CN108405866B - 软网络分割和梯度成分的钛/钢过渡接头结构 - Google Patents

软网络分割和梯度成分的钛/钢过渡接头结构 Download PDF

Info

Publication number
CN108405866B
CN108405866B CN201810132836.5A CN201810132836A CN108405866B CN 108405866 B CN108405866 B CN 108405866B CN 201810132836 A CN201810132836 A CN 201810132836A CN 108405866 B CN108405866 B CN 108405866B
Authority
CN
China
Prior art keywords
titanium
steel
soft
network
transition
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201810132836.5A
Other languages
English (en)
Other versions
CN108405866A (zh
Inventor
周琦
李洪强
彭勇
杨才华
王克鸿
范霁康
郭顺
徐俊强
陈鑫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nanjing University of Science and Technology
Original Assignee
Nanjing University of Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nanjing University of Science and Technology filed Critical Nanjing University of Science and Technology
Priority to CN201810132836.5A priority Critical patent/CN108405866B/zh
Publication of CN108405866A publication Critical patent/CN108405866A/zh
Priority to PCT/CN2018/110522 priority patent/WO2019153784A1/zh
Application granted granted Critical
Publication of CN108405866B publication Critical patent/CN108405866B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F7/00Manufacture of composite layers, workpieces, or articles, comprising metallic powder, by sintering the powder, with or without compacting wherein at least one part is obtained by sintering or compression
    • B22F7/02Manufacture of composite layers, workpieces, or articles, comprising metallic powder, by sintering the powder, with or without compacting wherein at least one part is obtained by sintering or compression of composite layers
    • B22F7/04Manufacture of composite layers, workpieces, or articles, comprising metallic powder, by sintering the powder, with or without compacting wherein at least one part is obtained by sintering or compression of composite layers with one or more layers not made from powder, e.g. made from solid metal
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F7/00Manufacture of composite layers, workpieces, or articles, comprising metallic powder, by sintering the powder, with or without compacting wherein at least one part is obtained by sintering or compression
    • B22F7/008Manufacture of composite layers, workpieces, or articles, comprising metallic powder, by sintering the powder, with or without compacting wherein at least one part is obtained by sintering or compression characterised by the composition
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K33/00Specially-profiled edge portions of workpieces for making soldering or welding connections; Filling the seams formed thereby
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y10/00Processes of additive manufacturing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y80/00Products made by additive manufacturing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F10/00Additive manufacturing of workpieces or articles from metallic powder
    • B22F10/20Direct sintering or melting
    • B22F10/25Direct deposition of metal particles, e.g. direct metal deposition [DMD] or laser engineered net shaping [LENS]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F12/00Apparatus or devices specially adapted for additive manufacturing; Auxiliary means for additive manufacturing; Combinations of additive manufacturing apparatus or devices with other processing apparatus or devices
    • B22F12/40Radiation means
    • B22F12/41Radiation means characterised by the type, e.g. laser or electron beam
    • B22F12/43Radiation means characterised by the type, e.g. laser or electron beam pulsed; frequency modulated
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F7/00Manufacture of composite layers, workpieces, or articles, comprising metallic powder, by sintering the powder, with or without compacting wherein at least one part is obtained by sintering or compression
    • B22F7/02Manufacture of composite layers, workpieces, or articles, comprising metallic powder, by sintering the powder, with or without compacting wherein at least one part is obtained by sintering or compression of composite layers
    • B22F7/04Manufacture of composite layers, workpieces, or articles, comprising metallic powder, by sintering the powder, with or without compacting wherein at least one part is obtained by sintering or compression of composite layers with one or more layers not made from powder, e.g. made from solid metal
    • B22F2007/042Manufacture of composite layers, workpieces, or articles, comprising metallic powder, by sintering the powder, with or without compacting wherein at least one part is obtained by sintering or compression of composite layers with one or more layers not made from powder, e.g. made from solid metal characterised by the layer forming method
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2999/00Aspects linked to processes or compositions used in powder metallurgy
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/25Process efficiency

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Composite Materials (AREA)
  • Pressure Welding/Diffusion-Bonding (AREA)
  • Welding Or Cutting Using Electron Beams (AREA)

Abstract

本发明公开了一种钛钢过渡接头结构,具体为基于软网络分割和梯度成分的钛及钛合金与不锈钢的过渡接头结构。该过渡接头的一端为钛及钛合金或者钢其中的一种,而接头的另一端包括钛或钢和与之形成网络分割的第三种元素或者更多种元素形成的过渡体。该过渡体可以实现其两端区域钛和钢的软连接并可以阻止其他钛钢硬连接区域裂纹的扩展;此外该过渡体垂直于接头的方向的截面呈圆形或者多边形,有利于分散接头产生的应力集中与裂纹的进一步扩展,综上所述该过渡接头可以提高钛钢梯度连接的强度。

Description

软网络分割和梯度成分的钛/钢过渡接头结构
技术领域
本发明属于异种金属连接领域,具体涉及一种软网络分割和梯度成分的钛/钢过渡接头结构。
背景技术
钛和钛系合金具有特殊的机械和冶金性能,如重量轻,高强质比,优良的耐热性,因此在航空航天,核能和化学工业等收到了越来越多的关注同时也解决了诸多的难题。例如,飞机,导弹和火箭以超高速飞行时,他们的发动机和表面温度相当高。在这种工作情况下钛合金相对于其他金属合金更适合用来制作热电阻。虽然钛合金具有优越的机械性能和冶金性能,但是其价格较昂贵,而结构钢和不锈钢具有良好的成形性和经济性,因而钛和钢的连接成为了研究的热点。但是,钛和钢之间的物理性质差异较大,例如,钛合金与钢的热导率相差较大,焊接时热量的传导速度相差较大,熔池尺寸有很大差别,增加了焊接缺陷产生的倾向;钢与钛的线膨胀系数相差较大,焊接过程中接头附近会产生较大的热应力,增加了裂纹倾向。此外,Ti与Fe既可以形成固溶体和金属间化合物,又可以形成共晶体。在室温环境下,Ti与Fe互溶度极小,Fe在α-Ti中的溶解度只有0.04%,焊接时接头中几乎全部由TiFe、TiFe2等脆性金属间化合物组成,进行钛/钢焊接时,很难控制焊缝中Fe含量在Ti的溶解度范围内,极易形成金属间化合物,使接头呈现很大的脆性,在焊接热应力作用下发生开裂,无法实现连接。
目前,解决以上问题的钛钢直接连接方法对的研究情况如下:
1、中国专利,申请号201310027100.9,名称为“表面处理钢与钛或钛合金的焊接方法”的发明公开了采用等离子注入的方法在钢的表面形成一层钛的注入层和沉积层并将此沉积层与钛或钛合金进行扩散连接而使得钛钢连接的一种工艺方法。
2、中国专利,申请号201110123247.9,名称为“一种钛或钛合金与不锈钢的扩散焊方法”的发明公开了一种将与焊接工件相同材质的板材切成薄片并组成中间层,然后在进行扩散连接钛和钢的工艺方法。
间接连接钛和钢方法为添加中间过渡材料以减少或避免钛与Fe的接触进而产生脆性金属间化合物。例如:
1、期刊论文,A hybrid joint based on two kinds of bonding mechanismsfor Titanium alloy and stainless steel by pulsed laser welding,孙大谦等人采用1mm厚度的纯Nb(99.99at%)作为过渡层,用脉冲激光在距离TC4和Nb的对接处0.2mm的TC4侧进行单道焊接。该试样的拉伸强度可达到370MPa且断裂处位于反应层区。
2、期刊论文,Lap welding of titanium sheet and mild steel sheet by seamwelding,采用Ti-Ta-Cu-钢的过渡方式实现了钛合金与耐蚀钢的连接。
以上研究方法的缺点在于工艺路线复杂,实施困难不容易控制且生成的接头强度不高或难以用于生产实践。
发明内容
本发明的目的克服了现有技术的不足,本发明为一种用于连接钛钢的过渡接头。具体为采用软网络分割和梯度成分的钛/钢过渡接头结构,这种结构的优势在于能够有效控制裂纹的扩展,软区材料韧性较好,硬区材料较脆,裂纹会从脆性区域产生,当裂纹扩展时会产生小的变形,但由于软区材料的变形约束作用即在韧性区发生塑性变形后裂纹的继续扩展会被终止,进而阻止的裂纹的继续开裂。此外,软区材料的塑性变形还有利于接头强度的提升。
一种软网络分割和梯度成分的钛/钢过渡接头结构,该接头包括钛、钛合金或钢的基板、网络分割结构部分、增材过渡层,所述网络分割结构部分为在与基板相同材料的基体,垂直嵌入基体中阵列式的具有锥度形状的软质体;所述的软质体嵌入基体内时在嵌入方向的两端面积不同,其中面积较大的一端对应连接增材过渡层,面积较小的一端对应连接钛及钛合金或钢的基板;增材过渡层为均匀覆盖在网络分割结构部分与软质体相同材质的金属层。
进一步的,网络分割结构部分的软质体具体结构为圆台形状。
进一步的,过渡接头结构的网络分割结构部分的软质体具体形状包括棱台形状,且其截面包括椭圆,圆角方形,正六边形,正三角形,正方形。
进一步的,网络分割结构部分中软质体的垂直于嵌入方向截面的几何中心到顶点的距离的范围为:5mm-30mm,且几何中心之间的距离为垂直于嵌入方向截面最长对角线的110%-130%。
进一步的,网络分割结构部分中阵列式的软质体非边缘处的分布为以任意一个软质体为中心,离其最近的4个软质体相邻夹角为90°。
进一步的,接头中网络分割结构部分的整体厚度在1mm-5mm范围内。
进一步的,增材过渡层的厚度为0.5mm-2mm。
进一步的,软质体与增材过渡层的材料选择为:(1)所选择的过渡材料的硬度要比钛合金和钢低;(2)所述过渡材料对Ti或Fe的溶解度大于等于30wt%。
本发明相对于现有技术具有以下优点:
1、本发明采用仿生结构,能改变接头处的裂纹扩展模式,能防止脆性相应力集中处裂纹的直接直线扩展和断裂,提高接头处的抗拉强度。
2、本发明采用了截面为圆形以及其他多边形的结构,这样的结构能够分散应力和裂纹的扩展,有利于接头性能的提升。
3、本发明采用圆台以及其他多边形的结构可以使得与钢侧连接的接头处的软质区域面积大于硬质区域面积,使得裂纹足够被终止;而圆台另一侧面积较小,目的是减少软质区的面积,形成过渡结构并防止过量的第三种元素或者更多种元素会使得接头强度的降低。
附图说明
图1为本发明软网络分割和梯度成分的钛/钢过渡接头结构示意图;
图2为实施例1中钛/钢过渡接头的网络分割结构部分的整体示意图;
图3为实施例1中钛/钢过渡接头的网络分割结构部分的截面示意图;
图4为本发明软网络分割和梯度成分的钛/钢过渡接头裂纹扩展示意图;
图5为实施例2中钛/钢过渡接头的网络分割结构部分的整体示意图;
图6为实施例2中钛/钢过渡接头的网络分割结构部分的截面示意图。
具体实施方式
以下实施例仅作为本发明的具体化,本发明不局限于以下范围。
附图中:1TC4或316L基板;2第三种元素或者更多种元素金属层;3网络分割结构层;4TC4或316L块体;5第三种元素或者更多种元素金属块体。
实施例1
本实例是一种易于采用粉末增材来实现的TC4和316L不锈钢的过渡接头,具体为其一侧为TC4基板,然后在TC4基板上方进行纯钒的软网络分割过渡,具体过渡3层,每层厚度0.5mm,且截面圆形的初始直径尺寸为5mm,第二层直径尺寸为7mm,第三层即最后一层的直径为9mm,且圆心与圆心之间的间距为11mm。除了软质过渡区域以外则为TC4区域。实现软网络分割后,为了减弱与316L不锈钢的过渡是产生大量的脆性的金属间化合物,因此在整个接头的软网络分割增材层的基础上继续增加一层1mm的纯钒即得到整个钛钢梯度接头的整体结构。其中添加的三层钒可以使得Ti在接头长度方向上出现成分的梯度变化,当软网络分割的圆台区(附有最后一层纯钒)与钢连接时,钛的含量已经不足以形成钛钢金属间化合物保证了此处的结构的韧性。
实施例2
本实例是一种易于采用送丝增材(送丝增材不适于圆形增材)来实现的TC4和316L不锈钢的过渡接头,具体为其一侧为TC4基板,然后在TC4基板上方进行纯钒的软网络分割过渡,具体过渡3层,每层厚度1mm,且截面正六边形的初始边长为5mm,第二层边长为7mm,第三层即最后一层的边长为9mm,且正六边形的中心之间的距离为18mm。除了软质过渡区域以外则为TC4区域。实现软网络分割后,为了减弱与316L不锈钢的过渡是产生大量的脆性的金属间化合物,因此在整个接头的软网络分割增材层的基础上继续增加一层1mm的纯钒即得到整个钛钢梯度接头的整体结构。其中添加的三层钒可以使得Ti在接头长度方向上出现成分的梯度变化,当软网络分割的正六边形(附有最后一层纯钒)与钢连接时,钛的含量已经不足以形成钛钢金属间化合物保证了此处的结构的韧性。
本发明使用的过渡材料能和Ti和Fe无限互溶或者能有限互溶,实现钛钢之间的软过渡,因此不会生成脆性金属间间化合物,软质区域即圆台区域采用多层第三种元素或者更多种元素进行过渡,最终使得该区域不会与钢连接时生成脆性金属间化合物;同时,整体接头最后增材的一层的第三种元素或者更多种元素的作用也是为了减少接头处钛及钛合金与需连接钢侧产生Ti-Fe金属间化合物的量,形成相对较软的过渡即硬质区域。
根据图4,当钛与钢相接触的地方产生裂纹时,裂纹可能会沿着X-Y平面或者Z的正反方向进行扩展。当裂纹沿着X-Y平面扩展时,会受到圆形软质区域的制约进而裂纹扩展终止;当裂纹沿Z方向扩展时,Z方向上的两侧结构为纯钒层或者钢层,因而裂纹也会被制约,从而接头处的裂纹不会在应力的作用下发生无限扩展而发生断裂。

Claims (8)

1.一种软网络分割和梯度成分的钛/钢过渡接头结构,其特征在于,该接头包括钛、钛合金或钢的基板、网络分割结构部分、增材过渡层,所述网络分割结构部分为与基板相同材料的基体,垂直嵌入基体中阵列式的具有锥度形状的软质体;所述的软质体嵌入基体内时在嵌入方向的两端面积不同,其中面积较大的一端对应连接增材过渡层,面积较小的一端对应连接钛及钛合金或钢的基板;增材过渡层为均匀覆盖在网络分割结构部分与软质体相同材质的金属层。
2.根据权利要求1中所述的软网络分割和梯度成分的钛/钢过渡接头结构,其特征在于,网络分割结构部分的软质体具体结构为圆台形状。
3.根据权利要求1中所述的软网络分割和梯度成分的钛/钢过渡接头结构,其特征在于,过渡接头结构的网络分割结构部分的软质体具体形状包括棱台形状,且其截面包括椭圆,圆角方形,正六边形,正三角形,正方形。
4.根据权利要求1-3中任一项所述的软网络分割和梯度成分的钛/钢过渡接头结构,其特征在于,网络分割结构部分中软质体的垂直于嵌入方向截面的几何中心到顶点的距离的范围为:5mm-30mm,且几何中心之间的距离为垂直于嵌入方向截面最长对角线的110%-130%。
5.根据权利要求1中所述的软网络分割和梯度成分的钛/钢过渡接头结构,其特征在于,网络分割结构部分中阵列式的软质体的非边缘处的分布为以任意一个软质体为中心,离其最近的4个软质体相邻夹角为90°。
6.根据权利要求1中所述的软网络分割和梯度成分的钛/钢过渡接头结构,其特征在于,接头中网络分割结构部分的整体厚度在1mm-5mm范围内。
7.根据权利要求1中所述的软网络分割和梯度成分的钛/钢过渡接头结构,其特征在于,增材过渡层的厚度为0.5mm-2mm。
8.根据权利要求1中所述的软网络分割和梯度成分的钛/钢过渡接头结构,其特征在于,所述的软质体与增材过渡层的材料选择为:(1)所选择的过渡材料的硬度要比钛合金和钢低;(2)所述过渡材料对Ti或Fe的溶解度大于等于30wt%。
CN201810132836.5A 2018-02-09 2018-02-09 软网络分割和梯度成分的钛/钢过渡接头结构 Active CN108405866B (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201810132836.5A CN108405866B (zh) 2018-02-09 2018-02-09 软网络分割和梯度成分的钛/钢过渡接头结构
PCT/CN2018/110522 WO2019153784A1 (zh) 2018-02-09 2018-10-16 软网络分割和梯度成分的钛钢过渡接头结构仿生-结构

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201810132836.5A CN108405866B (zh) 2018-02-09 2018-02-09 软网络分割和梯度成分的钛/钢过渡接头结构

Publications (2)

Publication Number Publication Date
CN108405866A CN108405866A (zh) 2018-08-17
CN108405866B true CN108405866B (zh) 2020-09-11

Family

ID=63127079

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201810132836.5A Active CN108405866B (zh) 2018-02-09 2018-02-09 软网络分割和梯度成分的钛/钢过渡接头结构

Country Status (2)

Country Link
CN (1) CN108405866B (zh)
WO (1) WO2019153784A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108405866B (zh) * 2018-02-09 2020-09-11 南京理工大学 软网络分割和梯度成分的钛/钢过渡接头结构

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3305106A1 (de) * 1983-02-15 1984-08-16 Messerschmitt-Bölkow-Blohm GmbH, 8012 Ottobrunn Verfahren zur herstellung der verbindung der werkstoffe titan und eisen-nickel-legierungen durch diffusionsschweissen mit hilfe von zwischenschichten
JPH04350104A (ja) * 1991-05-28 1992-12-04 Toshiba Corp 部材接合構造
CN103480851B (zh) * 2013-09-30 2015-05-13 江苏烁石焊接科技有限公司 一种适用于钛-钢异种金属连接的梯度接头
CN103480846B (zh) * 2013-09-30 2015-06-24 南京理工大学 一种钛-钢异种金属烧结/焊接的连接方法
CN103785962B (zh) * 2014-01-17 2016-03-02 南京理工大学 一种钛-钢复合板全透焊接方法
CN104400249A (zh) * 2014-09-24 2015-03-11 西安理工大学 钛-钢复合板异质接头过渡层用药芯焊丝及其制备方法
US9982684B2 (en) * 2015-08-07 2018-05-29 General Electric Company Hybrid metal compressor blades
CN107283087A (zh) * 2017-07-31 2017-10-24 西安理工大学 钛‑铜‑钢复合板焊接用药芯焊丝及其焊接坡口形式
CN108097957B (zh) * 2018-02-09 2020-06-30 江苏烁石焊接科技有限公司 一种软网络分割和梯度成分的钛/钢过渡接头制备方法
CN108405866B (zh) * 2018-02-09 2020-09-11 南京理工大学 软网络分割和梯度成分的钛/钢过渡接头结构

Also Published As

Publication number Publication date
CN108405866A (zh) 2018-08-17
WO2019153784A1 (zh) 2019-08-15

Similar Documents

Publication Publication Date Title
CN108097957B (zh) 一种软网络分割和梯度成分的钛/钢过渡接头制备方法
Hu et al. Ultrasonic vibration-assisted laser engineering net shaping of ZrO2-Al2O3 bulk parts: Effects on crack suppression, microstructure, and mechanical properties
Yasa et al. Microstructure and mechanical properties of maraging steel 300 after selective laser melting
Gu et al. Effects of laser scanning strategies on selective laser melting of pure tungsten
Kelly et al. The principles of the fibre reinforcement of metals
Rashid et al. A comparative study of flexural properties of additively manufactured aluminium lattice structures
Tian et al. Effect of annealing temperature on the notch impact toughness of a laser melting deposited titanium alloy Ti–4Al–1.5 Mn
Noh et al. Solid-state diffusion bonding of high-Cr ODS ferritic steel
Ming et al. Microstructure and mechanical properties of Al-Fe meshing bonding interfaces manufactured by explosive welding
Mao et al. Effects of process parameters on interfacial characterization and mechanical properties of 316L/CuCrZr functionally graded material by selective laser melting
Guo et al. Microstructure and mechanical properties of C/C composite/TC4 joint with inactive AgCu filler metal
Halbig et al. Diffusion bonding of SiC fiber-bonded ceramics using Ti/Mo and Ti/Cu interlayers
CN108405866B (zh) 软网络分割和梯度成分的钛/钢过渡接头结构
CN109136785B (zh) 适用于增材制造的奥氏体不锈钢
Xu et al. Investigation on tensile fracture properties of TA15 specimen formed by selective electron beam melting
CN111187963A (zh) 适于消除激光选区熔化成形热裂纹的哈氏合金及方法与应用
Chang et al. High strain rate characteristics of 3-3 metal–ceramic interpenetrating composites
CN113560575A (zh) 一种激光选区熔化成形05Cr17Ni4Cu4Nb不锈钢引气管的方法
Zeng et al. Coupling effect of bonding temperature and reduced interlayer thickness on the interface characteristics and quality of the diffusion-bonded joints of Zr alloys
Johnson et al. Fatigue behavior and failure mechanisms of direct laser deposited Inconel 718
CN108262579B (zh) 韧化过渡的异种材料连接接头结构和制备方法
Nakai et al. Fatigue crack initiation and small-crack propagation in Zr-based bulk metallic glass
EP4249616A1 (en) Formed article having low stretching anisotropy, forming method, and forming powder therefor
Zhao et al. Mechanical behavior of SiC foam-SiC particles/Al hybrid composites
CN113996807A (zh) 消除激光选区熔化增材制造2024铝合金微裂纹的方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant