CN108400316A - Selfreparing oxidation film coats Na-K liquid alloy electrodes and its preparation method and application - Google Patents
Selfreparing oxidation film coats Na-K liquid alloy electrodes and its preparation method and application Download PDFInfo
- Publication number
- CN108400316A CN108400316A CN201810140846.3A CN201810140846A CN108400316A CN 108400316 A CN108400316 A CN 108400316A CN 201810140846 A CN201810140846 A CN 201810140846A CN 108400316 A CN108400316 A CN 108400316A
- Authority
- CN
- China
- Prior art keywords
- conductive carrier
- metal
- liquid alloy
- electrode
- preparation
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 229910045601 alloy Inorganic materials 0.000 title claims abstract description 69
- 239000000956 alloy Substances 0.000 title claims abstract description 69
- 229910003251 Na K Inorganic materials 0.000 title claims abstract description 65
- 239000007788 liquid Substances 0.000 title claims abstract description 59
- 238000002360 preparation method Methods 0.000 title claims abstract description 16
- 230000003647 oxidation Effects 0.000 title claims description 11
- 238000007254 oxidation reaction Methods 0.000 title claims description 11
- 229910052751 metal Inorganic materials 0.000 claims abstract description 63
- 239000002184 metal Substances 0.000 claims abstract description 63
- 239000011261 inert gas Substances 0.000 claims abstract description 10
- 238000005275 alloying Methods 0.000 claims abstract description 8
- 238000001816 cooling Methods 0.000 claims abstract description 4
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical group [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 claims description 21
- 239000003792 electrolyte Substances 0.000 claims description 19
- 229910052799 carbon Inorganic materials 0.000 claims description 18
- 229910052783 alkali metal Inorganic materials 0.000 claims description 14
- 150000001340 alkali metals Chemical class 0.000 claims description 14
- 239000004744 fabric Substances 0.000 claims description 13
- 238000006243 chemical reaction Methods 0.000 claims description 10
- 150000002739 metals Chemical class 0.000 claims description 9
- KMTRUDSVKNLOMY-UHFFFAOYSA-N Ethylene carbonate Chemical compound O=C1OCCO1 KMTRUDSVKNLOMY-UHFFFAOYSA-N 0.000 claims description 7
- IEJIGPNLZYLLBP-UHFFFAOYSA-N dimethyl carbonate Chemical compound COC(=O)OC IEJIGPNLZYLLBP-UHFFFAOYSA-N 0.000 claims description 5
- 238000010438 heat treatment Methods 0.000 claims description 3
- 239000000463 material Substances 0.000 claims description 3
- 239000000155 melt Substances 0.000 claims description 3
- 239000000203 mixture Substances 0.000 claims description 3
- 239000002904 solvent Substances 0.000 claims description 3
- 239000000243 solution Substances 0.000 claims description 2
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 claims 10
- 239000010931 gold Substances 0.000 claims 10
- 229910052737 gold Inorganic materials 0.000 claims 10
- 229910021135 KPF6 Inorganic materials 0.000 claims 2
- 229910019398 NaPF6 Inorganic materials 0.000 claims 2
- 238000005253 cladding Methods 0.000 claims 2
- 239000011248 coating agent Substances 0.000 claims 1
- 238000000576 coating method Methods 0.000 claims 1
- 239000008151 electrolyte solution Substances 0.000 claims 1
- 238000002844 melting Methods 0.000 claims 1
- 230000008018 melting Effects 0.000 claims 1
- 239000011734 sodium Substances 0.000 abstract description 26
- 210000001787 dendrite Anatomy 0.000 abstract description 7
- 238000000034 method Methods 0.000 abstract description 6
- ZLMJMSJWJFRBEC-UHFFFAOYSA-N Potassium Chemical compound [K] ZLMJMSJWJFRBEC-UHFFFAOYSA-N 0.000 abstract description 2
- KEAYESYHFKHZAL-UHFFFAOYSA-N Sodium Chemical compound [Na] KEAYESYHFKHZAL-UHFFFAOYSA-N 0.000 abstract description 2
- NINIDFKCEFEMDL-UHFFFAOYSA-N Sulfur Chemical compound [S] NINIDFKCEFEMDL-UHFFFAOYSA-N 0.000 abstract description 2
- DCYOBGZUOMKFPA-UHFFFAOYSA-N iron(2+);iron(3+);octadecacyanide Chemical compound [Fe+2].[Fe+2].[Fe+2].[Fe+3].[Fe+3].[Fe+3].[Fe+3].N#[C-].N#[C-].N#[C-].N#[C-].N#[C-].N#[C-].N#[C-].N#[C-].N#[C-].N#[C-].N#[C-].N#[C-].N#[C-].N#[C-].N#[C-].N#[C-].N#[C-].N#[C-] DCYOBGZUOMKFPA-UHFFFAOYSA-N 0.000 abstract description 2
- 239000007774 positive electrode material Substances 0.000 abstract description 2
- 229960003351 prussian blue Drugs 0.000 abstract description 2
- 239000013225 prussian blue Substances 0.000 abstract description 2
- 229910052717 sulfur Inorganic materials 0.000 abstract description 2
- 239000011593 sulfur Substances 0.000 abstract description 2
- 239000010408 film Substances 0.000 description 35
- 239000002131 composite material Substances 0.000 description 10
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 8
- 239000003575 carbonaceous material Substances 0.000 description 6
- 239000007773 negative electrode material Substances 0.000 description 5
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 description 4
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 4
- 229910052757 nitrogen Inorganic materials 0.000 description 4
- 239000001301 oxygen Substances 0.000 description 4
- 229910052760 oxygen Inorganic materials 0.000 description 4
- 238000011161 development Methods 0.000 description 3
- 239000007888 film coating Substances 0.000 description 3
- 238000009501 film coating Methods 0.000 description 3
- 229910021389 graphene Inorganic materials 0.000 description 3
- 238000011160 research Methods 0.000 description 3
- 239000000654 additive Substances 0.000 description 2
- 229910052786 argon Inorganic materials 0.000 description 2
- -1 block Substances 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 239000007772 electrode material Substances 0.000 description 2
- 238000004146 energy storage Methods 0.000 description 2
- 150000002500 ions Chemical class 0.000 description 2
- 229910001338 liquidmetal Inorganic materials 0.000 description 2
- 229910044991 metal oxide Inorganic materials 0.000 description 2
- 150000004706 metal oxides Chemical class 0.000 description 2
- 239000007787 solid Substances 0.000 description 2
- 239000000758 substrate Substances 0.000 description 2
- 239000010409 thin film Substances 0.000 description 2
- 239000002028 Biomass Substances 0.000 description 1
- 229920000049 Carbon (fiber) Polymers 0.000 description 1
- 238000002441 X-ray diffraction Methods 0.000 description 1
- 238000003491 array Methods 0.000 description 1
- 239000004917 carbon fiber Substances 0.000 description 1
- 239000012876 carrier material Substances 0.000 description 1
- 210000004027 cell Anatomy 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 238000001125 extrusion Methods 0.000 description 1
- 229910021385 hard carbon Inorganic materials 0.000 description 1
- 230000005764 inhibitory process Effects 0.000 description 1
- 231100000053 low toxicity Toxicity 0.000 description 1
- 239000012528 membrane Substances 0.000 description 1
- 239000012621 metal-organic framework Substances 0.000 description 1
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 description 1
- 239000011259 mixed solution Substances 0.000 description 1
- 238000010295 mobile communication Methods 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 239000002057 nanoflower Substances 0.000 description 1
- 239000003960 organic solvent Substances 0.000 description 1
- 238000011056 performance test Methods 0.000 description 1
- 229920000642 polymer Polymers 0.000 description 1
- 229910052700 potassium Inorganic materials 0.000 description 1
- KVFIZLDWRFTUEM-UHFFFAOYSA-N potassium;bis(trifluoromethylsulfonyl)azanide Chemical compound [K+].FC(F)(F)S(=O)(=O)[N-]S(=O)(=O)C(F)(F)F KVFIZLDWRFTUEM-UHFFFAOYSA-N 0.000 description 1
- 239000000843 powder Substances 0.000 description 1
- 239000002096 quantum dot Substances 0.000 description 1
- 238000011084 recovery Methods 0.000 description 1
- 229910052708 sodium Inorganic materials 0.000 description 1
- SUKJFIGYRHOWBL-UHFFFAOYSA-N sodium hypochlorite Chemical compound [Na+].Cl[O-] SUKJFIGYRHOWBL-UHFFFAOYSA-N 0.000 description 1
- 229910001415 sodium ion Inorganic materials 0.000 description 1
- YLKTWKVVQDCJFL-UHFFFAOYSA-N sodium;bis(trifluoromethylsulfonyl)azanide Chemical compound [Na+].FC(F)(F)S(=O)(=O)[N-]S(=O)(=O)C(F)(F)F YLKTWKVVQDCJFL-UHFFFAOYSA-N 0.000 description 1
- 229910021384 soft carbon Inorganic materials 0.000 description 1
- 238000012360 testing method Methods 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/36—Selection of substances as active materials, active masses, active liquids
- H01M4/38—Selection of substances as active materials, active masses, active liquids of elements or alloys
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/64—Carriers or collectors
- H01M4/66—Selection of materials
- H01M4/661—Metal or alloys, e.g. alloy coatings
- H01M4/662—Alloys
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
Landscapes
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Battery Electrode And Active Subsutance (AREA)
- Secondary Cells (AREA)
Abstract
本发明公开了一种高效自修复氧化膜包覆Na‑K液态合金电极及其制备方法和作为负极的应用,在惰性气体保护下,将K金属和Na金属分别加热,直至熔化,再将导电载体与金属接触,熔化的金属缓慢湿润导电载体,冷却至室温即分别得到负载K金属和Na金属的导电载体;通过物理堆叠合金化的方法,室温下制备结构稳定的自修复氧化膜包覆Na‑K液态合金电极。该电极包括导电载体、载体上吸附的Na‑K液态合金和表面的自修复氧化膜。本发明电极具有高库伦效率、无枝晶生长和结构稳定等特点,可同时作为钾金属负极和钠金属负极,与硫、普鲁士蓝等正极材料匹配时,显著提高全电池的能量密度和循环稳定性。
The invention discloses a high-efficiency self-repairing oxide film-coated Na-K liquid alloy electrode and its preparation method and application as a negative electrode. Under the protection of an inert gas, the K metal and the Na metal are heated separately until they melt, and then the conductive The carrier is in contact with the metal, the molten metal slowly wets the conductive carrier, and the conductive carrier loaded with K metal and Na metal is respectively obtained after cooling to room temperature; through the method of physical stacking and alloying, a self-healing oxide film coated Na with a stable structure is prepared at room temperature. ‑K liquid alloy electrodes. The electrode includes a conductive carrier, Na-K liquid alloy adsorbed on the carrier and a self-repairing oxide film on the surface. The electrode of the present invention has the characteristics of high Coulombic efficiency, no dendrite growth and stable structure, and can be used as a potassium metal negative electrode and a sodium metal negative electrode at the same time. When matched with positive electrode materials such as sulfur and Prussian blue, the energy density and cycle stability of the full battery are significantly improved. sex.
Description
技术领域technical field
本发明涉及碱金属二次电池负极材料技术领域,具体涉及一种自修复氧化膜包覆Na-K液态合金电极及其制备方法和作为碱金属二次电池负极材料应用。The invention relates to the technical field of negative electrode materials for alkali metal secondary batteries, in particular to a self-repairing oxide film-coated Na-K liquid alloy electrode, a preparation method thereof, and an application as negative electrode materials for alkali metal secondary batteries.
背景技术Background technique
随着新能源汽车和移动电子设备的普及,迫切需要开发高比容量、高安全性、长循环寿命、低成本的电池。碱金属二次电池作为一种新型储能器件,具有储量大、制备成本低、电化学窗口宽等特点,在移动通讯、电动汽车以及储能等领域具有广阔的应用前景。其中碱金属负极相对于碳材料、金属氧化物等具有更高的比容量,但碱金属负极在使用过程中容易产生枝晶,导致电池短路,造成安全隐患。以Na-K合金为代表的液态合金可以完全抑制枝晶的生长,成为新兴的无枝晶电极材料研究方向。然而Na-K液态合金表面张力大,难以在集流体表面湿润,严重阻碍其商业化应用。因此,研究常温下结构稳定的液态金属电极对碱金属二次电池的应用发展具有重要意义。With the popularity of new energy vehicles and mobile electronic devices, there is an urgent need to develop batteries with high specific capacity, high safety, long cycle life, and low cost. As a new type of energy storage device, alkali metal secondary batteries have the characteristics of large reserves, low preparation cost, and wide electrochemical window, and have broad application prospects in the fields of mobile communications, electric vehicles, and energy storage. Among them, the alkali metal negative electrode has a higher specific capacity than carbon materials, metal oxides, etc., but the alkali metal negative electrode is prone to dendrites during use, which leads to a short circuit of the battery and poses a safety hazard. Liquid alloys represented by Na-K alloys can completely inhibit the growth of dendrites and become an emerging research direction for dendrite-free electrode materials. However, the high surface tension of Na-K liquid alloy makes it difficult to wet on the surface of the current collector, which seriously hinders its commercial application. Therefore, the study of liquid metal electrodes with stable structure at room temperature is of great significance for the application and development of alkali metal secondary batteries.
研究表明Na-K液态合金是极具发展潜力的高性能无枝晶电极材料,具有低毒性、宽稳定温度(在常温下甚至-12.6℃都以液态形式存在)等特性。为获得结构稳定的Na-K液态合金电极需要解决以下几个问题(如图1所示):1)Na-K液态合金难成型,Na-K合金表面张力大,难以在集流体表面湿润,并因其液态的形态,具有一定的流动性,难以形成固定的形态;2)Na-K液态合金电极与电解液界面不稳定,Na-K液态合金容易从电极表面脱落,在电解液中形成游离的液态金属,导致Na-K液态合金电极与电解液之间难以维持稳定存在的界面,造成电池循环过程中的电压波动。Studies have shown that Na-K liquid alloy is a high-performance dendrite-free electrode material with great development potential. It has the characteristics of low toxicity and wide stable temperature (it exists in liquid form at room temperature even at -12.6 °C). In order to obtain a Na-K liquid alloy electrode with a stable structure, the following problems need to be solved (as shown in Figure 1): 1) Na-K liquid alloy is difficult to form, and the Na-K alloy has a large surface tension and is difficult to wet on the surface of the current collector. And because of its liquid form, it has a certain fluidity and is difficult to form a fixed form; 2) The interface between the Na-K liquid alloy electrode and the electrolyte is unstable, and the Na-K liquid alloy is easy to fall off from the electrode surface and form in the electrolyte. The free liquid metal makes it difficult to maintain a stable interface between the Na-K liquid alloy electrode and the electrolyte, resulting in voltage fluctuations during the battery cycle.
研究表明,高温处理(>420℃)可以提升Na-K液态合金在碳纸上的湿润性,同时多孔结构基底能捕获更多的Na-K液态合金,解决了Na-K液态合金流动性的问题。然而在室温下,由于Na-K液态合金表面张力的恢复,导致复合电极表面裸露的Na-K液态合金脱落,表明简单的碳载体负载Na-K液态合金不能从本质上解决界面稳定性这个问题。Studies have shown that high temperature treatment (>420°C) can improve the wettability of Na-K liquid alloy on carbon paper, and at the same time, the porous structure substrate can capture more Na-K liquid alloy, which solves the problem of Na-K liquid alloy fluidity. question. However, at room temperature, due to the recovery of the surface tension of the Na-K liquid alloy, the exposed Na-K liquid alloy on the surface of the composite electrode fell off, indicating that the simple carbon carrier loaded Na-K liquid alloy cannot essentially solve the problem of interface stability. .
目前国内外尚没有针对稳定Na-K液态合金电极与电解液界面研究,国内外对于Na-K液态合金穿梭问题没有任何的解决策略。因此,构建稳定的电极和电解液界面是Na-K液态合金负极大规模应用继续解决的关键性问题。At present, there is no research on stable Na-K liquid alloy electrode and electrolyte interface at home and abroad, and there is no solution to the Na-K liquid alloy shuttle problem at home and abroad. Therefore, constructing a stable electrode-electrolyte interface is a key issue for the large-scale application of Na-K liquid alloy anodes.
发明内容Contents of the invention
针对背景技术中的问题,本发明的目的在于提供一种高效自修复氧化膜包覆Na-K液态合金电极及其制备方法和作为碱金属二次电池负极材料的应用,该方法能够直接在各种结构和种类的导电载体上构建自修复氧化膜包覆Na-K液态合金,以制备出具有较强稳定性的无枝晶碱金属电池负极。For the problems in the background technology, the object of the present invention is to provide a kind of high-efficiency self-repairing oxide film coating Na-K liquid alloy electrode and its preparation method and the application as alkali metal secondary battery negative electrode material, and this method can be directly in each A self-healing oxide film coated Na-K liquid alloy is constructed on a conductive support with various structures and types to prepare a dendrite-free alkali metal battery negative electrode with strong stability.
一种高效自修复氧化膜包覆Na-K液态合金电极的制备方法,包括以下步骤:A method for preparing an efficient self-repairing oxide film-coated Na-K liquid alloy electrode, comprising the following steps:
1)在惰性气体保护下,将K金属加热,直至熔化,再将导电载体与熔化的K金属接触,熔化的K金属缓慢湿润导电载体,待全部吸收后,冷却后得到负载K金属的导电载体;1) Under the protection of an inert gas, heat the K metal until it melts, and then contact the conductive carrier with the molten K metal. The molten K metal slowly wets the conductive carrier. After it is completely absorbed, it is cooled to obtain a conductive carrier loaded with K metal ;
在惰性气体保护下,将Na金属加热,直至熔化,再将导电载体与熔化的Na金属接触,熔化的Na金属缓慢湿润导电载体,待全部吸收后,冷却后得到负载Na金属的导电载体;Under the protection of an inert gas, the Na metal is heated until it melts, and then the conductive carrier is contacted with the molten Na metal, and the molten Na metal slowly wets the conductive carrier, and after being completely absorbed, the conductive carrier for loading the Na metal is obtained after cooling;
2)在惰性气体保护下,将步骤1)制备的负载K金属的导电载体和负载Na金属的导电载体物理堆叠,发生K金属和Na金属合金化反应,并同时生成氧化膜,获得自修复氧化膜包覆Na-K液态合金电极;2) Under the protection of an inert gas, the conductive carrier loaded with K metal and the conductive carrier loaded with Na metal prepared in step 1) are physically stacked, the alloying reaction of K metal and Na metal occurs, and an oxide film is formed at the same time to obtain self-repairing oxidation Membrane-coated Na-K liquid alloy electrode;
或者,将步骤1)制备的负载K金属的导电载体和负载Na金属的导电载体浸润在电解液中,并堆叠,发生合金化反应,并同时生成自修复氧化膜,获得自修复氧化膜包覆Na-K液态合金电极。Alternatively, the conductive carrier loaded with K metal and the conductive carrier loaded with Na metal prepared in step 1) are soaked in the electrolyte, and stacked, an alloying reaction occurs, and a self-repairing oxide film is formed at the same time to obtain a self-repairing oxide film coating Na-K liquid alloy electrode.
步骤1)中,所述的导电载体可以为各种维度导电载体,从结构角度可以为薄膜、块状体、粉体等,从材料角度可以为高分子、金属、金属氧化物、金属有机框架、碳材料等。优选为一定厚度的二维薄膜导电载体,最优选为一定厚度和面积的二维薄膜碳材料。In step 1), the conductive carrier can be a conductive carrier of various dimensions, and can be a film, block, powder, etc. from a structural point of view, and can be a polymer, metal, metal oxide, or metal organic framework from a material point of view. , carbon materials, etc. It is preferably a two-dimensional thin film conductive carrier with a certain thickness, and most preferably a two-dimensional thin film carbon material with a certain thickness and area.
所述的碳材料可以为量子点、碳管、多壁碳管、碳纤维、石墨烯、石墨烯卷、碳阵列、垂直石墨烯、碳布、介孔碳、空心球、多层空心球、纳米花、生物质碳材料等。所述的导电载体材料可以为多种材料的复合。所述的碳材料可以为硬碳和软碳。The carbon material can be quantum dots, carbon tubes, multi-walled carbon tubes, carbon fibers, graphene, graphene rolls, carbon arrays, vertical graphene, carbon cloth, mesoporous carbon, hollow spheres, multilayer hollow spheres, nano Flowers, biomass carbon materials, etc. The conductive carrier material may be a composite of various materials. The carbon material can be hard carbon or soft carbon.
进一步优选,所述的导电载体为碳布。Further preferably, the conductive carrier is carbon cloth.
所述的导电载体的厚度为0.1mm~10mm,进一步优选为0.5mm~5mm,最优选为1mm~2mm。The thickness of the conductive carrier is 0.1mm-10mm, more preferably 0.5mm-5mm, most preferably 1mm-2mm.
所述的导电载体的面积为0.1cm2~10cm2,进一步优选为0.2cm2~2cm2,最优选为0.5cm2~1.5cm2,其中长宽形状不限,优选为正方形或者圆形。The conductive carrier has an area of 0.1 cm 2 to 10 cm 2 , more preferably 0.2 cm 2 to 2 cm 2 , most preferably 0.5 cm 2 to 1.5 cm 2 , wherein the length, width, and shape are not limited, and are preferably square or circular.
步骤1)中,所述的K金属根据导电载体面积计算为0.001gcm-2~10gcm-2,进一步优选为0.01gcm-2~5gcm-2,最优选为0.05gcm-2~0.2gcm-2,一定质量的Na金属相对于K金属按照一定的比例计算。In step 1), the K metal is calculated according to the area of the conductive carrier to be 0.001gcm -2 ~ 10gcm -2 , more preferably 0.01gcm -2 ~ 5gcm -2 , most preferably 0.05gcm -2 ~ 0.2gcm -2 , A certain mass of Na metal is calculated according to a certain ratio relative to K metal.
所述的Na金属根据导电载体面积计算为0.00028gcm-2~2.8gcm-2,进一步优选为0.0028gcm-2~1.4gcm-2,最优选为0.014gcm-2~0.056gcm-2。The Na metal is 0.00028gcm -2 to 2.8gcm -2 calculated according to the area of the conductive carrier, more preferably 0.0028gcm -2 to 1.4gcm -2 , most preferably 0.014gcm -2 to 0.056gcm -2 .
所述K和Na的量按照一定的比例,所述的K金属的质量和Na金属的质量之比为70~86:14~30,进一步优选为75~81:19~25,更进一步优选为77~79:21~23。The amounts of K and Na are in a certain ratio, and the ratio of the mass of K metal to Na metal is 70-86:14-30, more preferably 75-81:19-25, and even more preferably 77-79: 21-23.
所述的K金属和Na金属为纯K和纯Na。The K metal and Na metal are pure K and pure Na.
所述的K金属和Na金属使用前需要切割去除表面氧化物。The K metal and Na metal need to be cut to remove surface oxides before use.
步骤1)中,将K金属加热至温度300℃~500℃,最优选为350℃~450℃;In step 1), the K metal is heated to a temperature of 300°C to 500°C, most preferably 350°C to 450°C;
将Na金属加热至温度300℃~500℃,最优选为350℃~450℃。The Na metal is heated to a temperature of 300°C to 500°C, most preferably 350°C to 450°C.
步骤2)中,可以将获得的复合电极浸润在电解液中,获得含新成分的自修复氧化膜。In step 2), the obtained composite electrode can be soaked in the electrolyte to obtain a self-healing oxide film containing new components.
所述自修复氧化膜主要以膜形式包裹在电极表面。The self-healing oxide film is mainly wrapped on the surface of the electrode in the form of a film.
所述的电解液溶质为KPF6、KClO4、KTFSI、NaPF6、NaClO4、NaTFSI等一种或者多种混合的电解液;溶剂为碳酸乙烯酯(EC)、DEC、碳酸二甲酯(DMC)、DIGLYM、PC等一种或者多种混合的溶液,以及各种添加剂,例如含F添加剂等。进一步优选,所述的电解液中溶质为摩尔比1:1的KPF6和NaPF6,所述的电解液中溶质溶剂为由体积比1:1碳酸乙烯酯(EC)和碳酸二甲酯(DMC)组成的溶液,KPF6和NaPF6在电解液中的浓度均为0.5mol/L~3mol/L,进一步优选为1mol/L。The electrolyte solute is one or more mixed electrolytes such as KPF 6 , KClO 4 , KTFSI, NaPF 6 , NaClO 4 , NaTFSI, etc.; the solvent is ethylene carbonate (EC), DEC, dimethyl carbonate (DMC ), DIGLYM, PC, etc., one or more mixed solutions, and various additives, such as F-containing additives, etc. Further preferably, the solute in the electrolyte is KPF 6 and NaPF 6 with a molar ratio of 1:1, and the solute solvent in the electrolyte is ethylene carbonate (EC) and dimethyl carbonate ( DMC), the concentrations of KPF 6 and NaPF 6 in the electrolyte are both 0.5 mol/L to 3 mol/L, more preferably 1 mol/L.
所述的新成分为高离子电导率KF和NaF。The new components are high ion conductivity KF and NaF.
步骤2)中,所述的Na-K合金则会完全吸附在导电载体中。In step 2), the Na-K alloy will be completely adsorbed in the conductive carrier.
所述的自修复氧化膜被机械破坏后会自行修复。The self-repairing oxide film will repair itself after being mechanically damaged.
所述的机械破坏主要为膜的去除、产生裂纹、挤压导致破碎等。The mechanical damage mainly refers to the removal of the film, the generation of cracks, and the crushing caused by extrusion.
步骤1)和步骤2)中,可以调整惰性气体中氮气或者氧气的含量,获得不同成分的自修复氧化膜。In step 1) and step 2), the content of nitrogen or oxygen in the inert gas can be adjusted to obtain self-healing oxide films with different compositions.
所述的惰性气体为氩气,优选为高纯氩气。充满惰性气体环境中,水含量低于0.1ppm。The inert gas is argon, preferably high-purity argon. In an inert gas environment, the water content is less than 0.1ppm.
所述的氮气或者氧气的含量为0.1ppm~100ppm,进一步优选为0.1ppm~10ppm,最优选为0.1ppm~0.5ppm,其中氮气和氧气含量单独调整,不需要成固定比例。The nitrogen or oxygen content is 0.1ppm-100ppm, more preferably 0.1ppm-10ppm, most preferably 0.1ppm-0.5ppm, wherein the nitrogen and oxygen contents are adjusted independently and do not need to be in a fixed ratio.
得到Na-K合金复合电极内部Na-K合金常温下为液态,表面氧化膜为固态,不存在枝晶生长情况,可以同时作为K离子电池负极材料和Na离子电池负极材料。The Na-K alloy inside the obtained Na-K alloy composite electrode is liquid at normal temperature, the surface oxide film is solid, and there is no dendrite growth, and can be used as the negative electrode material of K ion battery and Na ion battery at the same time.
所述的自修复氧化膜包覆Na-K液态合金电极包括导电载体、在导电载体上沉积的Na-K液态合金以及在表面形成的自修复氧化膜,即包括导电载体、导电载体上吸附的Na-K液态合金和表面的自修复氧化膜The described self-healing oxide film-coated Na-K liquid alloy electrode includes a conductive carrier, a Na-K liquid alloy deposited on the conductive carrier, and a self-repairing oxide film formed on the surface, that is, the conductive carrier, the conductive carrier adsorbed Na-K Liquid Alloy and Self-healing Oxide Film on Surface
所述的自修复氧化膜包覆Na-K液态合金电极作为碱金属二次电池负极材料的应用。The application of the self-repairing oxide film-coated Na-K liquid alloy electrode as the negative electrode material of the alkali metal secondary battery.
本发明相比于现有技术,具有如下优点及突出效果:Compared with the prior art, the present invention has the following advantages and outstanding effects:
本发明针对制备具有稳定结构的无枝晶液态合金负极电极。本发明具有以下两个优点:常规的电极结构主要是集流体和Na-K液态合金构成,Na-K液态合金容易脱落,导致电极结构不稳定,本发明提出新的电极结构,其中Na-K合金复合电极包括导电基底、在导电载体上沉积的Na-K合金、在表面形成的自修复氧化膜,该结构可以增加电极结构的结构稳定性,增强导电性,提高高倍率性能和库伦效率;制备方法方便,常规制备方法需要高温加热Na-K液态合金,具有一定危险性,本发明通过简单的物理叠加方式在常温下即获得自修复氧化膜包覆Na-K液态合金电极。该复合负极提高了碱金属的安全性能与循环性能,有助于推进高能量密度、高稳定性的碱金属二次电池的发展。The invention is aimed at preparing a dendrite-free liquid alloy negative electrode with a stable structure. The present invention has the following two advantages: the conventional electrode structure is mainly composed of a current collector and Na-K liquid alloy, and the Na-K liquid alloy is easy to fall off, resulting in an unstable electrode structure. The present invention proposes a new electrode structure, wherein Na-K The alloy composite electrode includes a conductive substrate, a Na-K alloy deposited on a conductive carrier, and a self-healing oxide film formed on the surface. This structure can increase the structural stability of the electrode structure, enhance electrical conductivity, and improve high-rate performance and Coulombic efficiency; The preparation method is convenient, and the conventional preparation method requires high-temperature heating of Na-K liquid alloy, which has certain risks. The present invention obtains a self-repairing oxide film-coated Na-K liquid alloy electrode at normal temperature through a simple physical superposition method. The composite negative electrode improves the safety performance and cycle performance of the alkali metal, and helps to promote the development of high energy density and high stability alkali metal secondary batteries.
本发明高效自修复氧化膜包覆Na-K液态合金电极具有高库伦效率、无枝晶生长和结构稳定等特点,可同时作为钾金属负极和钠金属负极,与硫、普鲁士蓝等正极材料匹配时,显著提高全电池的能量密度和循环稳定性。The high-efficiency self-healing oxide film-coated Na-K liquid alloy electrode of the present invention has the characteristics of high coulombic efficiency, no dendrite growth and stable structure, and can be used as potassium metal negative electrode and sodium metal negative electrode at the same time, matching with positive electrode materials such as sulfur and Prussian blue. , significantly improving the energy density and cycle stability of the full battery.
附图说明Description of drawings
图1为本发明研究思路图;Fig. 1 is a research train of thought diagram of the present invention;
图2为碳布负载Na-K合金/氧化膜复合电极制备示意图;Figure 2 is a schematic diagram of the preparation of carbon cloth loaded Na-K alloy/oxide film composite electrode;
图3为实施例1中制得的自修复氧化膜包覆Na-K液态合金电极表面的XRD衍射图;Fig. 3 is the XRD diffractogram of the self-repairing oxide film coating Na-K liquid alloy electrode surface that makes in embodiment 1;
图4为实施例1中制得的自修复氧化膜包覆Na-K液态合金电极装成对称电极后的不同倍率下的曲线图。Fig. 4 is a graph under different magnifications after the self-healing oxide film-coated Na-K liquid alloy electrode prepared in Example 1 is assembled into a symmetrical electrode.
具体实施方式Detailed ways
下面结合实施例来详细说明本发明,但本发明并不仅限于此。The present invention will be described in detail below in conjunction with the examples, but the present invention is not limited thereto.
实施例1Example 1
将0.1g K金属和0.028g Na金属在手套箱中分别加热到450℃熔融,再用镊子将长宽为1cm的碳布(厚度2mm)分别与两种熔融金属接触,待全部吸收后,取出冷却至室温25℃。将分别负载K金属和Na金属的碳布堆叠,在碳布表面两种金属发生合金化反应,并在表面形成自修复氧化膜,一段时间反应后,即形成自修复氧化膜包覆Na-K液态合金电极。Heat 0.1g of K metal and 0.028g of Na metal in a glove box to 450°C to melt, and then use tweezers to contact the two kinds of molten metal with a carbon cloth (thickness 2mm) with a length of 1cm and a thickness of 2mm. Cool to room temperature 25°C. Stack the carbon cloth loaded with K metal and Na metal respectively, and the alloying reaction of the two metals occurs on the surface of the carbon cloth, and a self-healing oxide film is formed on the surface. After a period of reaction, a self-healing oxide film is formed to cover Na-K Liquid alloy electrodes.
实施例1中制得的自修复氧化膜包覆Na-K液态合金电极表面的XRD衍射图如图3所示。如图所示,制备的电极没有Na金属和K金属的特征峰,表明形成的合金为液态的Na-K合金。同时发现微弱的KO2和K2O的峰,表明Na-K合金表面有固态氧化膜形成,主要的成分为KO2和K2O。The XRD diffraction pattern of the self-healing oxide film coated Na-K liquid alloy electrode surface prepared in Example 1 is shown in FIG. 3 . As shown in the figure, the prepared electrode has no characteristic peaks of Na metal and K metal, indicating that the formed alloy is a liquid Na-K alloy. At the same time, weak peaks of KO 2 and K 2 O were found, indicating that a solid oxide film was formed on the surface of Na-K alloy, and the main components were KO 2 and K 2 O.
实施例2Example 2
调整手套箱中氧气含量为0.2ppm,氮气含量为0.1ppm。将0.2g K金属和0.056g Na金属在手套箱中分别加热到400℃熔融,再用镊子将长宽为1cm的碳布(厚度2mm)分别与两种熔融金属接触,待全部吸收后,取出冷却至室温25℃。将分别负载K金属和Na金属的碳布堆叠,在碳布表面两种金属发生合金化反应,并在表面形成自修复氧化膜,一段时间反应后,即形成自修复氧化膜包覆Na-K液态合金电极。Adjust the oxygen content in the glove box to 0.2ppm, and the nitrogen content to 0.1ppm. Heat 0.2g of K metal and 0.056g of Na metal in a glove box to 400°C to melt respectively, and then use tweezers to contact the two kinds of molten metal with a carbon cloth (thickness 2mm) of 1cm in length and width. Cool to room temperature 25°C. Stack the carbon cloth loaded with K metal and Na metal respectively, and the alloying reaction of the two metals occurs on the surface of the carbon cloth, and a self-healing oxide film is formed on the surface. After a period of reaction, a self-healing oxide film is formed to cover Na-K Liquid alloy electrodes.
获得电极的XRD衍射图与实施例1相似,此外发现少量KN3的峰。The obtained XRD diffraction pattern of the electrode is similar to Example 1, and a small amount of KN 3 peaks are found.
实施例3Example 3
将0.2g K金属和0.056g Na金属在手套箱中分别加热到400℃熔融,再用镊子将长宽为1cm的碳布(厚度2mm)分别与两种熔融金属接触,待全部吸收后,取出冷却至室温25℃。将分别负载K金属和Na金属的碳布浸入电解液中(溶质为摩尔比1:1的KPF6和NaPF6;有机溶剂为由体积比1:1碳酸乙烯酯(EC)和碳酸二甲酯(DMC)组成的溶液,KPF6和NaPF6在电解液中的浓度均为1mol/L),并堆叠,在碳布表面两种金属发生合金化反应,并在表面形成具有新成分的自修复氧化膜,一段时间反应后,即形成自修复氧化膜包覆Na-K液态合金电极。Heat 0.2g of K metal and 0.056g of Na metal in a glove box to 400°C to melt respectively, and then use tweezers to contact the two kinds of molten metal with a carbon cloth (thickness 2mm) of 1cm in length and width. Cool to room temperature 25°C. Immerse the carbon cloth loaded with K metal and Na metal respectively in the electrolyte (the solute is KPF 6 and NaPF 6 with a molar ratio of 1:1; the organic solvent is ethylene carbonate (EC) and dimethyl carbonate with a volume ratio of 1:1 (DMC), the concentrations of KPF 6 and NaPF 6 in the electrolyte are both 1mol/L), and stacked, the two metals undergo an alloying reaction on the surface of the carbon cloth, and a self-healing structure with a new composition is formed on the surface The oxide film, after a period of reaction, forms a self-healing oxide film to cover the Na-K liquid alloy electrode.
获得电极的XRD衍射图与实施例1相似,此外发现少量KF的峰。The obtained XRD diffraction pattern of the electrode is similar to that of Example 1, and a small amount of KF peaks are found.
性能测试Performance Testing
将上述实施例1~3制成的N自修复氧化膜包覆Na-K液态合金电极分别作为扣式电池的对电极和工作电极,电解液为1M KPF6(或者1M NaPF6)电解质中,电流密度为1mA cm-2,循环电量为1mAh cm-2,在25±1℃环境中测量对称电极体系中K(或者Na)金属负极的过电位。The N self-healing oxide film-coated Na-K liquid alloy electrodes prepared in the above-mentioned Examples 1-3 were respectively used as the counter electrode and the working electrode of the coin cell, and the electrolyte was in 1M KPF 6 (or 1M NaPF 6 ) electrolyte, The current density is 1mA cm -2 , the cycle capacity is 1mAh cm -2 , and the overpotential of the K (or Na) metal negative electrode in the symmetrical electrode system is measured in an environment of 25±1°C.
性能测试结果如下:The performance test results are as follows:
实施例1、实施例2和实施例3的Na-K合金复合电极在1mAcm-2电流密度下循环200次,过电压分别可以稳定在22mV,19mV和17mV以内,电压平台稳定,无明显波动,而没氧化膜的Na-K液态合金复合电极电位波动剧烈。此外,电极循环100圈的库仑效率可以分别维持在97.9%,98.5%和99.2%以上。可见,上述制得的Na-K合金复合电极的过电压低,循环稳定性好,库伦效率高。实施例1中制得的自修复氧化膜包覆Na-K液态合金电极组装成对称电极后的不同倍率下的曲线图如图4所示。The Na-K alloy composite electrodes of embodiment 1, embodiment 2 and embodiment 3 are cycled 200 times under the current density of 1mAcm - 2, and the overvoltage can be stabilized respectively within 22mV, 19mV and 17mV, and the voltage platform is stable without obvious fluctuation. However, the potential of the Na-K liquid alloy composite electrode without oxide film fluctuates violently. In addition, the coulombic efficiencies of the electrodes cycled for 100 cycles can be maintained above 97.9%, 98.5% and 99.2%, respectively. It can be seen that the Na-K alloy composite electrode prepared above has low overvoltage, good cycle stability and high Coulombic efficiency. The curves at different magnifications after the self-healing oxide film-coated Na-K liquid alloy electrode prepared in Example 1 is assembled into a symmetrical electrode are shown in FIG. 4 .
这是因为自修复氧化膜的存在为Na-K合金提供了稳定的界面,且常温下液态形式存在的Na-K合金避免了枝晶的产生,保证了电极结构的稳定性。This is because the existence of the self-healing oxide film provides a stable interface for the Na-K alloy, and the Na-K alloy in liquid form at room temperature avoids the generation of dendrites and ensures the stability of the electrode structure.
因此,本发明高效自修复氧化膜包覆Na-K液态合金电极具有高库伦效率、显著抑制枝晶生长和界面结构稳定等特点,在碱金属二次电池的金属负极改性上具有很好的指导意义,该方法有助于无枝晶碱金属负极的大规模应用。Therefore, the high-efficiency self-healing oxide film-coated Na-K liquid alloy electrode of the present invention has the characteristics of high Coulombic efficiency, significant inhibition of dendrite growth and stable interface structure, and has a good effect on the metal negative electrode modification of alkali metal secondary batteries. Instructive, this method is conducive to the large-scale application of dendrite-free alkali metal anodes.
Claims (10)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201810140846.3A CN108400316B (en) | 2018-02-11 | 2018-02-11 | Self-repairing oxide film coated Na-K liquid alloy electrode and preparation method and application thereof |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201810140846.3A CN108400316B (en) | 2018-02-11 | 2018-02-11 | Self-repairing oxide film coated Na-K liquid alloy electrode and preparation method and application thereof |
Publications (2)
Publication Number | Publication Date |
---|---|
CN108400316A true CN108400316A (en) | 2018-08-14 |
CN108400316B CN108400316B (en) | 2020-08-18 |
Family
ID=63095276
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201810140846.3A Active CN108400316B (en) | 2018-02-11 | 2018-02-11 | Self-repairing oxide film coated Na-K liquid alloy electrode and preparation method and application thereof |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN108400316B (en) |
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN109244323A (en) * | 2018-09-17 | 2019-01-18 | 浙江大学 | A kind of preparation method and application of low cost alkali metal battery diaphragm |
CN109244441A (en) * | 2018-08-29 | 2019-01-18 | 浙江大学 | Non-newtonian flow posture Na-K alloy electrode and its preparation method and application |
CN109273672A (en) * | 2018-08-29 | 2019-01-25 | 浙江大学 | In-situ SEI film coated Na-K liquid alloy electrode and preparation method and application thereof |
CN110649227A (en) * | 2019-09-18 | 2020-01-03 | 天津大学 | Three-dimensional composite potassium metal cathode and preparation method and application thereof |
CN113113593A (en) * | 2021-02-26 | 2021-07-13 | 华北理工大学 | Room temperature solid sodium ion battery based on liquid alloy |
CN113258035A (en) * | 2021-05-12 | 2021-08-13 | 哈尔滨工业大学 | Dendrite-free alloy cathode with solid-liquid phase conversion mechanism and preparation method thereof |
CN113745464A (en) * | 2021-07-13 | 2021-12-03 | 南京工业大学 | Preparation and application of a liquid sodium-potassium alloy@flexible hollow carbon paper electrode |
CN114094042A (en) * | 2021-11-10 | 2022-02-25 | 惠州亿纬锂能股份有限公司 | Liquid metal negative pole piece and preparation method and application thereof |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1595683A (en) * | 2003-09-10 | 2005-03-16 | 中国科学院物理研究所 | Nanometer metal or alloy composite material and preparation and usage thereof |
CN1909265A (en) * | 2006-07-13 | 2007-02-07 | 昆明理工大学 | Lithium ion battery negative electrode prepared by metal nano-wire and its preparation method |
CN104716330A (en) * | 2015-03-25 | 2015-06-17 | 中国科学院化学研究所 | Three-dimensional porous current collector as well as preparation method and use thereof |
CN106571458A (en) * | 2016-11-14 | 2017-04-19 | 苏州赛福德备贸易有限公司 | Anode composite material, and preparation method thereof |
-
2018
- 2018-02-11 CN CN201810140846.3A patent/CN108400316B/en active Active
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1595683A (en) * | 2003-09-10 | 2005-03-16 | 中国科学院物理研究所 | Nanometer metal or alloy composite material and preparation and usage thereof |
CN1909265A (en) * | 2006-07-13 | 2007-02-07 | 昆明理工大学 | Lithium ion battery negative electrode prepared by metal nano-wire and its preparation method |
CN104716330A (en) * | 2015-03-25 | 2015-06-17 | 中国科学院化学研究所 | Three-dimensional porous current collector as well as preparation method and use thereof |
CN106571458A (en) * | 2016-11-14 | 2017-04-19 | 苏州赛福德备贸易有限公司 | Anode composite material, and preparation method thereof |
Cited By (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN109244441A (en) * | 2018-08-29 | 2019-01-18 | 浙江大学 | Non-newtonian flow posture Na-K alloy electrode and its preparation method and application |
CN109273672A (en) * | 2018-08-29 | 2019-01-25 | 浙江大学 | In-situ SEI film coated Na-K liquid alloy electrode and preparation method and application thereof |
CN109244441B (en) * | 2018-08-29 | 2020-06-05 | 浙江大学 | non-Newtonian fluid Na-K alloy electrode and preparation method and application thereof |
CN109244323A (en) * | 2018-09-17 | 2019-01-18 | 浙江大学 | A kind of preparation method and application of low cost alkali metal battery diaphragm |
CN109244323B (en) * | 2018-09-17 | 2020-08-18 | 浙江大学 | A kind of preparation method and application of low-cost alkali metal battery separator |
CN110649227A (en) * | 2019-09-18 | 2020-01-03 | 天津大学 | Three-dimensional composite potassium metal cathode and preparation method and application thereof |
CN113113593A (en) * | 2021-02-26 | 2021-07-13 | 华北理工大学 | Room temperature solid sodium ion battery based on liquid alloy |
CN113258035A (en) * | 2021-05-12 | 2021-08-13 | 哈尔滨工业大学 | Dendrite-free alloy cathode with solid-liquid phase conversion mechanism and preparation method thereof |
CN113258035B (en) * | 2021-05-12 | 2022-05-17 | 哈尔滨工业大学 | Dendrite-free alloy cathode with solid-liquid phase conversion mechanism and preparation method thereof |
CN113745464A (en) * | 2021-07-13 | 2021-12-03 | 南京工业大学 | Preparation and application of a liquid sodium-potassium alloy@flexible hollow carbon paper electrode |
CN113745464B (en) * | 2021-07-13 | 2022-09-27 | 南京工业大学 | Preparation and application of a liquid sodium-potassium alloy@flexible hollow carbon paper electrode |
CN114094042A (en) * | 2021-11-10 | 2022-02-25 | 惠州亿纬锂能股份有限公司 | Liquid metal negative pole piece and preparation method and application thereof |
Also Published As
Publication number | Publication date |
---|---|
CN108400316B (en) | 2020-08-18 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN108400316B (en) | Self-repairing oxide film coated Na-K liquid alloy electrode and preparation method and application thereof | |
Chu et al. | Recent advanced skeletons in sodium metal anodes | |
CN113629236B (en) | Composite metal lithium cathode and preparation method and application thereof | |
Zhang et al. | 3D glass fiber cloth reinforced polymer electrolyte for solid-state lithium metal batteries | |
Chen et al. | Aluminum− lithium alloy as a stable and reversible anode for lithium batteries | |
CN108448058A (en) | A kind of surface modification modification method of lithium negative electrode of lithium metal battery and lithium metal battery | |
CN106602063B (en) | Preparation method of graphene flower and application of graphene flower in lithium-sulfur battery | |
Lamberti et al. | Facile fabrication of cuprous oxide nanocomposite anode films for flexible Li-ion batteries via thermal oxidation | |
CN104393233B (en) | Graphene array-based carbon-sulfur composite electrode and secondary cell | |
CN111106310A (en) | Preparation method of composite lithium metal negative electrode and battery containing composite lithium metal negative electrode | |
CN111900333B (en) | Lithium-free dendritic crystal anode with carbon nanotube film directly compounded with molten lithium metal and preparation method thereof | |
CN103474723A (en) | Lithium-air battery and preparation method thereof | |
CN109273672B (en) | In-situ SEI film-coated Na-K liquid alloy electrode and its preparation method and application | |
CN109755554A (en) | A kind of aluminum selenium secondary battery | |
CN105047861A (en) | Sulfur-carbon composite material and preparation method thereof | |
Ma et al. | A strategy associated with conductive binder and 3D current collector for aqueous zinc-ion batteries with high mass loading | |
Jiang et al. | Long-life and efficient sodium metal anodes enabled by a sodiophilic matrix | |
Zhang et al. | Highly robust zinc metal anode directed by organic–inorganic synergistic interfaces for wearable aqueous zinc battery | |
Zhang et al. | Stable Li/Cu2O composite anodes enabled by a 3D conductive skeleton with lithiophilic nanowire arrays | |
Chen et al. | Lithiophilic hyperbranched Cu nanostructure for stable Li metal anodes | |
CN110600731B (en) | A kind of potassium ion battery positive electrode material, potassium ion battery and preparation method | |
CN109301255A (en) | A kind of 3D porous current collector and its preparation method and application | |
CN106129361A (en) | A kind of lithium ion battery anode active material and preparation method | |
Xia et al. | Sustainable release of Mg (NO3) 2 from a separator boosts the electrochemical performance of lithium metal as an anode for secondary batteries | |
Wu et al. | Lithium surface engineering with in-situ generated Fe/Li2O/LiCl mixed electron/ion conductive layer for stable lithium metal batteries |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |