CN108388135A - A kind of Mars landing track optimized controlling method based on convex optimization - Google Patents
A kind of Mars landing track optimized controlling method based on convex optimization Download PDFInfo
- Publication number
- CN108388135A CN108388135A CN201810279467.2A CN201810279467A CN108388135A CN 108388135 A CN108388135 A CN 108388135A CN 201810279467 A CN201810279467 A CN 201810279467A CN 108388135 A CN108388135 A CN 108388135A
- Authority
- CN
- China
- Prior art keywords
- optimization
- time
- spacecraft
- thrust
- mars
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000005457 optimization Methods 0.000 title claims abstract description 112
- 238000000034 method Methods 0.000 title claims abstract description 34
- 238000005096 rolling process Methods 0.000 claims abstract description 21
- 239000000446 fuel Substances 0.000 claims abstract description 16
- 239000011159 matrix material Substances 0.000 claims description 12
- 238000006467 substitution reaction Methods 0.000 claims description 6
- 230000005484 gravity Effects 0.000 claims description 5
- 230000001133 acceleration Effects 0.000 claims description 4
- 238000006073 displacement reaction Methods 0.000 claims description 3
- 230000009466 transformation Effects 0.000 claims description 3
- 230000001186 cumulative effect Effects 0.000 abstract description 3
- 238000004364 calculation method Methods 0.000 description 3
- 238000010586 diagram Methods 0.000 description 3
- 238000005259 measurement Methods 0.000 description 2
- 241001061257 Emmelichthyidae Species 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 230000007812 deficiency Effects 0.000 description 1
Classifications
-
- G—PHYSICS
- G05—CONTROLLING; REGULATING
- G05B—CONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
- G05B13/00—Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion
- G05B13/02—Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion electric
- G05B13/04—Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion electric involving the use of models or simulators
- G05B13/042—Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion electric involving the use of models or simulators in which a parameter or coefficient is automatically adjusted to optimise the performance
Landscapes
- Engineering & Computer Science (AREA)
- Health & Medical Sciences (AREA)
- Artificial Intelligence (AREA)
- Computer Vision & Pattern Recognition (AREA)
- Evolutionary Computation (AREA)
- Medical Informatics (AREA)
- Software Systems (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Automation & Control Theory (AREA)
- Feedback Control In General (AREA)
- Control Of Position, Course, Altitude, Or Attitude Of Moving Bodies (AREA)
Abstract
本发明涉及一种基于凸优化的火星着陆轨迹优化控制方法,该方法包括如下步骤:(1)建立火星着陆动力学模型并进行凸优化;(2)以燃料最优为目标进行单次离线优化得到标称轨迹;(3)采用滚动时域的模型预测控制对标称轨迹进行跟踪完成着陆控制。与现有技术相比,本发明将凸优化和滚动时域的模型预测控制有效结合,有效降低建模误差和干扰引起的累计误差,提高了着陆精度。
The present invention relates to a Mars landing trajectory optimization control method based on convex optimization. The method comprises the following steps: (1) establishing a Mars landing dynamics model and performing convex optimization; (2) performing a single off-line optimization with the goal of fuel optimization The nominal trajectory is obtained; (3) The model predictive control in the rolling time domain is used to track the nominal trajectory to complete the landing control. Compared with the prior art, the present invention effectively combines convex optimization and model predictive control in the rolling time domain, effectively reduces modeling errors and cumulative errors caused by disturbances, and improves landing accuracy.
Description
技术领域technical field
本发明涉及一种火星着陆轨迹优化控制方法,尤其是涉及一种基于凸优化的火星着陆轨迹优化控制方法。The invention relates to a Mars landing trajectory optimization control method, in particular to a Mars landing trajectory optimization control method based on convex optimization.
背景技术Background technique
近年来随着科技的不断提升,人们对于太空资源的需求又迎来了一个高峰期,重新燃起了对火星探索的兴趣,在这种背景下,载人飞行器精确着陆等问题变得越来越重要。在航空领域中,航天着陆器在导引作用下以小于几百米的误差准确降落在给定目标地点的问题被称之为精确着陆问题,而轨迹优化是精确着陆中的关键技术。In recent years, with the continuous improvement of science and technology, people's demand for space resources has ushered in a peak period, and the interest in Mars exploration has been rekindled. In this context, issues such as precise landing of manned aircraft have become more and more important. more important. In the field of aviation, the problem that an aerospace lander accurately lands on a given target location with an error of less than a few hundred meters under guidance is called a precision landing problem, and trajectory optimization is a key technology in precision landing.
为了确保在火星上安全着陆,需要综合考虑各个地点的科学研究价值以及整体地形条件(例如坡度,粗糙度)。对于自然探索性质的任务,在预定误差范围内的具体着陆点并不是特别重要,比如在NASA的Mars Exploration Rovers任务中,着陆误差可以大到35km。而另一方面,在某些科研任务的需求中,可能需要准确降落在危险地形之中,又或是需要着陆在燃料供应点等指定的地面位置。比如随着我国嫦娥工程与载人航天工程的持续深入,未来月球探测将是我国一个重要的研究方向,在这个背景下,可以预见,具有轨迹优化和高精度定点软着陆能力的探测器是必不可少的In order to ensure a safe landing on Mars, it is necessary to comprehensively consider the scientific research value of each site and the overall terrain conditions (such as slope, roughness). For missions of natural exploration nature, the specific landing point within the predetermined error range is not particularly important. For example, in NASA's Mars Exploration Rovers mission, the landing error can be as large as 35km. On the other hand, in the requirements of some scientific research tasks, it may be necessary to accurately land on dangerous terrain, or to land on a designated ground location such as a fuel supply point. For example, with the continuous deepening of my country's Chang'e project and manned spaceflight project, future lunar exploration will be an important research direction for our country. In this context, it can be foreseen that detectors with trajectory optimization and high-precision fixed-point soft landing capabilities are necessary. indispensable
但与此同时,火星着陆任务中的难点在于其约束条件众多,存在大量非线性时变性项,因此用一般优化方法难以达到系统要求。对于具有附加状态和控制约束的一般三维问题其最优推力的解析解往往是难以求得的,因此能够适用于机载的快速轨迹优化算法尤为重要。But at the same time, the difficulty of the Mars landing mission lies in its many constraints and a large number of nonlinear time-varying items, so it is difficult to meet the system requirements with general optimization methods. For general three-dimensional problems with additional state and control constraints, it is often difficult to obtain the analytical solution of the optimal thrust, so it is particularly important to be able to adapt to the airborne fast trajectory optimization algorithm.
在国内外相关研究中,常用的方法有使用直接配置法,直接多重打靶法和使用Legendre伪谱法的数值求解方法,以及传统的基于多项式的制导方法,其中基于时间上的四次多项式的轨迹在阿波罗任务中得到了应用。然而在相关算法收敛性不清楚的情况下,通过一般迭代算法得到的实时机载非线性规划解可能不是期望的结果。由于火星精确着陆需要机载实时计算最优轨迹,所以应该根据问题的结构来设计具有确定收敛性的保证收敛到全局最优的算法。凸优化具有全局最优的性质,因此基于凸优化的轨迹优化将是研究方向。In related research at home and abroad, the commonly used methods are the direct configuration method, the direct multiple shooting method and the numerical solution method using the Legendre pseudospectral method, as well as the traditional polynomial-based guidance method, in which the trajectory based on the quartic polynomial in time Used in the Apollo missions. However, when the convergence of related algorithms is unclear, the real-time airborne nonlinear programming solution obtained by general iterative algorithms may not be the desired result. Since the precise landing on Mars requires real-time calculation of the optimal trajectory onboard, an algorithm with definite convergence and guaranteed convergence to the global optimum should be designed according to the structure of the problem. Convex optimization has the property of global optimality, so the trajectory optimization based on convex optimization will be the research direction.
发明内容Contents of the invention
本发明的目的就是为了克服上述现有技术存在的缺陷而提供一种基于凸优化的火星着陆轨迹优化控制方法。The object of the present invention is to provide a Mars landing trajectory optimization control method based on convex optimization in order to overcome the above-mentioned defects in the prior art.
本发明的目的可以通过以下技术方案来实现:The purpose of the present invention can be achieved through the following technical solutions:
一种基于凸优化的火星着陆轨迹优化控制方法,其特征在于,该方法包括如下步骤:A Mars landing trajectory optimization control method based on convex optimization, characterized in that the method comprises the following steps:
(1)建立火星着陆动力学模型并进行凸优化;(1) Establish a Mars landing dynamics model and perform convex optimization;
(2)以燃料最优为目标进行单次离线优化得到标称轨迹;(2) Perform a single offline optimization with the goal of fuel optimization to obtain the nominal trajectory;
(3)采用滚动时域的模型预测控制对标称轨迹进行跟踪完成着陆控制。(3) The model predictive control in the rolling time domain is used to track the nominal trajectory to complete the landing control.
步骤(1)火星着陆动力学模型具体为:Step (1) The Mars landing dynamics model is specifically:
Tc=(nTcosφ)e, Tc = (nTcosφ)e,
其中,r∈IR3,v∈IR3,Tc∈IR3,r为航天器相对于目标点的位置矢量,v为航天器在地面固定坐标系中的速度矢量,Tc为航天器受到的推力矢量,IR3表示xyz三轴坐标系,为航天器相对于目标点位置矢量的导数在i轴方向上的分量,vi为航天器在地面固定坐标系中速度矢量在在i轴方向上的分量,i=x,y,z,m为航天器质量,μ为火星的引力常量,α为燃料消耗速率的常量,g∈IR3,g为火星的重力加速度常量,Isp为推进器的比冲,e∈IR3,e为瞬时推力方向矢量,ge为地球重力常量,φ为推进器和瞬时推力方向矢量e之间的夹角,n为子推进器个数。Among them, r∈IR 3 , v∈IR 3 , T c ∈IR 3 , r is the position vector of the spacecraft relative to the target point, v is the velocity vector of the spacecraft in the ground fixed coordinate system, T c is the thrust vector, IR 3 represents the xyz three-axis coordinate system, is the component of the derivative of the position vector of the spacecraft relative to the target point in the direction of the i axis, v i is the component of the velocity vector of the spacecraft in the fixed coordinate system on the ground in the direction of the i axis, i=x, y, z, m is the spacecraft mass, μ is the gravitational constant of Mars, α is the constant of the fuel consumption rate, g∈IR 3 , g is the gravitational acceleration constant of Mars, I sp is the specific impulse of the thruster, e∈IR 3 , and e is the instantaneous Thrust direction vector, g e is the earth's gravity constant, φ is the angle between the propeller and the instantaneous thrust direction vector e, n is the number of sub-propellers.
步骤(1)凸优化具体为:Step (1) Convex optimization is specifically:
(11)建立推力幅值约束:(11) Establish thrust amplitude constraints:
ρ1=nT1cosφ,ρ 1 = nT 1 cos φ,
ρ2=nT2cosφ,ρ 2 = nT 2 cos φ,
其中,ρ1和ρ2为推力幅值下界和上界,tf为动力下降着陆过程的终止时间,n为子推进器个数,T1为子推进器的非零最小推力,T2为子推进器最大推力;Among them, ρ 1 and ρ 2 are the lower and upper bounds of the thrust amplitude, t f is the termination time of the power descent landing process, n is the number of sub-thrusters, T 1 is the non-zero minimum thrust of the sub-thrusts, T 2 is The maximum thrust of the sub-propeller;
位移非负约束:Displacement non-negativity constraints:
rx>0,r x > 0,
其中,rx为航天器相对于目标点位置矢量在x轴方向上的分量;Among them, r x is the component of the position vector of the spacecraft relative to the target point in the x-axis direction;
高度角约束:Altitude constraint:
其中,为给定的安全角度,θalt(t)为航天器到目标点的高度角;in, is a given safety angle, θ alt (t) is the altitude angle from the spacecraft to the target point;
(12)引入松弛变量Γ(t)和附加约束‖Tc(t)‖≤Γ(t),进行变量代换进而得到凸优化后的推力约束条件:(12) Introduce the slack variable Γ(t) and the additional constraint ‖T c (t)‖≤Γ(t) for variable substitution Then the thrust constraints after convex optimization are obtained:
ρ1和ρ2为推力幅值下界和上界,z和z0表示变量替换后的质量变量和其初始值,σ表示松弛变量变换后的新变量。ρ 1 and ρ 2 are the lower and upper bounds of the thrust amplitude, z and z 0 represent the mass variable and its initial value after variable substitution, and σ represents the new variable after the slack variable transformation.
步骤(2)以燃料最优为目标进行单次离线优化后的优化模型为:Step (2) The optimization model after a single offline optimization with the goal of fuel optimization is:
0<ρ1≤‖Tc(t)‖≤ρ2,0<ρ 1 ≤‖T c (t)‖≤ρ 2 ,
‖SX‖+cTX≤0,‖SX‖+c T X ≤ 0,
m(0)=mwet,m(0)=m wet ,
r(0)=r0 r(tf)=0,r(0)=r 0 r(t f )=0,
其中,S和c均为系数矩阵:Among them, S and c are coefficient matrices:
mwet表示着陆器燃料满载时的初始质量,表示着陆器着陆时的最终质量,X表示包含航天器位置和速度信息的状态向量。m wet represents the initial mass of the lander when it is fully loaded with fuel, Denotes the final mass of the lander when it lands, and X represents the state vector containing the position and velocity information of the spacecraft.
步骤(2)获取标称轨迹具体为:采用以Mosek为求解器的CVX工具箱对所述的优化模型进行求解,得到表示包含航天器位置和速度信息的状态向量X。Step (2) obtaining the nominal trajectory is specifically: using the CVX toolbox with Mosek as the solver to solve the optimization model, and obtain the state vector X representing the position and velocity information of the spacecraft.
步骤(3)具体为:Step (3) is specifically:
(31)建立预测模型:(31) Build a predictive model:
X(k+i|k)=A(k+i-1|k)X(k+i-1|k)+B(k+i-1|k)U(k+i-1|k),X(k+i|k)=A(k+i-1|k)X(k+i-1|k)+B(k+i-1|k)U(k+i-1|k) ,
其中,X(k+i|k)表示在k时刻对k+i时刻的状态信息预测值,U(k+i-1|k)表示在k时刻的优化结果中得到的k+i-1时刻的输入量,A(k+i-1|k)表示在k时刻对k+i-1时刻的状态矩阵A的预测值,B(k+i-1|k)表示在k时刻对k+i-1时刻的输入矩阵B的预测值,所述的状态信息包括航天器位置和速度信息,所述的输入量为推力;Among them, X(k+i|k) represents the predicted value of state information at time k+i at time k, and U(k+i-1|k) represents k+i-1 obtained from the optimization result at time k The input amount at time, A(k+i-1|k) represents the predicted value of the state matrix A at time k+i-1 at time k, and B(k+i-1|k) represents the value of k at time k The predicted value of the input matrix B at +i-1 time, the state information includes spacecraft position and velocity information, and the input quantity is thrust;
(32)建立优化目标函数:(32) Establish optimization objective function:
其中,Xopt(k+i)表示k+i时刻轨迹跟踪的目标值,Q为对称正定的参数矩阵,p为滚动优化的步长,X(N|k)表示在k时刻对最终时刻的状态信息预测值,Xopt(N)表示最终时刻轨迹跟踪的目标值,R为对称正定的参数矩阵;Among them, X opt (k+i) represents the target value of trajectory tracking at time k+i, Q is a symmetric positive definite parameter matrix, p is the step size of rolling optimization, and X(N|k) represents the final time at time k. State information prediction value, X opt (N) represents the target value of trajectory tracking at the final moment, and R is a symmetrical positive definite parameter matrix;
(33)以步骤(31)中建立的预测模型作为约束条件,以(32)中的目标函数为优化指标,在任意时刻k进行步长为p的有限时域在线滚动优化,并在k时刻得到优化后的p个最优控制序列U(k+i|k);(33) Take the prediction model established in step (31) as the constraint condition, and use the objective function in (32) as the optimization index, perform a finite time-domain online rolling optimization with a step size of p at any time k, and at time k Get optimized p optimal control sequences U(k+i|k);
(34)在每个当前时刻仅利用优化结果中当前时刻的控制量和位置信息带入火星着陆动力学模型求得下一时刻的真实位置信息,并作为下一时刻的优化初始信息,在整个时域上滚动优化直到结束,每次都用当前时刻的优化控制量作为输入,完成着陆器的控制工作。(34) At each current moment, only the control quantity and position information at the current moment in the optimization results are brought into the Mars landing dynamics model to obtain the real position information at the next moment, and it is used as the optimized initial information at the next moment. Roll the optimization in the time domain until the end, and use the optimized control amount at the current moment as input each time to complete the control work of the lander.
与现有技术相比,本发明具有如下优点:Compared with prior art, the present invention has following advantage:
(1)本发明通过基于凸优化的优化算法,可以保证求解得到的结果为全局最优,避免了传统方法可能收敛至局部最优的不足,因此得到的燃料最优轨迹为全局最优的结果;(1) Through the optimization algorithm based on convex optimization, the present invention can ensure that the result obtained from the solution is the global optimum, avoiding the deficiency that the traditional method may converge to the local optimum, so the obtained fuel optimal trajectory is the result of the global optimum ;
(2)通过滚动时域的模型预测控制对标称轨迹进行跟踪,可以有效避免由建模误差或实际扰动引起的累计误差,减小了真实轨迹与优化轨迹之间的漂移,相比于单次离线优化的控制方法精度更;(2) The nominal trajectory is tracked by the model predictive control in the rolling time domain, which can effectively avoid the cumulative error caused by the modeling error or the actual disturbance, and reduce the drift between the real trajectory and the optimized trajectory. The control method of sub-offline optimization is more accurate;
(3)将凸优化和滚动时域的模型预测控制有效结合,有效降低建模误差和干扰引起的累计误差,提高了着陆精度。(3) The convex optimization and model predictive control in the rolling time domain are effectively combined to effectively reduce the cumulative error caused by modeling errors and disturbances, and improve the landing accuracy.
附图说明Description of drawings
图1为本发明基于凸优化的火星着陆轨迹优化控制方法的流程框图;Fig. 1 is the block flow diagram of the Mars landing trajectory optimization control method based on convex optimization in the present invention;
图2为着陆过程中高度角约束锥形示意图;Figure 2 is a schematic diagram of the altitude angle constraint cone during the landing process;
图3为模型预测控制算法流程图。Figure 3 is a flow chart of the model predictive control algorithm.
具体实施方式Detailed ways
下面结合附图和具体实施例对本发明进行详细说明。注意,以下的实施方式的说明只是实质上的例示,本发明并不意在对其适用物或其用途进行限定,且本发明并不限定于以下的实施方式。The present invention will be described in detail below in conjunction with the accompanying drawings and specific embodiments. Note that the description of the following embodiments is merely an illustration in nature, and the present invention is not intended to limit the applicable objects or uses thereof, and the present invention is not limited to the following embodiments.
实施例Example
如图1所示,一种基于凸优化的火星着陆轨迹优化控制方法,该方法包括如下步骤:As shown in Figure 1, a Mars landing trajectory optimization control method based on convex optimization, the method includes the following steps:
(1)建立火星着陆动力学模型并进行凸优化;(1) Establish a Mars landing dynamics model and perform convex optimization;
(2)以燃料最优为目标进行单次离线优化得到标称轨迹;(2) Perform a single offline optimization with the goal of fuel optimization to obtain the nominal trajectory;
(3)采用滚动时域的模型预测控制对标称轨迹进行跟踪完成着陆控制。(3) The model predictive control in the rolling time domain is used to track the nominal trajectory to complete the landing control.
步骤(1)火星着陆动力学模型具体为:Step (1) The Mars landing dynamics model is specifically:
Tc=(nTcosφ)e, Tc = (nTcosφ)e,
其中,r∈IR3,v∈IR3,Tc∈IR3,r为航天器相对于目标点的位置矢量,v为航天器在地面固定坐标系中的速度矢量,Tc为航天器受到的推力矢量,IR3表示xyz三轴坐标系,为航天器相对于目标点位置矢量的导数在i轴方向上的分量,vi为航天器在地面固定坐标系中速度矢量在在i轴方向上的分量,i=x,y,z,m为航天器质量,μ为火星的引力常量,α为燃料消耗速率的常量,g∈IR3,g为火星的重力加速度常量,Isp为推进器的比冲,e∈IR3,e为瞬时推力方向矢量,ge为地球重力常量,φ为推进器和瞬时推力方向矢量e之间的夹角,n为子推进器个数。Among them, r∈IR 3 , v∈IR 3 , T c ∈IR 3 , r is the position vector of the spacecraft relative to the target point, v is the velocity vector of the spacecraft in the ground fixed coordinate system, T c is the thrust vector, IR 3 represents the xyz three-axis coordinate system, is the component of the derivative of the position vector of the spacecraft relative to the target point in the direction of the i axis, v i is the component of the velocity vector of the spacecraft in the fixed coordinate system on the ground in the direction of the i axis, i=x, y, z, m is the spacecraft mass, μ is the gravitational constant of Mars, α is the constant of the fuel consumption rate, g∈IR 3 , g is the gravitational acceleration constant of Mars, I sp is the specific impulse of the thruster, e∈IR 3 , and e is the instantaneous Thrust direction vector, g e is the earth's gravity constant, φ is the angle between the propeller and the instantaneous thrust direction vector e, n is the number of sub-propellers.
步骤(1)凸优化具体为:Step (1) Convex optimization is specifically:
(11)建立推力幅值约束:(11) Establish thrust amplitude constraints:
ρ1=nT1cosφ,ρ 1 = nT 1 cos φ,
ρ2=nT2cosφ,ρ 2 = nT 2 cos φ,
其中,ρ1和ρ2为推力幅值下界和上界,tf为动力下降着陆过程的终止时间,n为子推进器个数,T1为子推进器的非零最小推力,T2为子推进器最大推力;Among them, ρ 1 and ρ 2 are the lower and upper bounds of the thrust amplitude, t f is the termination time of the power descent landing process, n is the number of sub-thrusters, T 1 is the non-zero minimum thrust of the sub-thrusts, T 2 is The maximum thrust of the sub-propeller;
位移非负约束:Displacement non-negativity constraints:
rx>0,r x > 0,
其中,rx为航天器相对于目标点位置矢量在x轴方向上的分量;Among them, r x is the component of the position vector of the spacecraft relative to the target point in the x-axis direction;
高度角约束:Altitude constraint:
其中,为给定的安全角度,θalt(t)为航天器到目标点的高度角,高度角约束锥形示意图如图2所示;in, is a given safety angle, θ alt (t) is the altitude angle from the spacecraft to the target point, and the altitude angle constraint cone diagram is shown in Figure 2;
(12)引入松弛变量Γ(t)和附加约束‖Tc(t)‖≤Γ(t),进行变量代换进而得到凸优化后的推力约束条件:(12) Introduce the slack variable Γ(t) and the additional constraint ‖T c (t)‖≤Γ(t) for variable substitution Then the thrust constraints after convex optimization are obtained:
ρ1和ρ2为推力幅值下界和上界,z和z0表示变量替换后的质量变量和其初始值,σ表示松弛变量变换后的新变量。ρ 1 and ρ 2 are the lower and upper bounds of the thrust amplitude, z and z 0 represent the mass variable and its initial value after variable substitution, and σ represents the new variable after the slack variable transformation.
步骤(2)以燃料最优为目标进行单次离线优化后的优化模型为:Step (2) The optimization model after a single offline optimization with the goal of fuel optimization is:
0<ρ1≤‖Tc(t)‖≤ρ2,0<ρ 1 ≤‖T c (t)‖≤ρ 2 ,
‖SX‖+cTX≤0,‖SX‖+c T X ≤ 0,
m(0)=mwet,m(0)=m wet ,
r(0)=r0 r(tf)=0,r(0)=r 0 r(t f )=0,
其中,S和c均为系数矩阵:Among them, S and c are coefficient matrices:
mwet表示着陆器燃料满载时的初始质量,表示着陆器着陆时的最终质量,X表示包含航天器位置和速度信息的状态向量。m wet represents the initial mass of the lander when it is fully loaded with fuel, Denotes the final mass of the lander when it lands, and X represents the state vector containing the position and velocity information of the spacecraft.
步骤(2)获取标称轨迹具体为:采用以Mosek为求解器的CVX工具箱对所述的优化模型进行求解,得到表示包含航天器位置和速度信息的状态向量X。Step (2) obtaining the nominal trajectory is specifically: using the CVX toolbox with Mosek as the solver to solve the optimization model, and obtain the state vector X representing the position and velocity information of the spacecraft.
步骤(3)具体为:Step (3) is specifically:
(31)建立预测模型:(31) Build a predictive model:
X(k+i|k)=A(k+i-1|k)X(k+i-1|k)+B(k+i-1|k)U(k+i-1|k),X(k+i|k)=A(k+i-1|k)X(k+i-1|k)+B(k+i-1|k)U(k+i-1|k) ,
其中,X(k+i|k)表示在k时刻对k+i时刻的状态信息预测值,U(k+i-1|k)表示在k时刻的优化结果中得到的k+i-1时刻的输入量,A(k+i-1|k)表示在k时刻对k+i-1时刻的状态矩阵A的预测值,B(k+i-1|k)表示在k时刻对k+i-1时刻的输入矩阵B的预测值,所述的状态信息包括航天器位置和速度信息,所述的输入量为推力;Among them, X(k+i|k) represents the predicted value of state information at time k+i at time k, and U(k+i-1|k) represents k+i-1 obtained from the optimization result at time k The input amount at time, A(k+i-1|k) represents the predicted value of the state matrix A at time k+i-1 at time k, and B(k+i-1|k) represents the value of k at time k The predicted value of the input matrix B at +i-1 time, the state information includes spacecraft position and velocity information, and the input quantity is thrust;
(32)建立优化目标函数:(32) Establish optimization objective function:
其中,Xopt(k+i)表示k+i时刻轨迹跟踪的目标值,Q为对称正定的参数矩阵,p为滚动优化的步长,X(N|k)表示在k时刻对最终时刻的状态信息预测值,Xopt(N)表示最终时刻轨迹跟踪的目标值,R为对称正定的参数矩阵;Among them, X opt (k+i) represents the target value of trajectory tracking at time k+i, Q is a symmetric positive definite parameter matrix, p is the step size of rolling optimization, and X(N|k) represents the final time at time k. State information prediction value, X opt (N) represents the target value of trajectory tracking at the final moment, and R is a symmetrical positive definite parameter matrix;
(33)以步骤(31)中建立的预测模型作为约束条件,以(32)中的目标函数为优化指标,在任意时刻k进行步长为p的有限时域在线滚动优化,并在k时刻得到优化后的p个最优控制序列U(k+i|k);(33) Take the prediction model established in step (31) as the constraint condition, and use the objective function in (32) as the optimization index, perform a finite time-domain online rolling optimization with a step size of p at any time k, and at time k Get optimized p optimal control sequences U(k+i|k);
(34)在每个当前时刻仅利用优化结果中当前时刻的控制量和位置信息带入火星着陆动力学模型求得下一时刻的真实位置信息,并作为下一时刻的优化初始信息,在整个时域上滚动优化直到结束,每次都用当前时刻的优化控制量作为输入,完成着陆器的控制工作。(34) At each current moment, only the control quantity and position information at the current moment in the optimization results are brought into the Mars landing dynamics model to obtain the real position information at the next moment, and it is used as the optimized initial information at the next moment. Roll the optimization in the time domain until the end, and use the optimized control amount at the current moment as input each time to complete the control work of the lander.
具体实施时,主要由三部分组成,分别为传感器模块、制导与控制模块以及执行器模块。In actual implementation, it mainly consists of three parts, namely sensor module, guidance and control module and actuator module.
传感器模块包括安置于火星着陆器底部的雷达探测器和测量着陆器实时飞行状态的IMU惯性测量元件。制导控制模块是以嵌入式处理器为核心的计算和控制单元,其具有较强的运算能力。执行机构由n个对称安置在着陆器底部的子推力器组成,通过节流阀开闭的大小来调节推力。The sensor module includes a radar detector placed on the bottom of the Mars lander and an IMU inertial measurement unit that measures the real-time flight status of the lander. The guidance control module is a calculation and control unit with an embedded processor as the core, which has strong computing power. The actuator is composed of n sub-thrusts arranged symmetrically at the bottom of the lander, and the thrust is adjusted by the opening and closing of the throttle valve.
进一步地,在上述系统框架下可根据实际任务需求,对制导与控制所在的核心模块进行设计。Furthermore, under the framework of the above system, the core module where the guidance and control is located can be designed according to the actual task requirements.
上述基于凸优化的火星着陆轨迹优化与控制方案其具体实施步骤如下:The specific implementation steps of the above-mentioned Mars landing trajectory optimization and control scheme based on convex optimization are as follows:
第一步:嵌入式控制器的设计。在着陆器只受到重力和反推力的作用,忽略了由于风引起的其他力的情况和均匀重力场假设下,建立火星着陆器在着陆过程中的平移运动模型。The first step: the design of the embedded controller. Under the condition that the lander is only affected by gravity and anti-thrust, ignoring other forces caused by wind and the assumption of a uniform gravity field, a translational motion model of the Mars lander during landing is established.
在对研究对象完成了运动模型的建立之后,根据物理因素、工程限制和实际任务需求,设定安全的高度角,在考虑高度角约束的情况下,对着陆器的约束进行分析和凸化,得到凸化后的优化与控制模型,并在每次执行任务前将其写入至计算控制模块的嵌入式控制器中。After completing the establishment of the motion model for the research object, set a safe altitude angle according to physical factors, engineering constraints, and actual mission requirements, and analyze and convexize the constraints of the lander in consideration of the constraints of the altitude angle. The optimization and control model after convexization is obtained, and it is written into the embedded controller of the calculation control module before each task execution.
第二步:单次离线优化。根据第一步中所建立的优化问题,通过内置在嵌入式中的CVX工具箱,调用相应的CPU运算进行单次离线优化,得到燃料消耗最优的最优推力和最优轨迹,作为标称轨迹和参考输入存储在微机单元中。The second step: a single offline optimization. According to the optimization problem established in the first step, through the built-in CVX toolbox in the embedded system, the corresponding CPU operation is called for a single offline optimization, and the optimal thrust and optimal trajectory with the best fuel consumption are obtained as the nominal Trajectories and reference inputs are stored in the microcomputer unit.
第三步:状态测量与输入。根据传感器模块中的IMU单元实时测量着陆器着陆过程中的速度、加速度,通过雷达探测器对着陆器与目标点当前的相对位置信息进行测量,并将此刻状态信息的测量值作为输入连接到制导与控制模块的嵌入式中。The third step: state measurement and input. According to the IMU unit in the sensor module, the speed and acceleration of the lander during the landing process are measured in real time, and the current relative position information between the lander and the target point is measured through the radar detector, and the measured value of the state information at this moment is used as an input to connect to the guidance Embedded with the control module.
第四步:模型预测。在每一个时刻以当前的状态作为初始信息,以建立好的运动控制模型来预测接下来一段时间内的飞行轨迹,并通过优化来求解这一段时间内的最优控制问题。为了模型的准确性,在每一时刻,仅采用优化结果中众多控制量中的当前时刻的控制信息,并根据当前状态信息和控制量求出下一时刻的状态作为下一次滚动时域优化的初始信息。每一次优化仅在优化时域轴上的一小段,不断重复优化,相当于在时域上滚动前进,直至实现整个过程的完整优化,具体算法流程见附图3。Step 4: Model prediction. At each moment, the current state is used as the initial information to establish a good motion control model to predict the flight trajectory in the next period of time, and to solve the optimal control problem in this period of time through optimization. For the accuracy of the model, at each moment, only the control information at the current moment among the many control quantities in the optimization results is used, and the state at the next moment is obtained according to the current state information and control quantities as the basis for the next rolling time-domain optimization. initial information. Each optimization only optimizes a small section on the time domain axis, and the optimization is repeated continuously, which is equivalent to rolling forward in the time domain until the complete optimization of the entire process is achieved. The specific algorithm flow is shown in Figure 3.
具体模型为:The specific model is:
X(k+i|k)=A(k+i-1|k)X(k+i-1|k)+B(k+i-1|k)U(k+i-1|k),X(k+i|k)=A(k+i-1|k)X(k+i-1|k)+B(k+i-1|k)U(k+i-1|k) ,
在滚动时域的优化上,选取性能指标的主要考虑因素为对标称轨迹的跟踪情况,相应的优化目标函数为:In the optimization of the rolling time domain, the main consideration for selecting the performance index is the tracking of the nominal trajectory, and the corresponding optimization objective function is:
第五步:滚动优化与实时控制。Step 5: Scroll optimization and real-time control.
(1)将问题转化为滚动时域的模型预测的形式。确定好滚动时域值P,给定初始状态信息,将优化时刻调整至k=0。(1) Transform the problem into the form of model prediction in the rolling time domain. Determine the rolling time domain value P, and adjust the optimization time to k=0 given the initial state information.
(2)确定目标函数中Q的值,利用CVX工具箱进行滚动时域内的最优控制问题求解,求得在滚动时域内的一系列状态信息与控制信息。(2) Determine the value of Q in the objective function, use the CVX toolbox to solve the optimal control problem in the rolling time domain, and obtain a series of state information and control information in the rolling time domain.
(3)在当前时刻,仅利用优化结果中当前时刻的控制量和当前位置信息,带入飞行器运动模型求得下一时刻的真实位置信息,并将其作为下一时刻优化的初始信息。(3) At the current moment, only the current control amount and current position information in the optimization result are used, and brought into the aircraft motion model to obtain the real position information at the next moment, and use it as the initial information for the next moment optimization.
(4)重复上面步骤进行反复优化,当k=N时停止优化,便得到完整的优化结果,实时控制过程结束。(4) Repeat the above steps to optimize iteratively, stop the optimization when k=N, and obtain a complete optimization result, and the real-time control process ends.
上述实施方式仅为例举,不表示对本发明范围的限定。这些实施方式还能以其它各种方式来实施,且能在不脱离本发明技术思想的范围内作各种省略、置换、变更。The above-mentioned embodiments are merely examples, and do not limit the scope of the present invention. These embodiments can also be implemented in various other forms, and various omissions, substitutions, and changes can be made without departing from the scope of the technical idea of the present invention.
Claims (6)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201810279467.2A CN108388135B (en) | 2018-03-30 | 2018-03-30 | An optimal control method for Mars landing trajectory based on convex optimization |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201810279467.2A CN108388135B (en) | 2018-03-30 | 2018-03-30 | An optimal control method for Mars landing trajectory based on convex optimization |
Publications (2)
Publication Number | Publication Date |
---|---|
CN108388135A true CN108388135A (en) | 2018-08-10 |
CN108388135B CN108388135B (en) | 2020-11-10 |
Family
ID=63073075
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201810279467.2A Active CN108388135B (en) | 2018-03-30 | 2018-03-30 | An optimal control method for Mars landing trajectory based on convex optimization |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN108388135B (en) |
Cited By (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN110466804A (en) * | 2019-08-30 | 2019-11-19 | 北京理工大学 | The quick track optimizing method of rocket-powered decline landing mission |
CN110562493A (en) * | 2019-09-06 | 2019-12-13 | 北京理工大学 | Mars power descending trajectory planning method based on vector trajectory |
CN111158349A (en) * | 2020-01-15 | 2020-05-15 | 浙江大学 | Unmanned vehicle model prediction control method based on multi-step linearization strategy |
CN112651103A (en) * | 2020-11-27 | 2021-04-13 | 中国人民解放军国防科技大学 | Method, system and medium for improving success rate of aircraft on-line trajectory planning |
CN113110559A (en) * | 2021-05-13 | 2021-07-13 | 北京理工大学 | Optimal control method for small celestial body surface bouncing movement |
CN113467498A (en) * | 2021-07-14 | 2021-10-01 | 西北工业大学 | Carrier rocket ascending section trajectory planning method based on Bezier-convex optimization |
CN113467241A (en) * | 2021-07-06 | 2021-10-01 | 北京理工大学 | Method for optimizing burn-up of convex curvature landing trajectory |
CN115291526A (en) * | 2022-09-30 | 2022-11-04 | 北京航天自动控制研究所 | Optimal tracking guidance method based on rolling time domain |
CN118349020A (en) * | 2024-06-17 | 2024-07-16 | 西北工业大学宁波研究院 | Single-rolling motion control method of wheel control detector based on preset performance |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20130332065A1 (en) * | 2012-06-12 | 2013-12-12 | Trx Systems, Inc. | Fusion Of Sensor And Map Data Using A Contraint Based Optimization |
CN104267734A (en) * | 2014-08-01 | 2015-01-07 | 北京理工大学 | Mars complex terrain region safe landing trajectory generation method with minimum fuel consumption |
CN105867402A (en) * | 2016-05-10 | 2016-08-17 | 北京航空航天大学 | Anti-interference composite online guiding method of atmosphere entering period of Mars lander |
CN105929844A (en) * | 2016-04-26 | 2016-09-07 | 哈尔滨工业大学 | Obstacle avoidance method for soft landing of object outside earth under multi-obstacle constraint environment |
CN106778012A (en) * | 2016-12-29 | 2017-05-31 | 北京理工大学 | A kind of small feature loss attachment detection descending trajectory optimization method |
CN107202584A (en) * | 2017-07-06 | 2017-09-26 | 北京理工大学 | A kind of planet precision landing anti-interference method of guidance |
CN107300386A (en) * | 2017-06-05 | 2017-10-27 | 西北工业大学 | A kind of convex optimization Optimal Rendezvous method of guidance of closed loop navigated based on only angle measurement |
-
2018
- 2018-03-30 CN CN201810279467.2A patent/CN108388135B/en active Active
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20130332065A1 (en) * | 2012-06-12 | 2013-12-12 | Trx Systems, Inc. | Fusion Of Sensor And Map Data Using A Contraint Based Optimization |
CN104267734A (en) * | 2014-08-01 | 2015-01-07 | 北京理工大学 | Mars complex terrain region safe landing trajectory generation method with minimum fuel consumption |
CN105929844A (en) * | 2016-04-26 | 2016-09-07 | 哈尔滨工业大学 | Obstacle avoidance method for soft landing of object outside earth under multi-obstacle constraint environment |
CN105867402A (en) * | 2016-05-10 | 2016-08-17 | 北京航空航天大学 | Anti-interference composite online guiding method of atmosphere entering period of Mars lander |
CN106778012A (en) * | 2016-12-29 | 2017-05-31 | 北京理工大学 | A kind of small feature loss attachment detection descending trajectory optimization method |
CN107300386A (en) * | 2017-06-05 | 2017-10-27 | 西北工业大学 | A kind of convex optimization Optimal Rendezvous method of guidance of closed loop navigated based on only angle measurement |
CN107202584A (en) * | 2017-07-06 | 2017-09-26 | 北京理工大学 | A kind of planet precision landing anti-interference method of guidance |
Non-Patent Citations (1)
Title |
---|
林晓辉 等: "基于凸优化理论的含约束月球定点着陆轨道优化", 《宇航学报》 * |
Cited By (17)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN110466804B (en) * | 2019-08-30 | 2021-04-09 | 北京理工大学 | Rapid trajectory optimization method for rocket power descent landing process |
CN110466804A (en) * | 2019-08-30 | 2019-11-19 | 北京理工大学 | The quick track optimizing method of rocket-powered decline landing mission |
CN110562493A (en) * | 2019-09-06 | 2019-12-13 | 北京理工大学 | Mars power descending trajectory planning method based on vector trajectory |
CN110562493B (en) * | 2019-09-06 | 2021-03-30 | 北京理工大学 | A Mars Dynamic Descent Trajectory Planning Method Based on Vector Trajectory |
CN111158349A (en) * | 2020-01-15 | 2020-05-15 | 浙江大学 | Unmanned vehicle model prediction control method based on multi-step linearization strategy |
CN111158349B (en) * | 2020-01-15 | 2021-01-08 | 浙江大学 | Unmanned vehicle model prediction control method based on multi-step linearization strategy |
CN112651103A (en) * | 2020-11-27 | 2021-04-13 | 中国人民解放军国防科技大学 | Method, system and medium for improving success rate of aircraft on-line trajectory planning |
CN112651103B (en) * | 2020-11-27 | 2022-10-18 | 中国人民解放军国防科技大学 | Method, system and medium for improving success rate of aircraft on-line trajectory planning |
CN113110559B (en) * | 2021-05-13 | 2022-03-18 | 北京理工大学 | An optimal control method for bouncing motion on the surface of small celestial bodies |
CN113110559A (en) * | 2021-05-13 | 2021-07-13 | 北京理工大学 | Optimal control method for small celestial body surface bouncing movement |
CN113467241B (en) * | 2021-07-06 | 2022-09-16 | 北京理工大学 | Convex curvature landing trajectory burnup optimization method |
CN113467241A (en) * | 2021-07-06 | 2021-10-01 | 北京理工大学 | Method for optimizing burn-up of convex curvature landing trajectory |
CN113467498B (en) * | 2021-07-14 | 2022-07-01 | 西北工业大学 | A Bezier-convex optimization-based trajectory planning method for the ascent segment of a launch vehicle |
CN113467498A (en) * | 2021-07-14 | 2021-10-01 | 西北工业大学 | Carrier rocket ascending section trajectory planning method based on Bezier-convex optimization |
CN115291526A (en) * | 2022-09-30 | 2022-11-04 | 北京航天自动控制研究所 | Optimal tracking guidance method based on rolling time domain |
CN118349020A (en) * | 2024-06-17 | 2024-07-16 | 西北工业大学宁波研究院 | Single-rolling motion control method of wheel control detector based on preset performance |
CN118349020B (en) * | 2024-06-17 | 2024-10-11 | 西北工业大学宁波研究院 | Single-rolling motion control method of wheel control detector based on preset performance |
Also Published As
Publication number | Publication date |
---|---|
CN108388135B (en) | 2020-11-10 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN108388135B (en) | An optimal control method for Mars landing trajectory based on convex optimization | |
CN109250153B (en) | Mars atmosphere entry section track optimal tracking guidance method | |
Huang et al. | Adaptive control for space debris removal with uncertain kinematics, dynamics and states | |
Dai et al. | Mars atmospheric entry guidance for reference trajectory tracking | |
CN106054604B (en) | Reentry vehicle robust optimal method of guidance based on Model Predictive Control Theory | |
Tian et al. | Nonlinear robust control for reusable launch vehicles in reentry phase based on time-varying high order sliding mode | |
CN103995540A (en) | Method for rapidly generating finite time track of hypersonic aircraft | |
Li et al. | Mars entry trajectory optimization using DOC and DCNLP | |
Slegers et al. | Terminal guidance of autonomous parafoils in high wind-to-airspeed ratios | |
CN113479347A (en) | Rocket vertical recovery landing segment trajectory control method | |
CN105573337A (en) | De-orbit braking closed circuit guidance method satisfying constrains on reentry angles and flying ranges | |
CN105629732A (en) | Spacecraft attitude output feedback tracking control method giving consideration to limited control | |
Jin et al. | Development and validation of linear covariance analysis tool for atmospheric entry | |
Wang et al. | Predictor-corrector entry guidance with waypoint and no-fly zone constraints | |
Luo et al. | A guidance law for UAV autonomous aerial refueling based on the iterative computation method | |
CN105253328B (en) | An Approximate Optimal Explicit Guidance Method with Fully Controllable Position and Velocity During Dynamic Descent | |
CN104729510A (en) | Method for determining relative adjoint orbit of space target | |
Zhao et al. | Trajectory tracking control for parafoil systems based on the model-free adaptive control method | |
CN110209190A (en) | A kind of method of the unbiased flight control of satellite nominal track | |
Cai et al. | Research on path generation and stability control method for UAV‐based intelligent spray painting of ships | |
Yang et al. | Entry guidance with no-fly zone avoidance using linear pseudospectral model predictive control | |
Miedziński et al. | Missile aerodynamics model identification using flight data | |
Chen et al. | Steady Glide Dynamics and Guidance of Hypersonic Vehicle | |
CN106494643A (en) | A kind of attitude of satellite abnormal restoring control method based on the earth's core Vector Message | |
Seelbinder | On-board trajectory computation for mars atmospheric entry based on parametric sensitivity analysis of optimal control problems |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |