机器人方位,z是RFID读写器天线在移动机器人坐标系中的z坐标,(ρ,α)是RFID读写器天线在移动机器人坐标系中的极坐标,是第i个相位测量时刻对应的RFID读写器天线的位置坐标。Among them, (x (i) , y (i) , th (i) ) is the orientation of the mobile robot corresponding to the i-th phase measurement moment, z is the z coordinate of the RFID reader antenna in the mobile robot coordinate system, (ρ , α) is the polar coordinate of the RFID reader antenna in the mobile robot coordinate system, is the position coordinate of the RFID reader antenna corresponding to the i-th phase measurement moment.
作为进一步优选的,所述解缠相位-位置模型具体为:As a further preference, the unwrapped phase-position model is specifically:
其中,δ(i)是第i个相位测量时刻测得的相位对应的理论解缠相位,λ(i)是第i个相位测量时刻对应的信号波长,是第i个相位测量时刻对应的RFID读写器天线的位置坐标,(x,y,z)是目标物上待定位RFID标签的坐标,β是模糊因子。Among them, δ (i) is the theoretical unwrapped phase corresponding to the phase measured at the ith phase measurement moment, λ (i) is the signal wavelength corresponding to the ith phase measurement moment, is the position coordinate of the RFID reader antenna corresponding to the i-th phase measurement moment, (x, y, z) is the coordinate of the RFID tag to be located on the target, and β is the fuzzy factor.
作为进一步优选的,步骤S3中通过数值迭代优化算法计算获得RFID标签相对于移动机器人的位置信息,具体为:As a further preference, in step S3, the position information of the RFID tag relative to the mobile robot is obtained through numerical iterative optimization algorithm calculation, specifically:
S31建立代价函数如下:S31 establishes the cost function as follows:
其中,N为相位信息数量;Among them, N is the number of phase information;
S32求解代价函数的极小值,使该代价函数取得极小值时对应的(x,y,z)即为RFID标签相对于移动机器人的位置信息。S32 Solve the minimum value of the cost function, so that the corresponding (x, y, z) when the cost function obtains the minimum value is the position information of the RFID tag relative to the mobile robot.
作为进一步优选的,所述N≥4。As a further preference, said N≥4.
总体而言,通过本发明所构思的以上技术方案与现有技术相比,主要具备以下的技术优点:Generally speaking, compared with the prior art, the above technical solution conceived by the present invention mainly has the following technical advantages:
1.本发明的方法将移动机器人与RFID系统相结合,可以从不同方向对标签进行读取,有效降低环境干扰对定位的影响,并借助高距离分辨率的相位信息,能够获得较高的定位精度。1. The method of the present invention combines the mobile robot with the RFID system, which can read the tags from different directions, effectively reducing the impact of environmental interference on positioning, and with the help of phase information with high distance resolution, higher positioning can be obtained precision.
2.本发明通过所设计的相位解缠算法,构建起一个解缠相位-位置模型,通过常规的数值迭代优化算法即可实现标签位置的解算,计算负荷小。2. The present invention builds an unwrapped phase-position model through the designed phase unwrapping algorithm, and can realize the solution of the tag position through the conventional numerical iterative optimization algorithm, and the calculation load is small.
3.本发明所提出的定位方法,无需参考标签,系统简单,成本低,具有定位准确、抗干扰能力强、计算量小等优点。3. The positioning method proposed by the present invention does not need a reference tag, the system is simple, the cost is low, and it has the advantages of accurate positioning, strong anti-interference ability, and small calculation amount.
附图说明Description of drawings
图1是本发明的用于实现定位方法的RFID定位系统示意图;Fig. 1 is a schematic diagram of the RFID positioning system for realizing the positioning method of the present invention;
图2是本发明的基于相位特征的移动机器人RFID定位方法的流程图;Fig. 2 is the flowchart of the mobile robot RFID location method based on phase feature of the present invention;
图3是本发明的相位解缠算法结果示意图。Fig. 3 is a schematic diagram of the results of the phase unwrapping algorithm of the present invention.
具体实施方式Detailed ways
为了使本发明的目的、技术方案及优点更加清楚明白,以下结合附图及实施例,对本发明进行进一步详细说明。应当理解,此处所描述的具体实施例仅仅用以解释本发明,并不用于限定本发明。此外,下面所描述的本发明各个实施方式中所涉及到的技术特征只要彼此之间未构成冲突就可以相互组合。In order to make the object, technical solution and advantages of the present invention clearer, the present invention will be further described in detail below in conjunction with the accompanying drawings and embodiments. It should be understood that the specific embodiments described here are only used to explain the present invention, not to limit the present invention. In addition, the technical features involved in the various embodiments of the present invention described below can be combined with each other as long as they do not constitute a conflict with each other.
如图1所示,本发明将RFID系统与移动机器人相结合,利用携带RFID读写器的移动机器人解算安装RFID标签的目标物相对于移动机器人的位置信息,读写器在与标签通信的过程中,可以测量相位信息与信道波长信息,移动机器人上安装有惯性传感器。As shown in Figure 1, the present invention combines the RFID system with the mobile robot, uses the mobile robot carrying the RFID reader to solve the position information of the target object with the RFID tag relative to the mobile robot, and the reader communicates with the tag During the process, phase information and channel wavelength information can be measured, and inertial sensors are installed on the mobile robot.
如图2所示,本发明实施例提供的一种基于相位特征的移动机器人RFID定位方法,其利用携带RFID读写器的移动机器人解算安装RFID标签的目标物相对于移动机器人的位置信息,该方法具体包括如下步骤:As shown in Figure 2, a mobile robot RFID positioning method based on phase characteristics provided by an embodiment of the present invention uses a mobile robot carrying an RFID reader to calculate the position information of the target object with the RFID tag relative to the mobile robot, The method specifically includes the following steps:
S1设置于移动机器人上的RFID读写器在伴随移动机器人运动时,与目标物上安装的RFID标签形成射频回路,RFID读写器持续不间断的测量RFID射频回路的相位信息和信号波长信息,其中相位信息为周期非连续信息;S1 The RFID reader installed on the mobile robot forms a radio frequency loop with the RFID tag installed on the target when it moves with the mobile robot. The RFID reader continuously measures the phase information and signal wavelength information of the RFID radio frequency loop. The phase information is periodic discontinuous information;
S2将周期非连续的相位信息转化为连续非周期的相位信息,并获取RFID读写器天线的位置信息;S2 converts the periodic non-continuous phase information into continuous non-periodic phase information, and obtains the position information of the RFID reader antenna;
对于将周期非连续的相位信息转化为连续非周期的相位信息而言,具体利用相位解缠算法将周期非连续相位信息转化为连续非周期的相位信息,其中相位解缠算法具体为:令γ(1)=θ(1),并开始如下循环,直到将所有周期非连续相位信息转化为连续非周期相位信息:For converting periodic non-continuous phase information into continuous non-periodic phase information, the phase unwrapping algorithm is specifically used to convert periodic non-continuous phase information into continuous non-periodic phase information, where the phase unwrapping algorithm is specifically: Let γ (1) =θ (1) , and start the cycle as follows until all periodic non-continuous phase information is transformed into continuous non-periodic phase information:
当θ(i)-θ(i-1)>Ψ时,令γ(i)=γ(i-1)+(θ(i)-θ(i-1))-2π;When θ (i) -θ (i-1) >Ψ, let γ (i) = γ (i-1) + (θ (i) -θ (i-1) )-2π;
当θ(i)-θ(i-1)<-Ψ时,令γ(i)=γ(i-1)+(θ(i)-θ(i-1))+2π;When θ (i) -θ (i-1) <-Ψ, let γ (i) = γ (i-1) +(θ (i) -θ (i-1) )+2π;
当-Ψ≤θ(i)-θ(i-1)≤Ψ时,令γ(i)=γ(i-1)+(θ(i)-θ(i-1));When -Ψ≤θ (i) -θ (i-1) ≤Ψ, let γ (i) = γ (i-1) + (θ (i) -θ (i-1) );
其中,θ(i)是第i个相位测量时刻测得的相位,γ(i)是第i个相位测量时刻测得的相位对应的实际解缠相位,Ψ为0~2π中的任意值,i=2~N,N为相位信息数量。Among them, θ (i) is the phase measured at the i-th phase measurement moment, γ (i) is the actual unwrapped phase corresponding to the phase measured at the i-th phase measurement moment, Ψ is any value from 0 to 2π, i=2˜N, N is the number of phase information.
解缠前后的相位值如图3所示,解缠之前的相位是周期非连续的,大小限制在0-2π之间,解缠之后的相位是连续非周期的,并且其大小不再局限于0-2π。The phase values before and after unwrapping are shown in Figure 3. The phase before unwrapping is periodic and non-continuous, and its size is limited between 0-2π. The phase after unwrapping is continuous and non-periodic, and its size is no longer limited to 0-2π.
对于RFID读写器天线的位置信息而言,利用航迹推测法与旋转平移变换得到天线的位置信息,具体为:根据上一时刻(第i-1时刻)的移动机器人方位信息及移动机器人内部的惯性传感器信息,通过递推计算得到当前时刻(第i时刻)的移动机器人方位信息(x(i),y(i),th(i));根据当前时刻的移动机器人方位信息通过旋转平移变换方程得到当前时刻RFID读写器天线的位置信息 For the position information of the RFID reader antenna, the position information of the antenna is obtained by using the dead reckoning method and the rotation-translation transformation. The inertial sensor information of the mobile robot at the current moment (i-th moment) is obtained by recursive calculation (x (i) , y (i) , th (i) ); Transform the equation to get the position information of the RFID reader antenna at the current moment
对于航迹推测法而言,其利用移动机器人内部的惯性传感器(例如里程计、陀螺仪、加速度计、地磁计等)的信息,借助上一时刻的移动机器人方位信息,通过递推计算得到下一时刻的移动机器人方位信息,即根据移动机器人内部的惯性传感器的信息即可得出机器人的移动信息,然后在上一时刻的移动机器人方位信息上叠加移动信息即可获得当前时刻的移动机器人方位信息,而上一时刻的移动机器人方位信息可采用相同方法递推计算获得。例如对于两轮差分移动机器人而言,通过安装于两轮内的里程计传感器,可以分别感知到两个轮子转动的距离,进而通过其差分运动学模型,可由上一时刻的移动机器人方位信息递推得到当前时刻的移动机器人方位信息。需要说明的是,航迹推测法只能得到相对的方位信息,并不能得到绝对方位信息。由于本发明所提出的定位方法最后得到的是标签相对于移动载体当前方位的位置坐标,只需要其相对方位信息,故航迹推测法可满足本发明的要求。For the dead reckoning method, it uses the information of the inertial sensors (such as odometer, gyroscope, accelerometer, magnetometer, etc.) The orientation information of the mobile robot at one moment, that is, the movement information of the robot can be obtained according to the information of the inertial sensor inside the mobile robot, and then the orientation of the mobile robot at the current moment can be obtained by superimposing the movement information on the orientation information of the mobile robot at the previous moment information, and the orientation information of the mobile robot at the last moment can be obtained by recursive calculation in the same way. For example, for a two-wheel differential mobile robot, the odometer sensors installed in the two wheels can respectively perceive the distances of the two wheels, and then through its differential kinematics model, the orientation information of the mobile robot at the previous moment can be transmitted Push to get the location information of the mobile robot at the current moment. It should be noted that the dead reckoning method can only obtain relative azimuth information, but not absolute azimuth information. Since the positioning method proposed by the present invention finally obtains the position coordinates of the tag relative to the current position of the mobile carrier, only its relative position information is needed, so the dead reckoning method can meet the requirements of the present invention.
具体的,旋转平移变换方程式具体为:Specifically, the rotation-translation transformation equation is specifically:
其中,(x(i),y(i),th(i))是第i个相位测量时刻对应的移动机器人方位(位置+方向,在机器人坐标系下的方位),x(i),y(i)是移动机器人的位置,th(i)是移动机器人的方向,可以通过航迹推测法得到,z是RFID读写器天线在移动机器人坐标系中的z坐标(其为已知参数,即RFID读写器天线在移动机器人坐标系的Z轴方向上的高度),(ρ,α)是RFID读写器天线在移动机器人坐标系中的极坐标(其为已知参数),是第i个相位测量时刻对应的读写器天线的位置坐标(在机器人坐标系下)。Among them, (x (i) , y (i) , th (i) ) is the orientation of the mobile robot corresponding to the i-th phase measurement moment (position + direction, orientation in the robot coordinate system), x (i) , y (i) is the position of the mobile robot, th (i) is the direction of the mobile robot, which can be obtained by dead reckoning, and z is the z coordinate of the RFID reader antenna in the mobile robot coordinate system (it is a known parameter, That is, the height of the RFID reader antenna in the Z-axis direction of the mobile robot coordinate system), (ρ, α) is the polar coordinate (which is a known parameter) of the RFID reader antenna in the mobile robot coordinate system, is the position coordinate of the reader antenna corresponding to the i-th phase measurement moment (in the robot coordinate system).
S3建立解缠相位-位置模型,将步骤S1获得的信号波长信息和步骤S2获得的连续非周期的相位信息(即解缠处理后的相位信息)以及天线的位置信息代入解缠相位-位置模型,计算获得RFID标签相对于移动机器人的位置信息,以此实现目标物的定位。S3 establishes the unwrapping phase-position model, and substitutes the signal wavelength information obtained in step S1 and the continuous aperiodic phase information obtained in step S2 (that is, the phase information after unwrapping processing) and the position information of the antenna into the unwrapping phase-position model , calculate and obtain the position information of the RFID tag relative to the mobile robot, so as to realize the positioning of the target.
对于解缠相位-位置模型而言,其具体为:For the unwrapped phase-position model, it is specifically:
其中,δ(i)是第i个相位测量时刻测得的相位对应的理论解缠相位,λ(i)是第i个相位测量时刻对应的信号波长,其由步骤S1获得;是第i个相位测量时刻对应的读写器天线的位置坐标,其由步骤S2获得;(x,y,z)是目标物上待定位RFID标签的坐标(RFID标签在移动机器人坐标系中的坐标),β是模糊因子,是模型的附加参数,代表的是解缠相位的模糊程度,可根据需要进行设定。在该模型中,有四个未知数,分别是x,y,z,β,通过求解该方程,即可实现标签的定位,其中x代表标签x坐标,y代表标签y坐标,z代表标签z坐标,β代表模糊因子。Wherein, δ (i) is the theoretical unwrapped phase corresponding to the phase measured at the i-th phase measurement moment, and λ (i) is the signal wavelength corresponding to the i-th phase measurement moment, which is obtained by step S1; is the position coordinates of the reader antenna corresponding to the i-th phase measurement moment, which is obtained by step S2; (x, y, z) is the coordinates of the RFID tag to be positioned on the target (the RFID tag in the mobile robot coordinate system Coordinates), β is the ambiguity factor, which is an additional parameter of the model, representing the ambiguity of the unwrapped phase, which can be set as required. In this model, there are four unknowns, which are x, y, z, and β. By solving the equation, the positioning of the label can be realized, where x represents the x coordinate of the label, y represents the y coordinate of the label, and z represents the z coordinate of the label , β represents the fuzzy factor.
具体的,将每一时刻获得的对应的信号波长信息、连续非周期相位信息及天线的位置信息代入解缠相位-位置模型后,可得到如下方程组为:Specifically, after substituting the corresponding signal wavelength information, continuous aperiodic phase information and antenna position information obtained at each moment into the unwrapped phase-position model, the following equations can be obtained:
其中,N为相位信息数量,也即相位测量时刻数量,由于解缠相位-位置模型中有4个未知数,为了保证一定的精度,方程个数应不少于4个,即至少在四个不同位置实现相位观测。Among them, N is the number of phase information, that is, the number of phase measurement moments. Since there are 4 unknowns in the unwrapped phase-position model, in order to ensure a certain accuracy, the number of equations should be no less than 4, that is, at least four different position to achieve phase observation.
由于上述得到的方程组一般是超定且非线性的,难以获得解析解,因此需采用数值迭代优化算法进行求解。由于系统信息的观测噪声呈现高斯分布,本发明根据最小二乘准则建立代价函数:Since the equations obtained above are generally overdetermined and nonlinear, it is difficult to obtain an analytical solution, so a numerical iterative optimization algorithm is needed to solve them. Since the observation noise of the system information presents a Gaussian distribution, the present invention establishes a cost function according to the least squares criterion:
其中,γ(i)是第i个相位测量时刻测得的相位对应的解缠后相位,其由步骤S2获得,标签位置解算的实质为求解该代价函数的极小值,具体解算方法可选用现有的诸多方法进行,例如牛顿法、Levenberg—Marquardt、信赖域算法等,其为现有技术,在此不赘述。该类优化算法一般需设定一个迭代初始点,迭代初始点根据实际需要进行限定,然后依据迭代法则,使得代价函数逐渐减小,最终找到函数极小值,实现标签位置的解算,即求解代价函数的极小值,使该代价函数取得极小值时对应的(x,y,z)即为RFID标签相对于移动机器人的位置信息(即RFID标签在移动机器人坐标系中的坐标)。Among them, γ (i) is the unwrapped phase corresponding to the phase measured at the i-th phase measurement moment, which is obtained in step S2. The essence of the tag position solution is to solve the minimum value of the cost function. The specific solution method Many existing methods can be selected, such as Newton's method, Levenberg-Marquardt, trust region algorithm, etc., which are existing technologies and will not be repeated here. This type of optimization algorithm generally needs to set an iterative initial point, which is limited according to actual needs, and then according to the iterative rule, the cost function is gradually reduced, and finally the minimum value of the function is found to realize the solution of the label position, that is, to solve The minimum value of the cost function, so that the corresponding (x, y, z) when the cost function obtains the minimum value is the position information of the RFID tag relative to the mobile robot (that is, the coordinates of the RFID tag in the mobile robot coordinate system).
本领域的技术人员容易理解,以上所述仅为本发明的较佳实施例而已,并不用以限制本发明,凡在本发明的精神和原则之内所作的任何修改、等同替换和改进等,均应包含在本发明的保护范围之内。It is easy for those skilled in the art to understand that the above descriptions are only preferred embodiments of the present invention, and are not intended to limit the present invention. Any modifications, equivalent replacements and improvements made within the spirit and principles of the present invention, All should be included within the protection scope of the present invention.
Claims (7)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201810384983.1A CN108414972B (en) | 2018-04-26 | 2018-04-26 | Mobile robot RFID positioning method based on phase characteristics |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201810384983.1A CN108414972B (en) | 2018-04-26 | 2018-04-26 | Mobile robot RFID positioning method based on phase characteristics |
Publications (2)
Publication Number | Publication Date |
---|---|
CN108414972A true CN108414972A (en) | 2018-08-17 |
CN108414972B CN108414972B (en) | 2020-05-19 |
Family
ID=63136777
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201810384983.1A Active CN108414972B (en) | 2018-04-26 | 2018-04-26 | Mobile robot RFID positioning method based on phase characteristics |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN108414972B (en) |
Cited By (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN108828572A (en) * | 2018-08-24 | 2018-11-16 | 杭州物必连科技有限公司 | A kind of Internet of Things Web robot, articles from the storeroom positioning system and localization method |
CN110161527A (en) * | 2019-05-30 | 2019-08-23 | 华中科技大学 | A kind of three-dimensional map reconfiguration system and method based on RFID and laser radar |
CN110442014A (en) * | 2019-07-30 | 2019-11-12 | 华中科技大学 | A kind of location-based mobile robot RFID servo method |
CN110711701A (en) * | 2019-09-16 | 2020-01-21 | 华中科技大学 | A grab-type flexible sorting method based on RFID spatial positioning technology |
CN110850401A (en) * | 2019-08-27 | 2020-02-28 | 天津大学 | RFID label positioning method based on motion model and synthetic aperture |
JP2020056681A (en) * | 2018-10-02 | 2020-04-09 | 東芝テック株式会社 | Wireless tag reading device |
CN111487585A (en) * | 2020-04-29 | 2020-08-04 | 华中科技大学 | An antenna position calibration method for a mobile robot RFID positioning system |
CN115314996A (en) * | 2022-08-09 | 2022-11-08 | 合肥拉塞特机器人科技有限公司 | Method for rapidly acquiring WIFI wireless signal coverage based on track inspection robot |
CN117435902A (en) * | 2023-12-20 | 2024-01-23 | 武汉华威科智能技术有限公司 | Method and device for determining RFID tag movement behavior based on machine learning |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20160363661A1 (en) * | 2012-03-22 | 2016-12-15 | Intermec Ip Corp. | Synthetic aperture rfid handheld with tag location capability |
CN106997205A (en) * | 2017-04-27 | 2017-08-01 | 西南科技大学 | A kind of system and method for positioning and tracking to target for mobile robot |
CN107560618A (en) * | 2017-08-25 | 2018-01-09 | 河北工业大学 | Robot indoor orientation method based on RFID |
-
2018
- 2018-04-26 CN CN201810384983.1A patent/CN108414972B/en active Active
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20160363661A1 (en) * | 2012-03-22 | 2016-12-15 | Intermec Ip Corp. | Synthetic aperture rfid handheld with tag location capability |
CN106997205A (en) * | 2017-04-27 | 2017-08-01 | 西南科技大学 | A kind of system and method for positioning and tracking to target for mobile robot |
CN107560618A (en) * | 2017-08-25 | 2018-01-09 | 河北工业大学 | Robot indoor orientation method based on RFID |
Cited By (15)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN108828572A (en) * | 2018-08-24 | 2018-11-16 | 杭州物必连科技有限公司 | A kind of Internet of Things Web robot, articles from the storeroom positioning system and localization method |
JP7201379B2 (en) | 2018-10-02 | 2023-01-10 | 東芝テック株式会社 | RFID tag reader |
JP2020056681A (en) * | 2018-10-02 | 2020-04-09 | 東芝テック株式会社 | Wireless tag reading device |
CN110161527B (en) * | 2019-05-30 | 2020-11-17 | 华中科技大学 | Three-dimensional map reconstruction system and method based on RFID and laser radar |
CN110161527A (en) * | 2019-05-30 | 2019-08-23 | 华中科技大学 | A kind of three-dimensional map reconfiguration system and method based on RFID and laser radar |
CN110442014A (en) * | 2019-07-30 | 2019-11-12 | 华中科技大学 | A kind of location-based mobile robot RFID servo method |
CN110442014B (en) * | 2019-07-30 | 2020-08-04 | 华中科技大学 | A Position-Based RFID Servo Method for Mobile Robots |
CN110850401B (en) * | 2019-08-27 | 2022-06-28 | 天津大学 | A RFID Tag Location Method Based on Motion Model and Synthetic Aperture |
CN110850401A (en) * | 2019-08-27 | 2020-02-28 | 天津大学 | RFID label positioning method based on motion model and synthetic aperture |
CN110711701A (en) * | 2019-09-16 | 2020-01-21 | 华中科技大学 | A grab-type flexible sorting method based on RFID spatial positioning technology |
CN111487585A (en) * | 2020-04-29 | 2020-08-04 | 华中科技大学 | An antenna position calibration method for a mobile robot RFID positioning system |
CN115314996A (en) * | 2022-08-09 | 2022-11-08 | 合肥拉塞特机器人科技有限公司 | Method for rapidly acquiring WIFI wireless signal coverage based on track inspection robot |
CN115314996B (en) * | 2022-08-09 | 2024-08-30 | 合肥拉塞特机器人科技有限公司 | Method for rapidly acquiring WIFI wireless signal coverage based on track inspection robot |
CN117435902A (en) * | 2023-12-20 | 2024-01-23 | 武汉华威科智能技术有限公司 | Method and device for determining RFID tag movement behavior based on machine learning |
CN117435902B (en) * | 2023-12-20 | 2024-04-02 | 武汉华威科智能技术有限公司 | Method and device for determining RFID tag movement behavior based on machine learning |
Also Published As
Publication number | Publication date |
---|---|
CN108414972B (en) | 2020-05-19 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN108414972A (en) | A kind of mobile robot RFID localization methods based on phase property | |
CN109548141B (en) | Indoor environment base station coordinate position calibration method based on Kalman filtering algorithm | |
CN106919171B (en) | Indoor robot positioning and navigation system and method | |
Ma et al. | The optimization for hyperbolic positioning of UHF passive RFID tags | |
US20160103214A1 (en) | Use of Range-Rate Measurements in a Fusion Tracking System via Projections | |
Chen et al. | UHF-RFID-based real-time vehicle localization in GPS-less environments | |
CN101975938A (en) | Five-dimensional positioning method and system based on radio-frequency signals | |
CN105929364B (en) | Utilize the relative position measurement method and measuring device of radio-positioning | |
Wu et al. | A UHF RFID-based dynamic object following method for a mobile robot using phase difference information | |
CN110187333A (en) | A RFID tag positioning method based on synthetic aperture radar technology | |
Bernardini et al. | Particle swarm optimization in multi-antenna SAR-based localization for UHF-RFID tags | |
JP5900267B2 (en) | POSITION MEASURING SYSTEM AND GOOD STORAGE EQUIPMENT HAVING THE SAME | |
CN110888108B (en) | A positioning method based on RFID and phase calibration | |
CN110132273B (en) | Mobile robot navigation method based on RFID servo technology | |
KR100958412B1 (en) | Magnetic Position Recognition System and Method for Mobile Robot | |
CN110442014B (en) | A Position-Based RFID Servo Method for Mobile Robots | |
CN110850401B (en) | A RFID Tag Location Method Based on Motion Model and Synthetic Aperture | |
Michel et al. | Multisensor based indoor vehicle localization system for production and logistic | |
Li et al. | Kernel-based online prediction algorithms for indoor localization in Internet of Things | |
CN110781698A (en) | SAR RFID positioning method with low calculation amount | |
CN110736962A (en) | Target tracking method under passive RFID (radio frequency identification) scenes | |
Tang et al. | Fingerprint localization using WLAN RSS and magnetic field with landmark detection | |
CN110703188B (en) | An RFID-based six-degree-of-freedom attitude estimation system | |
CN115728730A (en) | A multi-sensory fusion positioning system construction and coordinate calibration method | |
Yang et al. | Geomagnetic localization of mobile robot |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |