CN108383984B - Surfboard canvas and preparation method thereof - Google Patents
Surfboard canvas and preparation method thereof Download PDFInfo
- Publication number
- CN108383984B CN108383984B CN201711342768.7A CN201711342768A CN108383984B CN 108383984 B CN108383984 B CN 108383984B CN 201711342768 A CN201711342768 A CN 201711342768A CN 108383984 B CN108383984 B CN 108383984B
- Authority
- CN
- China
- Prior art keywords
- surfboard
- modified polyester
- canvas
- oil agent
- polyester
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G63/00—Macromolecular compounds obtained by reactions forming a carboxylic ester link in the main chain of the macromolecule
- C08G63/02—Polyesters derived from hydroxycarboxylic acids or from polycarboxylic acids and polyhydroxy compounds
- C08G63/12—Polyesters derived from hydroxycarboxylic acids or from polycarboxylic acids and polyhydroxy compounds derived from polycarboxylic acids and polyhydroxy compounds
- C08G63/16—Dicarboxylic acids and dihydroxy compounds
- C08G63/18—Dicarboxylic acids and dihydroxy compounds the acids or hydroxy compounds containing carbocyclic rings
- C08G63/181—Acids containing aromatic rings
- C08G63/183—Terephthalic acids
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B27/00—Layered products comprising a layer of synthetic resin
- B32B27/06—Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B27/00—Layered products comprising a layer of synthetic resin
- B32B27/36—Layered products comprising a layer of synthetic resin comprising polyesters
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B33/00—Layered products characterised by particular properties or particular surface features, e.g. particular surface coatings; Layered products designed for particular purposes not covered by another single class
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B37/00—Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding
- B32B37/12—Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding characterised by using adhesives
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B5/00—Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts
- B32B5/02—Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by structural features of a fibrous or filamentary layer
- B32B5/024—Woven fabric
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B7/00—Layered products characterised by the relation between layers; Layered products characterised by the relative orientation of features between layers, or by the relative values of a measurable parameter between layers, i.e. products comprising layers having different physical, chemical or physicochemical properties; Layered products characterised by the interconnection of layers
- B32B7/04—Interconnection of layers
- B32B7/12—Interconnection of layers using interposed adhesives or interposed materials with bonding properties
-
- D—TEXTILES; PAPER
- D01—NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
- D01F—CHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
- D01F1/00—General methods for the manufacture of artificial filaments or the like
- D01F1/02—Addition of substances to the spinning solution or to the melt
- D01F1/10—Other agents for modifying properties
-
- D—TEXTILES; PAPER
- D01—NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
- D01F—CHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
- D01F6/00—Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof
- D01F6/88—Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof from mixtures of polycondensation products as major constituent with other polymers or low-molecular-weight compounds
- D01F6/92—Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof from mixtures of polycondensation products as major constituent with other polymers or low-molecular-weight compounds of polyesters
-
- D—TEXTILES; PAPER
- D06—TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
- D06M—TREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
- D06M13/00—Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with non-macromolecular organic compounds; Such treatment combined with mechanical treatment
- D06M13/10—Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with non-macromolecular organic compounds; Such treatment combined with mechanical treatment with compounds containing oxygen
- D06M13/11—Compounds containing epoxy groups or precursors thereof
-
- D—TEXTILES; PAPER
- D06—TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
- D06M—TREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
- D06M13/00—Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with non-macromolecular organic compounds; Such treatment combined with mechanical treatment
- D06M13/10—Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with non-macromolecular organic compounds; Such treatment combined with mechanical treatment with compounds containing oxygen
- D06M13/224—Esters of carboxylic acids; Esters of carbonic acid
-
- D—TEXTILES; PAPER
- D06—TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
- D06M—TREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
- D06M13/00—Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with non-macromolecular organic compounds; Such treatment combined with mechanical treatment
- D06M13/244—Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with non-macromolecular organic compounds; Such treatment combined with mechanical treatment with compounds containing sulfur or phosphorus
- D06M13/248—Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with non-macromolecular organic compounds; Such treatment combined with mechanical treatment with compounds containing sulfur or phosphorus with compounds containing sulfur
- D06M13/256—Sulfonated compounds esters thereof, e.g. sultones
-
- D—TEXTILES; PAPER
- D06—TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
- D06M—TREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
- D06M13/00—Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with non-macromolecular organic compounds; Such treatment combined with mechanical treatment
- D06M13/244—Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with non-macromolecular organic compounds; Such treatment combined with mechanical treatment with compounds containing sulfur or phosphorus
- D06M13/282—Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with non-macromolecular organic compounds; Such treatment combined with mechanical treatment with compounds containing sulfur or phosphorus with compounds containing phosphorus
- D06M13/292—Mono-, di- or triesters of phosphoric or phosphorous acids; Salts thereof
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B2262/00—Composition or structural features of fibres which form a fibrous or filamentary layer or are present as additives
- B32B2262/02—Synthetic macromolecular fibres
- B32B2262/0276—Polyester fibres
- B32B2262/0284—Polyethylene terephthalate [PET] or polybutylene terephthalate [PBT]
-
- D—TEXTILES; PAPER
- D06—TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
- D06M—TREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
- D06M2101/00—Chemical constitution of the fibres, threads, yarns, fabrics or fibrous goods made from such materials, to be treated
- D06M2101/16—Synthetic fibres, other than mineral fibres
- D06M2101/30—Synthetic polymers consisting of macromolecular compounds obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
- D06M2101/32—Polyesters
Landscapes
- Engineering & Computer Science (AREA)
- Textile Engineering (AREA)
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- General Chemical & Material Sciences (AREA)
- Health & Medical Sciences (AREA)
- Medicinal Chemistry (AREA)
- Polymers & Plastics (AREA)
- Organic Chemistry (AREA)
- Manufacturing & Machinery (AREA)
- Artificial Filaments (AREA)
Abstract
The invention relates to a surfboard canvas and a preparation method thereof, wherein modified polyester is firstly utilized to prepare polyester industrial yarns, then the industrial yarns are woven to form an enhancement layer, the enhancement layer is respectively bonded with two end surfaces of a base layer and then is subjected to coating finishing to form a functional layer, the surfboard canvas is prepared, wherein a dihydric alcohol chain segment with a branched chain is introduced into the modified polyester, the longitudinal height is kept unchanged in the cooling process of the preparation process yarn, the cross section area of a slow cooling chamber is increased, meanwhile, the slow cooling chamber is used for keeping the plate surface temperature of a spinneret plate in a heat preservation mode, oil solution for oiling contains crown ether, the content of the crown ether is 67.30-85.58 wt%, the breaking strength of the prepared polyester industrial yarns is more than or equal to 7.5cN/dtex, the central value of the breaking elongation is 19.0-21.0%, and the deviation rate of the breaking elongation is +/-2. The method is simple and reasonable, and the manufactured surfboard canvas has high breaking strength and good firmness.
Description
Technical Field
The invention belongs to the field of fiber preparation, and relates to surfboard canvas and a preparation method thereof.
Background
Polyethylene terephthalate (PET) fibers have been developed rapidly since the advent due to their excellent properties, and their production has become the world's cap of synthetic fibers. The polyester fiber has a series of excellent performances such as high breaking strength, high elastic modulus, moderate resilience, excellent heat setting performance, good heat resistance, light resistance, acid resistance, alkali resistance, corrosion resistance and the like, and the fabric prepared from the polyester fiber has the advantages of good crease resistance, good stiffness and smoothness and the like, so the polyester fiber is widely applied to the fields of clothing, home textiles and the like.
However, in the polycondensation reaction for synthesizing ethylene terephthalate, especially in the case of linear high polymer, linear and cyclic oligomers are also associated due to high-temperature oxidative degradation, the cyclic oligomers are formed by the back-biting cyclization of the chain ends of macromolecules in the polycondensation stage, about 70% or more of the cyclic oligomers are cyclic trimers, and the cyclic trimers have the characteristics of easy aggregation, easy crystallization, high chemical and heat stability and the like, and the formation of the cyclic trimers has the following influence on the processing of polyester: (1) the spinning assembly can be blocked, and the service life of the melt filter and the assembly is influenced; (2) the fiber can be separated out in the process of heat setting and deposited on a heating roller, so that the friction force is increased and the heating is uneven; (3) the dyeing process takes the cyclic trimer as a center, so that the dye is gathered and adhered to the surface of the fiber, the phenomena of dye color points, spots, color flowers and the like appear on the surface of the fiber, the hand feeling and the color light of the fabric woven by the fiber are influenced, and meanwhile, the normal liquid flow velocity of a melt is limited by the cyclic oligomer filled with a pipeline and a valve, so that the fiber is unevenly dyed, and the reproducibility is poor; (4) the adhesive is adhered to the surface of the fiber, so that the winding is difficult, the phenomena of yarn breakage, uneven thickness and the like occur, the mechanical properties of the fiber such as breaking strength, breaking elongation and the like are influenced, and the product quality is seriously influenced.
In the production process of PET fibers, a slow cooling area is generally arranged, and the purposes of the slow cooling area are two: firstly, the strand silk is ensured not to be rapidly cooled after being discharged from a spinneret plate, so that the exterior of the strand silk is highly oriented due to rapid cooling, macromolecules are in a disordered state due to high temperature inside the strand silk, and the difference of the radial structure of the fiber is large, namely the so-called skin-core effect; secondly, a higher temperature of the spinneret surface is maintained, so that the filaments are smoothly discharged, the orifice bulking effect is normal, and the phenomenon of melt fracture to form weak filaments is avoided. The heating mode of the slow cooling zone mainly has two modes, both modes are active heating, firstly, as shown in figure 1, the heating medium of the box body is used for heating, once the spinning temperature is determined, the adjustment is generally not needed, the adjustment is passive, and the different application conditions are difficult to adapt; another heating method is shown in fig. 2, an electrical heating method is adopted for heating, the setting temperature can be higher than the box heat medium temperature, or lower than the box heat medium temperature, and the method is flexible, and can be set according to actual conditions, but the high temperature can aggravate the coking of the oligomer on the spinneret, if the temperature is reduced, such as the power is cut off and the heating is not carried out, because the heater is usually made of aluminum material with heavy quality and good heat transfer effect, a large amount of heat can be absorbed from the box, the heat medium is rapidly condensed around the outside of the assembly cavity, the heat is not supplemented enough, so that the temperature of the spinning assembly is reduced, the melt flow performance is obviously reduced, a large amount of broken filaments are reduced in the product, and the like, especially for the production of fibers with special-shaped cross sections, the perimeter of the orifice is obviously increased due to the special-shaped cross sections, the coke deposits, the filament breakage is generated in the high-speed running of the strand silk, the filament breakage is shown on the surface of a spinning cake in the form of broken filament reduction and the like, the broken filament causes great trouble for post-processing unwinding, the strength elongation of the filament bundle is influenced, which is the defect that the existing slow cooling zone needs to be avoided as much as possible in the production, besides the defect of a heating mode, the slow cooling zone in the prior art also has the fatal defect that the slow cooling zone is a cylindrical chamber, low polymer cannot escape quickly and smoothly, the low polymer is gathered in a high-temperature field and is bound to be largely coked on a spinneret plate to cause the blockage of the spinneret plate, the plate cleaning period is shortened, or the coking substances are attached around a spinneret hole to generate bent filaments, the appearance quality of a product is rapidly deteriorated, the broken ends are remarkably increased, the production efficiency is reduced, the labor intensity of workers is high, particularly, the normal production operation is seriously influenced by the remarkable performance on the production of, causing great waste of production cost.
The high-strength polyester industrial yarn has wide application and can be used as high-strength cloth. But the main problems of preparing the high-strength polyester industrial yarn at the present stage are two, firstly, the oiling agent is volatilized quickly and is easy to be bonded on the surface of the fiber, so that the prepared fiber has high unevenness rate and poor performance; secondly, the volatile residue of oligomer in the fiber is on the surface of the spinneret plate, which causes fiber broken filaments and influences the quality of the fiber.
Therefore, how to provide a polyester fiber with uniform spinning and low oligomer content becomes a problem to be solved at present.
Disclosure of Invention
The invention aims to solve the problems that in the prior art, the oiling agent is quickly volatilized and is easy to be bonded on the surface of fiber, so that the fiber quality is influenced by the fact that the fiber is not uniform and the residual oligomer in a spinneret plate is too much, and provides surfboard canvas with uniform spinning and low oligomer content and a preparation method thereof. The introduction of the dihydric alcohol with the branched chain in the modified polyester reduces the cyclic oligomer generated in the polyester side reaction and improves the quality of the fiber; the crown ether-containing oil agent is used, so that the heat resistance and the lubricity of the oil agent are improved, the quality of the fiber is improved, and the crown ether has lower viscosity and higher volatile point compared with the conventional smoothing agent, so that the friction coefficient of the crown ether-containing oil agent is smaller and the heat resistance and the stability are better, the processing performance of the fiber is improved, and the phenomenon of broken filaments is reduced; the cylindrical slow cooling chamber is changed into a rectangular column shape, so that the dissipation space of spinning oligomers is enlarged, the active heating type slow cooling area is changed into a non-heating heat preservation type, the aggregation quantity and the hardness degree of the oligomers on a high-temperature spinneret plate are reduced, the plate cleaning period of the fiber with the special-shaped section is greatly prolonged, the area of the slow cooling chamber is increased, the probability of outward diffusion of the oligomers in the fiber is increased, and the quality of the fiber is improved.
In order to achieve the purpose, the invention adopts the technical scheme that:
a surfboard canvas comprises a base layer, enhancement layers symmetrically arranged on two end faces of the base layer and a functional layer arranged on the enhancement layers, wherein the enhancement layers are of a net structure formed by interweaving polyester industrial yarns, and the functional layer is of a multilayer structure and comprises a waterproof layer, a radiation-proof layer and a heat-insulating layer;
the polyester industrial yarn is made of modified polyester, a molecular chain of the modified polyester comprises a terephthalic acid chain segment, an ethylene glycol chain segment and a dihydric alcohol chain segment with a branched chain, and the structural formula of the dihydric alcohol with the branched chain is as follows:
in the formula, R1And R2Each independently selected from linear alkylene having 1 to 3 carbon atoms, R3Selected from alkyl with 1-5 carbon atoms, R4The carbon atom number is 2-5, and the purpose of carbon atom number limitation is as follows: because a branched chain structure and a long chain structure are introduced into the dihydric alcohol, the electronegativity of an alkoxy part is weakened, the number of carbon atoms of the branched chain structure is too small, the electronegativity influence on the alkoxy part is small, and the significance for reducing the generation of cyclic oligomers is not large; the too large number of carbon atoms of the branched chain structure can generate intermolecular entanglement and influence the distribution of molecular weight;
the breaking strength of the polyester industrial yarn is more than or equal to 7.5cN/dtex, the central value of the elongation at break is 19.0-21.0%, and the deviation rate of the elongation at break is +/-2.0%. Therefore, the polyester fiber prepared by the invention has high breaking strength.
As a preferred technical scheme:
the fineness of the polyester industrial yarn is 930-1440 dtex, the linear density deviation rate is +/-1.5%, the breaking strength CV value is less than or equal to 3.0%, the breaking elongation CV value is less than or equal to 8.0%, the number of networks is 6 +/-2/m, and the oil content is 0.40-0.80%. The product of the invention has good uniformity and high fiber quality as can be seen from the fracture strength CV value less than or equal to 3.0%.
According to the surfboard canvas, the content of the cyclic oligomer in the modified polyester is less than or equal to 0.6 wt%, the amount of the cyclic oligomer in the polyester prepared by the prior art is 1.5-2.1 wt%, and compared with the prior art, the generation amount of the cyclic oligomer is remarkably reduced;
the number average molecular weight of the modified polyester is 20000-27000, the molecular weight distribution index is 1.8-2.2, the molecular weight of the modified polyester is higher, the molecular weight distribution is narrower, the spinning processing requirement can be met, and the preparation of fibers with excellent performance is facilitated;
the molar content of the dihydric alcohol chain segment with the branched chain in the modified polyester is 3-5% of that of the terephthalic acid chain segment, and the molar content of the dihydric alcohol chain segment with the branched chain in the modified polyester is lower, so that the excellent performance of the polyester is maintained;
the dihydric alcohol with a branch chain is 2-ethyl-2-methyl-1, 3-propanediol, 2-diethyl-1, 3-propanediol, 2-butyl-2-ethyl-1, 3-propanediol, 3-diethyl-1, 5-pentanediol, 4-diethyl-1, 7-heptanediol, 4-di (1, -methylethyl) -1, 7-heptanediol, 3-dipropyl-1, 5-pentanediol, 4-dipropyl-1, 7-heptanediol, 4-methyl-4- (1, 1-dimethylethyl) -1, 7-heptanediol, 3-methyl-3-pentyl-1, 6-hexanediol or 3, 3-dipentyl-1, 5-pentanediol.
The preparation method of the modified polyester comprises the following steps: uniformly mixing terephthalic acid, ethylene glycol and the dihydric alcohol with the branched chain, and then sequentially carrying out esterification reaction and polycondensation reaction to obtain modified polyester; the modified polyester comprises the following specific preparation steps:
(1) performing esterification reaction;
preparing terephthalic acid, ethylene glycol and the dihydric alcohol with the branched chain into slurry, adding a catalyst and a stabilizer, uniformly mixing, pressurizing in a nitrogen atmosphere to perform esterification reaction, wherein the pressurizing pressure is normal pressure to 0.3MPa, the esterification reaction temperature is 250-260 ℃, and the esterification reaction endpoint is determined when the distilled amount of water in the esterification reaction reaches more than 90% of a theoretical value;
(2) performing polycondensation reaction;
and after the esterification reaction is finished, starting the polycondensation reaction in a low vacuum stage under the negative pressure condition, stably pumping the pressure in the low vacuum stage from normal pressure to below 500Pa in 30-50 min at the reaction temperature of 260-270 ℃ for 30-50 min, then continuously pumping the vacuum to perform the polycondensation reaction in a high vacuum stage, further reducing the reaction pressure to below 100Pa, controlling the reaction temperature to 275-285 ℃ and the reaction time to be 50-90 min, and thus obtaining the modified polyester.
In the surfboard canvas, in the step (1), the molar ratio of the terephthalic acid, the ethylene glycol and the branched diol is 1: 1.2-2.0: 0.03-0.06, the addition amount of the catalyst is 0.01-0.05% of the weight of the terephthalic acid, and the addition amount of the stabilizer is 0.01-0.05% of the weight of the terephthalic acid;
the catalyst is antimony trioxide, ethylene glycol antimony or antimony acetate, and the stabilizer is triphenyl phosphate, trimethyl phosphate or trimethyl phosphite.
The invention also provides a method for preparing the surfboard canvas, which comprises the steps of carrying out solid-phase polycondensation tackifying, melting, metering, extruding, cooling, oiling, stretching, heat setting and winding on the modified polyester to obtain the polyester industrial yarns, weaving the polyester industrial yarns to form the reinforcing layer, respectively bonding the reinforcing layer with the two end surfaces of the base layer, and then carrying out coating finishing to form the functional layer to obtain the surfboard canvas;
during cooling, the longitudinal height is kept unchanged, the cross-sectional area of the slow cooling chamber is increased, and meanwhile, the slow cooling chamber keeps the plate surface temperature of the spinneret plate in a heat preservation mode;
the oil agent for oiling contains crown ether, the content of the crown ether is 67.30-85.58 wt%, the content of the crown ether in the oil agent needs to be kept within a certain range, the oil agent with low viscosity, good heat resistance and high oil film strength cannot be prepared if the addition amount of the crown ether is too low, and other performance indexes of the oil agent can be influenced if the addition amount of the crown ether is too high;
crown ethers are heterocyclic organic compounds containing a plurality of ether groups. The wetting ability of the crown ether surfactant is larger than that of a corresponding open-chain compound, the crown ether has better solubilization, the solubility of the salt compound in the organic compound is lower, but the solubility of the organic matter of the salt compound is improved along with the addition of the crown ether. The common polyester compounds or polyethers in the oil agent have larger intermolecular action due to larger molecular weight and the action of hydrogen bonds, and show larger kinematic viscosity, and after the crown ether is added, the crown ether can be well compatible in the polyester compounds or polyether oil agent system, enters between polyester compounds or polyether molecular chains, shields the acting force between the molecular chains, and thus the viscosity of the oil agent system is reduced. Meanwhile, the antistatic agent of the chemical fiber oiling agent is mainly divided into anionic surfactant, cationic surfactant and amphoteric surfactant, most of which contain metal ions or exist in the form of salt, so that the compatibility of the antistatic agent and polyester compounds or polyethers in the oiling agent is ensured, and the addition of the crown ether improves the compatibility of the antistatic agent and the polyester compounds or polyethers due to the salt dissolution effect, thereby improving the strength of an oiling agent oil film and having great significance on the stability of spinning and the product holding capacity. Indexes of the oil agent are reflected by a comprehensive factor, so that a certain restriction is provided for the addition amount of crown ether, the advantages of heat resistance and oil film strength of the oil agent are not reflected sufficiently when the addition amount is too low, and other indexes are limited when the addition amount is too much.
When the oil agent is used, the oil agent is prepared into an emulsion with the concentration of 13-18 wt% by using water.
As a preferred technical scheme:
the method is characterized in that the intrinsic viscosity of the modified polyester after solid-phase polycondensation and tackifying is 1.0-1.2 dL/g; the intrinsic viscosity is a representation mode of molecular weight, the intrinsic viscosity is too high, the subsequent processing temperature is increased, and the product is easy to be thermally degraded; if the intrinsic viscosity is too low, the required strength and performance are difficult to achieve;
the cross section area of the slow cooling chamber is increased, namely that the cross section of the slow cooling chamber is changed from a circle to a rectangle on the premise that a spinneret plate connected with the slow cooling chamber is kept unchanged, the slow cooling chamber in the prior art is cylindrical, the cross section of the slow cooling chamber is circular, and the rectangular area is greatly increased relative to the circular area under the condition that the spinneret plate connected with the slow cooling chamber is kept unchanged, so that the volume of the slow cooling chamber is increased by about 50%, and the dissipation speed and the quantity of oligomers (associated with spinning) are greatly improved;
the slow cooling chamber is formed by enclosing a heat insulation plate and spacers, the heat insulation plate is embedded and hung at the bottom of the spinning box body, a hollow chamber I is formed in the heat insulation plate, the spacers are inserted into the hollow chamber I to divide the heat insulation plate into a plurality of slow cooling chambers, a spinneret plate is arranged in each slow cooling chamber, the number of the spindle is distinguished by inserting the spacers, and mutual interference of silicon oil sprays during plate cleaning is avoided;
the heat insulation plate is a stainless steel plate filled with heat insulation materials capable of resisting temperature of more than 400 ℃, the thickness of the heat insulation plate is 30-50 mm, the wall thickness of the stainless steel plate is 0.9-1.5 mm, the wall thickness of the stainless steel plate is as small as possible on the premise of ensuring no deformation, and the self heat absorption capacity and the load of a box body heating medium are reduced;
the heat-insulating material is rock wool or ceramic fiber, the heat-insulating material is not limited to the two materials, and other materials with similar functions can also be suitable for the invention;
the thickness of the spacer is 1-3 mm, and the thickness of the spacer is as thin as possible under the condition of ensuring the strength;
the plurality of spinneret plates in the hollow cavity I are circular spinneret plates, the diameters of the plurality of spinneret plates are the same, and the circle centers of the plurality of spinneret plates are positioned on the same straight line and are closely adjacent;
the cross section of the hollow cavity I is rectangular, the side parallel to the connection line of the circle centers of the plurality of spinneret plates is a long side, and the side perpendicular to the long side is a short side;
the length of the long side is 1.2 times of the sum of the diameters of the spinneret plates, and the length of the short side is 1.7 times of the diameter of the spinneret plate.
According to the method, the heat insulation plate is superposed below the heat insulation plate, the material of the heat insulation plate is the same as that of the heat insulation plate, the heat insulation plate is internally provided with the hollow cavity II, and the cross sections of the hollow cavity II and the hollow cavity I are the same in shape;
in the position where the hollow cavity II is communicated with the hollow cavity I, two edges of the cross section of the hollow cavity II coincide with two short edges of the cross section of the hollow cavity I respectively, and the length of the two edges is larger than the two short edges, so that the hollow cavity II and the hollow cavity I form a step after the thermal insulation plate and the thermal insulation plate are stacked, and oligomers are easy to diffuse;
the thickness of the heat insulation plate is 25-45 mm.
According to the method, the thermal weight loss of the oil agent after the oil agent is heated and treated at 200 ℃ for 2h is less than 15 wt%, the crown ether has a higher volatile point and excellent heat-resistant stability, and the heat-resistant performance of the oil agent introduced with the crown ether is also remarkably improved;
the kinematic viscosity of the oil agent is 27.5-30.1 mm at the temperature of (50 +/-0.01) ° C2The kinematic viscosity of the oil agent prepared from water into 10 wt% emulsion is 0.93-0.95 mm2The crown ether can reduce the viscosity of the oil agent mainly because the crown ether has lower viscosity and is a bead-shaped micromolecule, and after the crown ether is introduced into the oil agent system, the crown ether can be well compatible in the polyester compound or polyether compound oil agent system and simultaneously enters between molecular chains of the polyester compound or polyether compound to shield the acting force between the molecular chains, so that the viscosity of the oil agent system is reduced;
the oil film strength of the oil agent is 121-127N, the oil film strength of the oil agent in the prior art is low and is generally about 110N, the main reason is that most of antistatic agents of the chemical fiber oil agent contain metal ions or exist in the form of salt, the compatibility of the antistatic agents and polyester compounds or polyether compounds in the oil agent is poor, and the crown ether can improve the oil film strength is mainly that salt solution effect can be generated after the crown ether is added, so that the compatibility of the antistatic agents and the polyester compounds or polyether compounds is improved, and the oil film strength of the oil agent is further improved;
the surface tension of the oil agent is 23.2-26.8 cN/cm, and the specific resistance is 1.0 x 108~1.8×108Ω·cm;
After oiling, the static friction coefficient between the fibers is 0.250-0.263, and the dynamic friction coefficient is 0.262-0.273;
after oiling, the static friction coefficient between the fiber and the metal is 0.202-0.210, and the dynamic friction coefficient is 0.320-0.332;
the crown ether is 2-hydroxymethyl-12-crown-4, 15-crown ether-5 or 2-hydroxymethyl-15-crown-5;
the oil agent also contains mineral oil, phosphate potassium salt, trimethylolpropane laurate and alkyl sodium sulfonate;
the mineral oil is one of 9# to 17# mineral oil;
the phosphate potassium salt is dodecyl phosphate potassium salt, isomeric tridecanol polyoxyethylene ether phosphate potassium salt or dodecatetradecanol phosphate potassium salt;
the sodium alkyl sulfonate is sodium dodecyl sulfonate, sodium pentadecyl sulfonate or sodium hexadecyl sulfonate;
the preparation method of the oil agent comprises the following steps: uniformly mixing crown ether, phosphate potassium salt, trimethylolpropane laurate and sodium alkyl sulfonate, adding the mixture into mineral oil, and uniformly stirring to obtain an oil agent; the addition amount of each component is as follows according to the parts by weight:
the mixing is carried out at normal temperature, the stirring temperature is 40-55 ℃, and the stirring time is 1-3 h.
According to the method, the spinning process parameters of the polyester industrial yarns are as follows:
the technological parameters of stretching and heat setting are as follows:
the invention mechanism is as follows:
in organic compounds, the angle between two chemical bonds formed by the same atom in a molecule is called the bond angle, which is usually expressed in degrees, and the electronegativity of the central atom and the coordinating atom in the molecule of the organic compound affects the bond angle of the molecule. When the electronegativity of the coordinating atom bonded to the central atom is increased, the electron-withdrawing ability of the coordinating atom is increased, the bonding electron pair moves toward the ligand and is farther away from the central atom, so that the bond pairs are closer to each other due to the decrease in repulsive force, and the bond angle is decreased, and conversely, when the electronegativity of the coordinating atom bonded to the central atom is decreased, the electron-donating ability of the coordinating atom is increased, the bonding electron pair moves toward the central atom and is closer to the central atom, so that the bond pairs are farther away from each other due to the increase in repulsive force, and the bond angle is increased.
According to Pauling electronegativity scale, the electronegativity of C, H and O atoms are 2.55, 2.20 and 3.44, respectively, and according to valence electron energy equilibrium theory, the calculation formula of the group electronegativity is shown as follows:
in the formula, xiIs the electronegativity of the neutral atom of the i atom before bonding, Nve,iIs the number of valence electrons in the i atom, niIs the number of i atoms in the molecule. The calculation steps for the electronegativity of more complex groups are mainly: the electronegativity of the simple group is firstly calculated, then the electronegativity of the more complex group is calculated by taking the simple group as a quasi atom, and the electronegativity of the target group is finally obtained through successive iteration. In calculating the electronegativity of the quasi-atom, the valence electron that is not bonded in the radical atom (for example, the radical atom of the group-OH is an O atom) is regarded asA quasi-atomic valence electron.
In the invention, C atoms are combined with O atoms of hydroxyl groups in dihydric alcohol to form new C-O bonds in ester groups after C-O bonds of carboxyl groups in terephthalic acid are broken, bond angles between C-C bonds formed by the C atoms in the ester groups and C atoms on a benzene ring and the newly formed chemical bonds C-O are recorded as α, the change of the bond angle α influences the ring forming reaction, when α is less than 109 ℃, molecules are easy to form rings, and the ring forming probability of the molecules is reduced along with the increase of α.
In the formula, R1And R2Each independently selected from linear alkylene having 1 to 3 carbon atoms, R3Selected from alkyl with 1-5 carbon atoms, R4Selected from alkyl with 2-5 carbon atoms. The diol structure is introduced with a branched chain structure and a long chain structure, so that the electronegativity of an alkoxy part of the diol structure is weakened, and the electronegativity of a group connected with a carbonyl group in diacid in the diol structure is 2.59-2.79 according to a calculation formula of the electronegativity of the group, and a group-OCH (OCH) group connected with the carbonyl group in the diacid in ethylene glycol2CH2Electronegativity of-was 3.04, so that the alkoxy group was in comparison with-OCH in ethylene glycol2CH2The carbon fiber has stronger electron donating property, so that bond-forming electron pairs on newly formed chemical bond C-O bonds move towards the direction of a central C atom and are closer to the central atom, the bond angles α are larger than 109 degrees due to the increase of repulsive force, the probability of generating linear polymers is increased, the generation of cyclic oligomers is reduced, the phenomena of yarn breakage, uneven thickness and the like are reduced, the influence on mechanical properties such as breaking strength, breaking elongation and the like of fibers is reduced, and the product quality is improved.
The oiling agent disclosed by the invention is an oiling agent with low viscosity, good heat resistance and higher oil film strength. In the prior art, the higher viscosity of the oil agent is mainly due to the fact that the oil agent contains a common polyester compound or polyether compound, the intermolecular action of the compound is larger due to the larger molecular weight and the action of hydrogen bonds, the kinematic viscosity is larger, so that the viscosity of the oil agent is higher, the viscosity of the oil agent can be obviously reduced after crown ether is added, the crown ether is mainly due to the fact that the viscosity of the crown ether is lower and is bead-shaped micromolecule, the crown ether can be well compatible in a polyester compound or polyether oil agent system and simultaneously enters between molecular chains of the polyester compound or polyether compound to shield acting force between the molecular chains, and therefore the viscosity of the oil agent system is reduced. In the prior art, the oil film strength of the oil agent is low mainly because the antistatic agent of the chemical fiber oil agent mostly contains metal ions or exists in the form of salt, so that the compatibility of the antistatic agent and polyester compounds or polyethers in the oil agent is poor, and the crown ether can improve the oil film strength mainly because the crown ether can generate a salt solution effect after being added, so that the compatibility of the antistatic agent and the polyester compounds or polyethers is improved, and the oil film strength of the oil agent is further improved. In addition, the crown ether has a higher volatile point and excellent heat-resistant stability, the heat-resistant performance of the oil agent introduced with the crown ether is also obviously improved, and the processing performance of the fiber is improved because the crown ether has lower viscosity, a higher volatile point, a smaller friction coefficient and excellent heat-resistant stability.
According to the invention, under the condition of keeping the longitudinal height unchanged, the cross section of the slow cooling chamber is changed from the conventional round shape to the rectangular shape, so that the cross section area of the slow cooling chamber is increased, the dissipation space of spinning oligomer is enlarged, and meanwhile, the heat preservation mode of the slow cooling chamber is changed from an active heating type to a non-heating heat preservation type, so that the energy consumption is reduced, and the aggregation number and the hardness degree of the oligomer on a high-temperature spinneret plate are reduced. Through the improvement of the two aspects, the invention greatly prolongs the cleaning period of the fiber with the special-shaped section. In addition, the hollow heat insulation plate can be stacked under the heat insulation plate, so that the hollow cavities in the heat insulation plate and the heat insulation plate can form a step after the heat insulation plate and the heat insulation plate are stacked, on one hand, the length of a windless area is prolonged, on the other hand, the diffusion speed of the oligomer is accelerated, and meanwhile, the heat insulation effect can be achieved.
The addition of the modified polyester reduces the generation of cyclic oligomer, prolongs the service life of the assembly, improves the spinning stability and improves the uniformity of the fiber. In addition, the invention also adopts the oil agent containing crown ether, which increases the stability of spinning, and improves the stability of spinning by cooperating with the modified polyester, thereby improving the quality of fiber. The cross-sectional area of the slow cooling chamber is increased, so that the probability that the diffused oligomer stays on the spinneret plate is reduced, the cleaning period of the spinneret plate is prolonged, and the oligomer in the fiber can be further diffused into the air to be cooperated with the modified polyester, so that the content of the cyclic oligomer in the fiber is reduced, and the performance of the fiber is improved.
Has the advantages that:
(1) the surfboard canvas disclosed by the invention is simple in preparation process and reasonable in flow, and the prepared surfboard canvas is high in breaking strength, good in firmness and extremely wide in market prospect;
(2) according to the preparation method of the surfboard canvas, the cylindrical slow cooling chamber is changed into the rectangular column shape, the dissipation space of spinning oligomers is enlarged, the active heating type slow cooling area is changed into the non-heating heat preservation type, the aggregation number and the hardness degree of the oligomers on a high-temperature spinneret plate are reduced, and the plate cleaning period of fibers with special-shaped cross sections is greatly prolonged;
(3) the preparation method of the surfboard canvas greatly improves the production efficiency, changes the active heating type slow cooling area into a non-heating heat preservation type, reduces the energy consumption, and reduces the power consumption by about 13 percent compared with the traditional spinning box;
(4) according to the preparation method of the surfboard canvas, the oiling agent containing the crown ether used in the oiling process has the characteristics of low viscosity, good heat resistance, high oil film strength, good smoothness and strong antistatic property, and the spinning stability and the fiber processability are improved;
(5) according to the preparation method of the surfboard canvas, the dihydric alcohol with the branched chain is introduced into the modified polyester, so that the bond angle of the polyester molecule is changed, and the generation of cyclic oligomers in the polyester synthesis process is remarkably reduced.
Drawings
FIG. 1 is a schematic view of a prior art cylindrical slow cooling zone heated with a gaseous heating medium;
FIG. 2 is a schematic diagram of a cylindrical slow cooling zone using electric heating in the prior art;
FIG. 3 is a schematic view of a square slow cooling zone of the invention adopting an insulation board for heat preservation;
the method comprises the following steps of 1-spinning beam, 2-gas phase heating medium in the spinning beam, 3-hollow chamber I, 4-electric heater, 5-hollow chamber II, 6-insulation board and 7-insulation board.
Detailed Description
The invention will be further illustrated with reference to specific embodiments. It should be understood that these examples are for illustrative purposes only and are not intended to limit the scope of the present invention. Further, it should be understood that various changes or modifications of the present invention may be made by those skilled in the art after reading the teaching of the present invention, and such equivalents may fall within the scope of the present invention as defined in the appended claims.
Example 1
A preparation method of surfboard canvas comprises the following specific steps:
(1) preparing modified polyester:
(a) performing esterification reaction; preparing terephthalic acid, ethylene glycol and 2-ethyl-2-methyl-1, 3-propanediol with a molar ratio of 1:1.2:0.03 into slurry, adding antimony trioxide and triphenyl phosphate, uniformly mixing, pressurizing in a nitrogen atmosphere to perform esterification reaction, wherein the pressurizing pressure is normal pressure, the esterification reaction temperature is 250 ℃, and the esterification reaction end point is when the distilled amount of water in the esterification reaction reaches 90% of a theoretical value, wherein the adding amount of the antimony trioxide is 0.01% of the weight of the terephthalic acid, the adding amount of the triphenyl phosphate is 0.05% of the weight of the terephthalic acid, and the structural formula of the 2-ethyl-2-methyl-1, 3-propanediol is as follows:
(b) performing polycondensation reaction; after the esterification reaction is finished, starting the polycondensation reaction in the low vacuum stage under the condition of negative pressure, smoothly pumping the pressure from normal pressure to the absolute pressure of 500Pa within 30min, controlling the reaction temperature to be 260 ℃ and the reaction time to be 40min, then continuing to pump the vacuum, and carrying out the polycondensation reaction in the high vacuum stage to further reduce the reaction pressure to the absolute pressure of 100Pa, control the reaction temperature to be 275 ℃ and control the reaction time to be 70min, thus obtaining the modified polyester. Wherein the molecular chain of the modified polyester comprises a terephthalic acid chain segment, a glycol chain segment and a 2-ethyl-2-methyl-1, 3-propanediol chain segment, the content of cyclic oligomer in the modified polyester is 0.6 wt%, the number average molecular weight is 20000, the molecular weight distribution index is 2.0, and the molar content of the 2-ethyl-2-methyl-1, 3-propanediol chain segment in the modified polyester is 3% of the molar content of the terephthalic acid chain segment;
(2) preparing an oiling agent; uniformly mixing 2-hydroxymethyl-12-crown-4 with dodecyl phosphate potassium salt, trimethylolpropane laurate and sodium dodecyl sulfate at normal temperature, adding into No. 9 mineral oil, and uniformly stirring at 40 ℃ for 1h to obtain an oil agent; the addition amount of each component is as follows according to the parts by weight: 2 parts of No. 9 mineral oil; 10 parts of trimethylolpropane laurate; 2-hydroxymethyl-12-crown-490 parts; 8 parts of dodecyl phosphate potassium salt; and 3 parts of sodium dodecyl sulfate. The content of crown ether in the prepared oil agent is 79.6 wt%, the high temperature resistance of the oil agent is excellent, and the thermal weight loss is 14.5 wt% after the oil agent is heated for 2 hours at 200 ℃; the viscosity of the oil agent is low, and the kinematic viscosity is 29.6mm at the temperature of (50 +/-0.01) ° C2(s) a kinematic viscosity of 0.93mm after preparation with water as an emulsion having a concentration of 10% by weight2S; the oil agent has high oil film strength of 125N, surface tension of 24.8cN/cm, and specific resistance of 1.3 × 108Omega cm, coefficient of static friction (mu) between fibres (F/F) after oilings) 0.255, coefficient of dynamic friction (. mu.)d) 0.266, coefficient of static friction (. mu.) between fiber and metal (F/M)s) 0.203, coefficient of dynamic friction (. mu.)d) 0.320, and the prepared oil agent is prepared into an emulsion with the concentration of 15 wt% by using water when in use;
(3) the modified polyester is subjected to solid-phase polycondensation tackifying, melting, metering, extruding, cooling, oiling, stretching, heat setting and winding to prepare the polyester industrial yarn, the polyester industrial yarn is woven to form the reinforcing layer, the reinforcing layer is respectively bonded with two end surfaces of the base layer and then subjected to coating finishing to form the functional layer, and the surfboard canvas is prepared. Wherein the intrinsic viscosity of the modified polyester after solid-phase polycondensation and thickening is 1.02 dL/g. During cooling, the longitudinal height is kept unchanged, the cross-sectional area of the slow cooling chamber is increased, meanwhile, the slow cooling chamber keeps the plate surface temperature of the spinneret plate in a heat preservation mode, the structural schematic diagram of the slow cooling chamber is shown in figure 3, the heat preservation plate 6 is hung at the bottom of the spinning manifold 1 in an embedded mode, a gas-phase heat medium 2 is arranged in the spinning manifold 1, the heat preservation plate 6 is hollow in a shape like a Chinese character 'hui', a hollow chamber I3 is arranged in the hollow chamber I, the cross section of the chamber is rectangular, the side parallel to the circle center connecting line of the spinneret plates is taken as the long side direction, the length of the long side is 1.2 times of the sum of the diameters of the spinneret plates, the direction perpendicular to the long side is taken as the short side direction, the length of the short side is 1.7 times of the diameter of the spinneret plates, a spacer with the thickness of 1mm is inserted into the hollow chamber. The diameters of the spinneret plates are the same, and the centers of the circles of the spinneret plates are positioned on the same straight line and are closely adjacent. The heat insulation board 6 is a stainless steel plate filled with rock wool which can resist the temperature of 400 ℃, the thickness of the heat insulation board 6 is 30mm, and the wall thickness of the stainless steel plate is 0.9 mm. A heat insulation plate 7 with the thickness of 25mm is stacked below the heat insulation plate 6, the material of the heat insulation plate 7 is the same as that of the heat insulation plate 6, a hollow cavity II 5 is formed in the heat insulation plate 7, and the cross sections of the hollow cavity II 5 and the hollow cavity I3 are the same; the long sides of the cross sections of the hollow chamber II 5 and the hollow chamber I3 are the same in length; at the position where the hollow chamber II 5 is communicated with the hollow chamber I3, two edges of the cross section of the hollow chamber II 5 are respectively superposed with two short edges of the cross section of the hollow chamber I3, and the lengths of the two edges are greater than the two short edges. Wherein the rectangular column slow cooling district that corresponds single circular spinneret adopts the heated board to keep warm, the embedded suspension of heated board is in the bottom of spinning box, be equipped with well plenum chamber I in the heated board, the heat insulating board superposes down the heated board, well plenum chamber II has been seted up in the heat insulating board, wherein in the position of well plenum chamber II with well plenum chamber I intercommunication, two limits of well plenum chamber II cross section coincide with two minor faces of well plenum chamber I cross section respectively, and the length on these two limits is greater than two minor faces, cavity chamber II forms a step with well plenum chamber I after the stack of two boards in order to accelerate the oligomer diffusion.
The spinning process parameters of the polyester industrial yarn are shown in the table 1.
The finally prepared surfboard canvas comprises a base layer, enhancement layers symmetrically arranged on two end faces of the base layer and a functional layer arranged on the enhancement layers, wherein the enhancement layers are of a net structure formed by interweaving polyester industrial yarns, the functional layer is of a multilayer structure and comprises a waterproof layer, a radiation-proof layer and a heat-insulating layer, and various performance parameters of the polyester industrial yarns are shown in a table 2.
Example 2
A preparation method of surfboard canvas comprises the following specific steps:
(1) preparing modified polyester:
(a) performing esterification reaction; preparing terephthalic acid, ethylene glycol and 2, 2-diethyl-1, 3-propanediol with a molar ratio of 1:1.3:0.04 into slurry, adding ethylene glycol antimony and trimethyl phosphate, uniformly mixing, and pressurizing in a nitrogen atmosphere to perform esterification reaction, wherein the pressurizing pressure is normal pressure, the esterification reaction temperature is 260 ℃, and the esterification reaction end point is when the water distillation amount in the esterification reaction reaches 91% of a theoretical value, wherein the adding amount of the ethylene glycol antimony is 0.02% of the weight of the terephthalic acid, the adding amount of the trimethyl phosphate is 0.03% of the weight of the terephthalic acid, and the structural formula of the 2, 2-diethyl-1, 3-propanediol is as follows:
(b) performing polycondensation reaction; after the esterification reaction is finished, starting the polycondensation reaction in the low vacuum stage under the condition of negative pressure, smoothly pumping the pressure from normal pressure to absolute pressure of 490Pa within 35min, controlling the reaction temperature to 261 ℃ and the reaction time to 30min, then continuing to pump the vacuum, and carrying out the polycondensation reaction in the high vacuum stage, so that the reaction pressure is further reduced to absolute pressure of 100Pa, the reaction temperature is 277 ℃ and the reaction time is 85min, thus obtaining the modified polyester. Wherein the molecular chain of the modified polyester comprises a terephthalic acid chain segment, a glycol chain segment and a 2, 2-diethyl-1, 3-propanediol chain segment, the content of cyclic oligomer in the modified polyester is 0.6 wt%, the number average molecular weight is 27000, the molecular weight distribution index is 1.8, and the molar content of the 2, 2-diethyl-1, 3-propanediol chain segment in the modified polyester is 5% of the molar content of the terephthalic acid chain segment;
(2) preparing an oiling agent; uniformly mixing 15-crown ether-5, isotridecanol polyoxyethylene ether phosphate potassium salt, trimethylolpropane laurate and sodium pentadecylsulfonate at normal temperature, adding into 10# mineral oil, and uniformly stirring at 43 ℃ for 1.5h to obtain an oil agent; the addition amount of each component is as follows according to the parts by weight: 2 parts of No. 10 mineral oil; 15 parts of trimethylolpropane laurate; 15-crown ether-570 parts; 10 parts of isomeric tridecanol polyoxyethylene ether phosphate potassium salt; and 7 parts of sodium pentadecylsulfonate. The prepared oil agent has crown ether content of 67.30 wt%, excellent high temperature resistance, thermal weight loss of 13 wt% after heating treatment at 200 deg.C for 2h, low viscosity, and kinematic viscosity of 28.1mm at (50 + -0.01) ° C2(s) a kinematic viscosity of 0.93mm after preparation with water as an emulsion having a concentration of 10% by weight2(s) 123N, which is a high oil film strength of the oil, 25.1cN/cm, which is a surface tension of the oil, and 1.5X 10 of specific resistance8Omega cm, coefficient of static friction (mu) between fibres (F/F) after oilings) 0.257, coefficient of dynamic friction (. mu.)d) 0.265, coefficient of static friction (. mu.m) between fiber and metal (F/M) after oilings) 0.205, coefficient of dynamic friction (. mu.)d) 0.323, the prepared oil agent is prepared into emulsion with the concentration of 14 weight percent by water when in use;
(3) the modified polyester is subjected to solid-phase polycondensation tackifying, melting, metering, extruding, cooling, oiling, stretching, heat setting and winding to prepare the polyester industrial yarn, the polyester industrial yarn is woven to form the reinforcing layer, the reinforcing layer is respectively bonded with two end surfaces of the base layer and then subjected to coating finishing to form the functional layer, and the surfboard canvas is prepared. Wherein the intrinsic viscosity of the modified polyester after solid-phase polycondensation and thickening is 1.12 dL/g. During cooling, the longitudinal height is kept unchanged, the cross-sectional area of the slow cooling chamber is increased, the temperature of the plate surface of the spinneret plate is kept by the slow cooling chamber in a heat preservation mode, the structure of the slow cooling chamber is basically the same as that of embodiment 1, the difference is that the thickness of the spacer is 2mm, the heat preservation material filled in the heat preservation plate is ceramic fiber, the heat resistance temperature of the heat preservation plate is 405 ℃, the thickness of the heat preservation plate is 40mm, the wall thickness of the stainless steel plate is 1.2mm, and the thickness of the heat preservation plate is 35.
The spinning process parameters of the polyester industrial yarn are shown in the table 1.
The finally prepared surfboard canvas comprises a base layer, enhancement layers symmetrically arranged on two end faces of the base layer and a functional layer arranged on the enhancement layers, wherein the enhancement layers are of a net structure formed by interweaving polyester industrial yarns, the functional layer is of a multilayer structure and comprises a waterproof layer, a radiation-proof layer and a heat-insulating layer, and all performance parameters are shown in table 2.
Example 3
A preparation method of surfboard canvas comprises the following specific steps:
(1) preparing modified polyester:
(a) performing esterification reaction; preparing terephthalic acid, ethylene glycol and 2-butyl-2-ethyl-1, 3-propanediol with a molar ratio of 1:1.4:0.05 into slurry, adding antimony acetate and trimethyl phosphite, uniformly mixing, and then pressurizing in a nitrogen atmosphere to perform esterification reaction, wherein the pressurizing pressure is 0.1MPa, the esterification reaction temperature is 252 ℃, the esterification reaction end point is when the distilled water amount in the esterification reaction reaches 92% of a theoretical value, the adding amount of the antimony acetate is 0.03% of the weight of the terephthalic acid, the adding amount of the trimethyl phosphite is 0.01% of the weight of the terephthalic acid, and the structural formula of the 2-butyl-2-ethyl-1, 3-propanediol is as follows:
(b) performing polycondensation reaction; after the esterification reaction is finished, the polycondensation reaction in the low vacuum stage is started under the condition of negative pressure, the pressure is smoothly pumped from normal pressure to the absolute pressure of 495Pa within 40min, the reaction temperature is 263 ℃, the reaction time is 45min, then continuously vacuumizing, carrying out polycondensation reaction in a high vacuum stage, further reducing the reaction pressure to 95Pa absolute, 278 ℃ reaction temperature and 60min reaction time, preparing modified polyester, wherein the molecular chain of the modified polyester comprises a terephthalic acid chain segment, a glycol chain segment and a 2-butyl-2-ethyl-1, 3-propanediol chain segment, the content of cyclic oligomer in the modified polyester is 0.5 wt%, the number average molecular weight is 21000, the molecular weight distribution index is 2.2, and the molar content of the 2-butyl-2-ethyl-1, 3-propanediol chain segment in the modified polyester is 4% of the molar content of the terephthalic acid chain segment;
(2) preparing an oiling agent; uniformly mixing 2-hydroxymethyl-15-crown-5 with potassium dodecatetradecanol phosphate, trimethylolpropane laurate and sodium pentadecylsulfonate at normal temperature, adding into No. 11 mineral oil, and uniformly stirring at 48 ℃ for 3h to obtain an oil solution; the addition amount of each component is as follows according to the parts by weight: 8 parts of No. 11 mineral oil; 10 parts of trimethylolpropane laurate; 2-hydroxymethyl-15-crown-585 parts; 11 parts of potassium dodecatetradecanol phosphate; 5 parts of sodium pentadecylsulfonate. The prepared oil agent has crown ether content of 70.83 wt%, excellent high temperature resistance, thermal weight loss of 11 wt% after heating treatment at 200 deg.C for 2h, low viscosity, and kinematic viscosity of 30.1mm at (50 + -0.01) ° C2(s) a kinematic viscosity of 0.94mm after preparation with water as an emulsion having a concentration of 10% by weight2The oil film strength of the oil agent is higher and is 125N. The surface tension of the oil agent was 23.2cN/cm, and the specific resistance was 1.8X 108Omega cm, coefficient of static friction (mu) between fibres (F/F) after oilings) 0.250, coefficient of dynamic friction (. mu.)d) 0.272, coefficient of static friction (. mu.) between fiber and metal (F/M) after oilings) 0.209, coefficient of dynamic friction (. mu.)d) 0.329, and the prepared oil agent is prepared into an emulsion with the concentration of 15 wt% by using water when in use;
(3) the modified polyester is subjected to solid-phase polycondensation tackifying, melting, metering, extruding, cooling, oiling, stretching, heat setting and winding to prepare the polyester industrial yarn, the polyester industrial yarn is woven to form the reinforcing layer, the reinforcing layer is respectively bonded with two end surfaces of the base layer and then subjected to coating finishing to form the functional layer, and the surfboard canvas is prepared. Wherein the intrinsic viscosity of the modified polyester after solid-phase polycondensation and thickening is 1.10 dL/g. During cooling, the longitudinal height is kept unchanged, the cross-sectional area of the slow cooling chamber is increased, the temperature of the plate surface of the spinneret plate is kept by the slow cooling chamber in a heat preservation mode, the structure of the slow cooling chamber is basically the same as that of embodiment 1, the difference is that the thickness of the spacer is 3mm, the heat preservation material filled in the heat preservation plate is rock wool, the heat resistance temperature of the heat preservation plate is 410 ℃, the thickness of the heat preservation plate is 50mm, the wall thickness of the stainless steel plate is 1.5mm, and the thickness of the heat preservation plate is.
The spinning process parameters of the polyester industrial yarn are shown in the table 1.
The finally prepared surfboard canvas comprises a base layer, enhancement layers symmetrically arranged on two end faces of the base layer and a functional layer arranged on the enhancement layers, wherein the enhancement layers are of a net structure formed by interweaving polyester industrial yarns, the functional layer is of a multilayer structure and comprises a waterproof layer, a radiation-proof layer and a heat-insulating layer, and all performance parameters are shown in table 2.
Example 4
A preparation method of surfboard canvas comprises the following specific steps:
(1) preparing modified polyester:
(a) preparing 3, 3-diethyl-1, 5-pentanediol; reacting 3, 3-diethyl-propionaldehyde, acetaldehyde and triethylamine for 20min at 90 ℃ under nitrogen atmosphere, adding the concentrated solution into a hydrogenation reactor with a Raney nickel catalyst, reacting at the hydrogen pressure of 2.914MPa and the temperature of 100 ℃, cooling after the reaction is finished, separating out the catalyst, treating the solution with ion exchange resin, evaporating water under reduced pressure, separating and purifying to obtain 3, 3-diethyl-1, 5-pentanediol, wherein the structural formula of the 3, 3-diethyl-1, 5-pentanediol is as follows:
(b) performing esterification reaction; preparing terephthalic acid, ethylene glycol and 3, 3-diethyl-1, 5-pentanediol with the molar ratio of 1:1.5:0.06 into slurry, adding antimony trioxide and triphenyl phosphate, uniformly mixing, pressurizing in a nitrogen atmosphere to perform esterification reaction, wherein the pressurizing pressure is 0.3MPa, the temperature of the esterification reaction is 255 ℃, and the end point of the esterification reaction is determined when the distilled amount of water in the esterification reaction reaches 95% of a theoretical value, wherein the adding amount of the antimony trioxide is 0.04% of the weight of the terephthalic acid, and the adding amount of the triphenyl phosphate is 0.01% of the weight of the terephthalic acid;
(c) performing polycondensation reaction; after the esterification reaction is finished, the polycondensation reaction in the low vacuum stage is started under the condition of negative pressure, the pressure is stably pumped from normal pressure to the absolute pressure of 400Pa within 50min, the reaction temperature is 265 ℃, the reaction time is 33min, then continuously vacuumizing, carrying out polycondensation reaction in a high vacuum stage, further reducing the reaction pressure to 90Pa absolute, the reaction temperature is 280 ℃, the reaction time is 50min, preparing modified polyester, wherein the molecular chain of the modified polyester comprises a terephthalic acid chain segment, an ethylene glycol chain segment and a 3, 3-diethyl-1, 5-pentanediol chain segment, the content of cyclic oligomers in the modified polyester is 0.2 wt%, the number average molecular weight is 23000, the molecular weight distribution index is 1.9, and the molar content of the 3, 3-diethyl-1, 5-pentanediol chain segment in the modified polyester is 3.5% of the molar content of the terephthalic acid chain segment;
(2) preparing an oiling agent; uniformly mixing 2-hydroxymethyl-12-crown-4 with dodecyl phosphate potassium salt, trimethylolpropane laurate and sodium hexadecylsulfonate at normal temperature, adding into 12# mineral oil, and uniformly stirring at 40 ℃ for 2.5h to obtain an oil agent; the addition amount of each component is as follows according to the parts by weight: 5 parts of No. 12 mineral oil; 2-hydroxymethyl-12-crown-495 parts; 9 parts of dodecyl phosphate potassium salt; and 2 parts of sodium hexadecyl sulfonate. The prepared oil agent has crown ether content of 85.58 wt%, excellent high temperature resistance, thermal weight loss of 9 wt% after heating treatment at 200 deg.C for 2h, low viscosity, and kinematic viscosity of 29.5mm at (50 + -0.01) ° C2(s) a kinematic viscosity of 0.93mm after preparation with water as an emulsion having a concentration of 10% by weight2(s) the oil film strength of the oil agent is high and is 121N, the surface tension of the oil agent is 24.3cN/cm, and the specific resistance is 1.0X 108Omega cm, coefficient of static friction (mu) between fibres (F/F) after oilings) 0.260, coefficient of dynamic friction (. mu.)d) 0.263, coefficient of static friction (. mu.m) between fiber and metal (F/M) after oilings) 0.202, coefficient of dynamic friction (. mu.)d) 0.330, and the prepared oil agent is prepared into emulsion with the concentration of 18 wt% by using water when in use;
(3) the modified polyester is subjected to solid-phase polycondensation tackifying, melting, metering, extruding, cooling, oiling, stretching, heat setting and winding to prepare the polyester industrial yarn, the polyester industrial yarn is woven to form the reinforcing layer, the reinforcing layer is respectively bonded with two end surfaces of the base layer and then subjected to coating finishing to form the functional layer, and the surfboard canvas is prepared. Wherein the intrinsic viscosity of the modified polyester after solid-phase polycondensation and thickening is 1.18 dL/g. During cooling, the longitudinal height is kept unchanged, the cross-sectional area of the slow cooling chamber is increased, the temperature of the plate surface of the spinneret plate is kept by the slow cooling chamber in a heat preservation mode, the structure of the slow cooling chamber is basically the same as that of the slow cooling chamber in embodiment 1, the difference is that the thickness of the spacer is 1.5mm, the heat preservation material filled in the heat preservation plate is ceramic fiber, the heat resistance temperature of the heat preservation plate is 402 ℃, the thickness of the heat preservation plate is 35mm, the wall thickness of the stainless steel plate is 1.0mm, and the thickness of the.
The spinning process parameters of the polyester industrial yarn are shown in the table 1.
The finally prepared surfboard canvas comprises a base layer, enhancement layers symmetrically arranged on two end faces of the base layer and a functional layer arranged on the enhancement layers, wherein the enhancement layers are of a net structure formed by interweaving polyester industrial yarns, the functional layer is of a multilayer structure and comprises a waterproof layer, a radiation-proof layer and a heat-insulating layer, and all performance parameters are shown in table 2.
Example 5
A preparation method of surfboard canvas comprises the following specific steps:
(1) preparing modified polyester:
(a) preparing 4, 4-diethyl-1, 7-heptanediol; reacting 4, 4-diethyl-butyraldehyde, propionaldehyde and triethylamine for 20min at 92 ℃ under nitrogen atmosphere, then adding the concentrated solution into a hydrogenation reactor with a Raney nickel catalyst, reacting at the hydrogen pressure of 2.914MPa and the temperature of 100 ℃, cooling after the reaction is finished, separating out the catalyst, treating the solution with ion exchange resin, evaporating water under reduced pressure, separating and purifying to obtain 4, 4-diethyl-1, 7-heptanediol, wherein the structural formula of the 4, 4-diethyl-1, 7-heptanediol is as follows:
(b) performing esterification reaction; preparing terephthalic acid, ethylene glycol and 4, 4-diethyl-1, 7-heptanediol with a molar ratio of 1:1.6:0.03 into slurry, adding ethylene glycol antimony and trimethyl phosphate, uniformly mixing, and pressurizing in a nitrogen atmosphere to perform esterification reaction, wherein the pressurizing pressure is normal pressure, the esterification reaction temperature is 257 ℃, and the esterification reaction end point is when the water distillation amount in the esterification reaction reaches 92% of a theoretical value, wherein the adding amount of the ethylene glycol antimony is 0.05% of the weight of the terephthalic acid, and the adding amount of the trimethyl phosphate is 0.04% of the weight of the terephthalic acid;
(c) performing polycondensation reaction; after the esterification reaction is finished, the polycondensation reaction in the low vacuum stage is started under the condition of negative pressure, the pressure is stably pumped from normal pressure to the absolute pressure of 450Pa within 33min, the reaction temperature is 270 ℃, the reaction time is 30min, then continuously vacuumizing, carrying out polycondensation reaction in a high vacuum stage, further reducing the reaction pressure to 95Pa absolute, the reaction temperature to 275 ℃, and the reaction time to 60min to obtain modified polyester, wherein the molecular chain of the modified polyester comprises a terephthalic acid chain segment, a glycol chain segment and a 4, 4-diethyl-1, 7-heptanediol chain segment, the content of cyclic oligomers in the modified polyester is 0.5 wt%, the number average molecular weight is 25000, the molecular weight distribution index is 2.1, and the molar content of the 4, 4-diethyl-1, 7-heptanediol chain segment in the modified polyester is 5% of the molar content of the terephthalic acid chain segment.
(2) Preparing an oiling agent; uniformly mixing 15-crown ether-5, isotridecanol polyoxyethylene ether phosphate potassium salt, trimethylolpropane laurate and sodium dodecyl sulfate at normal temperature, adding into 13# mineral oil, and uniformly stirring at 52 ℃ for 2 hours to obtain an oil agent; the addition amount of each component is as follows according to the parts by weight: 10 parts of No. 13 mineral oil; 5 parts of trimethylolpropane laurate; 15-crown ether-570 parts; 8 parts of isomeric tridecanol polyoxyethylene ether phosphate potassium salt; 6 parts of sodium dodecyl sulfate. The prepared oil agent has crown ether content of 70.70 wt%, excellent high temperature resistance, thermal weight loss of 13.5 wt% after heating treatment at 200 ℃ for 2h, low viscosity of the oil agent, and kinematic viscosity of 28.6mm at (50 +/-0.01) ° C2(s) a kinematic viscosity of 0.95mm after preparation with water as an emulsion having a concentration of 10% by weight2(s) 126N, which is a high oil film strength of the oil agent, 24.9cN/cm, which is a surface tension of the oil agent, and 1.2X 10 which is a specific resistance8Omega cm, coefficient of static friction (mu) between fibres (F/F) after oilings) 0.251, coefficient of dynamic friction (. mu.)d) 0.262, coefficient of static friction (. mu.m) between fiber and metal (F/M) after oilings) 0.202, dynamic friction systemNumber (. mu.) ofd) 0.332, and when the prepared oil agent is used, water is used for preparing an emulsion with the concentration of 15 wt%;
(3) the modified polyester is subjected to solid-phase polycondensation tackifying, melting, metering, extruding, cooling, oiling, stretching, heat setting and winding to prepare the polyester industrial yarn, the polyester industrial yarn is woven to form the reinforcing layer, the reinforcing layer is respectively bonded with two end surfaces of the base layer and then subjected to coating finishing to form the functional layer, and the surfboard canvas is prepared. Wherein the intrinsic viscosity of the modified polyester after solid-phase polycondensation and thickening is 1.0 dL/g. During the cooling, keep vertical height unchangeable, increase the cross-sectional area of slow cooling cavity, the slow cooling cavity adopts the heat retaining mode to keep the face temperature of spinneret simultaneously, and slow cooling cavity structure is the same basically with embodiment 1, and the difference lies in that it only has the heated board, does not superpose the heat insulating board under the heated board.
The spinning process parameters of the polyester industrial yarn are shown in the table 1.
The finally prepared surfboard canvas comprises a base layer, enhancement layers symmetrically arranged on two end faces of the base layer and a functional layer arranged on the enhancement layers, wherein the enhancement layers are of a net structure formed by interweaving polyester industrial yarns, the functional layer is of a multilayer structure and comprises a waterproof layer, a radiation-proof layer and a heat-insulating layer, and all performance parameters are shown in table 2.
Example 6
A preparation method of surfboard canvas comprises the following specific steps:
(1) preparing modified polyester:
(a) preparing 4, 4-di (1-methylethyl) -1, 7-heptanediol; reacting 4, 4-bis (1-methylethyl) -butyraldehyde, propionaldehyde and triethylamine for 20min at 95 ℃ under nitrogen atmosphere, adding the concentrated solution into a hydrogenation reactor with a Raney nickel catalyst, reacting at the hydrogen pressure of 2.914MPa and the temperature of 100 ℃, and cooling to separate out the catalyst after the reaction. After the solution is treated by ion exchange resin, water is evaporated under reduced pressure, and the 4, 4-di (1-methylethyl) -1, 7-heptanediol is separated and purified, wherein the structural formula of the 4, 4-di (1-methylethyl) -1, 7-heptanediol is as follows:
(b) performing esterification reaction; preparing terephthalic acid, ethylene glycol and 4, 4-di (1-methylethyl) -1, 7-heptanediol with the molar ratio of 1:1.7:0.05 into slurry, adding antimony acetate and trimethyl phosphite, uniformly mixing, and pressurizing in a nitrogen atmosphere to perform esterification reaction, wherein the pressurizing pressure is 0.2MPa, the temperature of the esterification reaction is 253 ℃, and the end point of the esterification reaction is determined when the distilled amount of water in the esterification reaction reaches 96% of a theoretical value, wherein the adding amount of the antimony acetate is 0.01% of the weight of the terephthalic acid, and the adding amount of the trimethyl phosphite is 0.05% of the weight of the terephthalic acid;
(c) performing polycondensation reaction; after the esterification reaction is finished, the polycondensation reaction in the low vacuum stage is started under the condition of negative pressure, the pressure is stably pumped from normal pressure to the absolute pressure of 480Pa within 38min, the reaction temperature is 262 ℃, the reaction time is 38min, then continuously vacuumizing, carrying out polycondensation reaction in a high vacuum stage, further reducing the reaction pressure to 98Pa absolute, the reaction temperature to 279 ℃, and the reaction time to 80min to obtain modified polyester, wherein the molecular chain of the modified polyester comprises a terephthalic acid chain segment, a glycol chain segment and a 4, 4-di (1-methylethyl) -1, 7-heptanediol chain segment, the content of cyclic oligomer in the modified polyester is 0.55 wt%, the number average molecular weight is 27000, the molecular weight distribution index is 2.2, and the molar content of the 4, 4-di (1-methylethyl) -1, 7-heptanediol chain segment in the modified polyester is 4% of the molar content of the terephthalic acid chain segment;
(2) preparing an oiling agent; uniformly mixing 2-hydroxymethyl-15-crown-5 with potassium dodecatetradecanol phosphate, trimethylolpropane laurate and sodium pentadecylsulfonate at normal temperature, adding into 14# mineral oil, and uniformly stirring at 55 ℃ for 1h to obtain an oil agent; the addition amount of each component is as follows according to the parts by weight: 3 parts of No. 14 mineral oil; 10 parts of trimethylolpropane laurate; 2-hydroxymethyl-15-crown-575 parts; 14 parts of potassium dodecatetradecanol phosphate; and 7 parts of sodium pentadecylsulfonate. The prepared oil agent has the crown ether content of 68.80 wt%, excellent high temperature resistance, thermal weight loss of 12 wt% after heat treatment at 200 ℃ for 2h, low viscosity, and kinematic viscosity of 27.5mm at (50 +/-0.01) ° C2(s) emulsion with water concentration of 10 wt%The dynamic viscosity is 0.95mm2The oil film strength of the oil agent was 126N. The surface tension of the oil agent was 25.4cN/cm, and the specific resistance was 1.6X 108Omega cm, coefficient of static friction (mu) between fibres (F/F) after oilings) 0.255, coefficient of dynamic friction (. mu.)d) 0.267, coefficient of static friction (. mu.) between fiber and metal (F/M) after oilings) 0.203, coefficient of dynamic friction (. mu.)d) 0.330, and the prepared oil agent is prepared into 16 wt% emulsion by water when in use;
(3) the modified polyester is subjected to solid-phase polycondensation tackifying, melting, metering, extruding, cooling, oiling, stretching, heat setting and winding to prepare the polyester industrial yarn, the polyester industrial yarn is woven to form the reinforcing layer, the reinforcing layer is respectively bonded with two end surfaces of the base layer and then subjected to coating finishing to form the functional layer, and the surfboard canvas is prepared. Wherein the intrinsic viscosity of the modified polyester after solid-phase polycondensation and thickening is 1.0 dL/g. During the cooling, keep vertical height unchangeable, increase the cross-sectional area of slow cooling cavity, the slow cooling cavity adopts the heat retaining mode to keep the face temperature of spinneret simultaneously, and slow cooling cavity structure is the same basically with embodiment 2, and the difference lies in that it only has the heated board, does not superpose the heat insulating board under the heated board.
The spinning process parameters of the polyester industrial yarn are shown in the table 1.
The finally prepared surfboard canvas comprises a base layer, enhancement layers symmetrically arranged on two end faces of the base layer and a functional layer arranged on the enhancement layers, wherein the enhancement layers are of a net structure formed by interweaving polyester industrial yarns, the functional layer is of a multilayer structure and comprises a waterproof layer, a radiation-proof layer and a heat-insulating layer, and all performance parameters are shown in table 2.
Example 7
A preparation method of surfboard canvas comprises the following specific steps:
(1) preparing modified polyester:
(a) preparing 3, 3-dipropyl-1, 5-pentanediol; reacting 3, 3-dipropyl-propionaldehyde, acetaldehyde and triethylamine for 20min at 94 ℃ in nitrogen atmosphere, adding the concentrated solution into a hydrogenation reactor with a Raney nickel catalyst, reacting at the hydrogen pressure of 2.914MPa and the temperature of 100 ℃, cooling after the reaction is finished, and separating out the catalyst. After the solution is treated by ion exchange resin, water is evaporated under reduced pressure, and the 3, 3-dipropyl-1, 5-pentanediol is separated and purified, wherein the structural formula of the 3, 3-dipropyl-1, 5-pentanediol is as follows:
(b) performing esterification reaction; preparing terephthalic acid, ethylene glycol and 3, 3-dipropyl-1, 5-pentanediol with the molar ratio of 1:1.8:0.03 into slurry, adding antimony trioxide and triphenyl phosphate, uniformly mixing, and pressurizing in a nitrogen atmosphere to perform esterification reaction, wherein the pressurizing pressure is 0.3MPa, the esterification reaction temperature is 250 ℃, and the esterification reaction end point is the end point of the esterification reaction when the distilled amount of water in the esterification reaction reaches 90% of a theoretical value, wherein the adding amount of the antimony trioxide is 0.03% of the weight of the terephthalic acid, and the adding amount of the triphenyl phosphate is 0.02% of the weight of the terephthalic acid;
(c) performing polycondensation reaction; after the esterification reaction is finished, the polycondensation reaction in the low vacuum stage is started under the condition of negative pressure, the pressure is smoothly pumped from normal pressure to the absolute pressure of 455Pa within 42min, the reaction temperature is 264 ℃, the reaction time is 45min, then continuously vacuumizing, carrying out polycondensation reaction in a high vacuum stage, further reducing the reaction pressure to 85Pa absolute, the reaction temperature to 285 ℃, the reaction time to 75min, preparing modified polyester, wherein the molecular chain of the modified polyester comprises a terephthalic acid chain segment, an ethylene glycol chain segment and a 3, 3-dipropyl-1, 5-pentanediol chain segment, the content of cyclic oligomers in the modified polyester is 0.45 wt%, the number average molecular weight is 26500, the molecular weight distribution index is 2.2, and the molar content of the 3, 3-dipropyl-1, 5-pentanediol chain segment in the modified polyester is 4.5% of the molar content of the terephthalic acid chain segment.
(2) Preparing an oiling agent; uniformly mixing 15-crown ether-5 with dodecyl phosphate potassium salt, trimethylolpropane laurate and sodium hexadecylsulfonate at normal temperature, adding the mixture into 15# mineral oil, and uniformly stirring the mixture for 2 hours at 41 ℃ to obtain an oil agent; the addition amount of each component is as follows according to the parts by weight: 8 parts of No. 15 mineral oil; 20 parts of trimethylolpropane laurate; 15-crown ether-5100 parts; 15 parts of dodecyl phosphate potassium salt; hexadecyl sulfonic acidAnd 2 parts of sodium. The prepared oil agent has the crown ether content of 68.97 wt%, excellent high temperature resistance, thermal weight loss of 8.5 wt% after 2h of heat treatment at 200 ℃, low viscosity of the oil agent, and kinematic viscosity of 28.4mm at (50 +/-0.01) ° C2(s) a kinematic viscosity of 0.94mm after preparation with water as an emulsion having a concentration of 10% by weight2The oil film strength of the oil agent was high and was 122N. The surface tension of the oil agent was 26.8cN/cm, and the specific resistance was 1.8X 108Omega cm, coefficient of static friction (mu) between fibres (F/F) after oilings) 0.263, coefficient of dynamic friction (. mu.)d) 0.268, coefficient of static friction (. mu.M) between fiber and metal (F/M) after oilings) 0.210, coefficient of dynamic friction (. mu.)d) 0.320, and the prepared oil agent is prepared into an emulsion with the concentration of 17 wt% by using water when in use;
(3) the modified polyester is subjected to solid-phase polycondensation tackifying, melting, metering, extruding, cooling, oiling, stretching, heat setting and winding to prepare the polyester industrial yarn, the polyester industrial yarn is woven to form the reinforcing layer, the reinforcing layer is respectively bonded with two end surfaces of the base layer and then subjected to coating finishing to form the functional layer, and the surfboard canvas is prepared. Wherein the intrinsic viscosity of the modified polyester after solid-phase polycondensation and thickening is 1.2 dL/g. During the cooling, keep vertical height unchangeable, increase the cross-sectional area of slow cooling cavity, the slow cooling cavity adopts the heat retaining mode to keep the face temperature of spinneret simultaneously, and slow cooling cavity structure is the same basically with embodiment 3, and the difference lies in that it only has the heated board, does not superpose the heat insulating board under the heated board.
The spinning process parameters of the polyester industrial yarn are shown in the table 1.
The finally prepared surfboard canvas comprises a base layer, enhancement layers symmetrically arranged on two end faces of the base layer and a functional layer arranged on the enhancement layers, wherein the enhancement layers are of a net structure formed by interweaving polyester industrial yarns, the functional layer is of a multilayer structure and comprises a waterproof layer, a radiation-proof layer and a heat-insulating layer, and all performance parameters are shown in table 2.
Example 8
A preparation method of surfboard canvas comprises the following specific steps:
(1) preparing modified polyester:
(a) preparing 4, 4-dipropyl-1, 7-heptanediol; reacting 4, 4-dipropyl-butyraldehyde, acetaldehyde and triethylamine for 20min at 92 ℃ in nitrogen atmosphere, adding the concentrated solution into a hydrogenation reactor with a Raney nickel catalyst, reacting at the hydrogen pressure of 2.914MPa and the temperature of 100 ℃, cooling after the reaction is finished, and separating out the catalyst. Treating the solution with ion exchange resin, evaporating water under reduced pressure, separating, and purifying to obtain 4, 4-dipropyl-1, 7-heptanediol, wherein the structural formula of the 4, 4-dipropyl-1, 7-heptanediol is as follows:
(b) performing esterification reaction; preparing terephthalic acid, ethylene glycol and 4, 4-dipropyl-1, 7-heptanediol with the molar ratio of 1:1.9:0.04 into slurry, adding ethylene glycol antimony and trimethyl phosphate, uniformly mixing, pressurizing in a nitrogen atmosphere to perform esterification reaction, wherein the pressurizing pressure is 0.3MPa, the esterification reaction temperature is 260 ℃, and the esterification reaction end point is the end point when the distilled amount of water in the esterification reaction reaches 93% of a theoretical value, wherein the adding amount of the ethylene glycol antimony is 0.04% of the weight of the terephthalic acid, and the adding amount of the trimethyl phosphate is 0.03% of the weight of the terephthalic acid;
(c) performing polycondensation reaction; after the esterification reaction is finished, the polycondensation reaction in the low vacuum stage is started under the condition of negative pressure, the pressure is stably pumped from normal pressure to the absolute pressure of 475Pa within 45min, the reaction temperature is 265 ℃, the reaction time is 48min, then continuously vacuumizing, carrying out polycondensation reaction in a high vacuum stage, further reducing the reaction pressure to 88Pa absolute, 283 ℃ reaction temperature, and 80min reaction time to obtain modified polyester, wherein the molecular chain of the modified polyester comprises a terephthalic acid chain segment, a glycol chain segment and a 4, 4-dipropyl-1, 7-heptanediol chain segment, the content of cyclic oligomer in the modified polyester is 0.6 wt%, the number average molecular weight is 23000, the molecular weight distribution index is 2.0, and the molar content of the 4, 4-dipropyl-1, 7-heptanediol chain segment in the modified polyester is 3% of the molar content of the terephthalic acid chain segment;
(2) preparing an oiling agent; 2-hydroxymethyl-12-crown-4 is mixed with potassium dodecatetradecyl phosphate, trimethylolpropane laurate and pentadecylSodium sulfonate is uniformly mixed at normal temperature and then added into No. 16 mineral oil, and the mixture is uniformly stirred for 3 hours at 45 ℃ to obtain an oil agent; the addition amount of each component is as follows according to the parts by weight: 9 parts of No. 16 mineral oil; 2-hydroxymethyl-12-crown-480 parts; 12 parts of potassium dodecatetradecanol phosphate; 5 parts of sodium pentadecylsulfonate. The prepared oil agent has crown ether content of 83.33 wt%, excellent high temperature resistance, thermal weight loss of 14 wt% after heating treatment at 200 deg.C for 2h, low viscosity of the oil agent, and kinematic viscosity of 30.0mm at (50 + -0.01) ° C2(s) a kinematic viscosity of 0.93mm after preparation with water as an emulsion having a concentration of 10% by weight2The oil film strength of the oil agent was 127N. The surface tension of the oil agent was 23.5cN/cm, and the specific resistance was 1.5X 108Omega cm, coefficient of static friction (mu) between fibres (F/F) after oilings) 0.262, coefficient of dynamic friction (. mu.)d) 0.273, coefficient of static friction (. mu.M) between fiber and metal (F/M) after oilings) 0.208, coefficient of dynamic friction (. mu.)d) 0.328, and the prepared oil agent is prepared into emulsion with the concentration of 18 wt% by using water when in use;
(3) the modified polyester is subjected to solid-phase polycondensation tackifying, melting, metering, extruding, cooling, oiling, stretching, heat setting and winding to prepare the polyester industrial yarn, the polyester industrial yarn is woven to form the reinforcing layer, the reinforcing layer is respectively bonded with two end surfaces of the base layer and then subjected to coating finishing to form the functional layer, and the surfboard canvas is prepared. Wherein the intrinsic viscosity of the modified polyester after solid-phase polycondensation and thickening is 1.15L/g. During the cooling, keep vertical height unchangeable, increase the cross-sectional area of slow cooling cavity, the slow cooling cavity adopts the heat retaining mode to keep the face temperature of spinneret simultaneously, and slow cooling cavity structure is the same basically with embodiment 4, and the difference lies in that it only has the heated board, does not superpose the heat insulating board under the heated board.
The spinning process parameters of the polyester industrial yarn are shown in the table 1.
The finally prepared surfboard canvas comprises a base layer, enhancement layers symmetrically arranged on two end faces of the base layer and a functional layer arranged on the enhancement layers, wherein the enhancement layers are of a net structure formed by interweaving polyester industrial yarns, the functional layer is of a multilayer structure and comprises a waterproof layer, a radiation-proof layer and a heat-insulating layer, and all performance parameters are shown in table 2.
Example 9
A preparation method of surfboard canvas comprises the following specific steps:
(1) preparing modified polyester:
(a) preparing 4-methyl-4- (1, 1-dimethylethyl) -1, 7-heptanediol; reacting 4-methyl-4- (1, 1-dimethylethyl) -butyraldehyde, propionaldehyde and triethylamine for 20min at 92 ℃ under nitrogen atmosphere, then adding the concentrated solution into a hydrogenation reactor with a Raney nickel catalyst, reacting at the hydrogen pressure of 2.914MPa and the temperature of 100 ℃, cooling after the reaction is finished, separating the catalyst out, treating the solution with ion exchange resin, evaporating water under reduced pressure, separating and purifying to obtain 4-methyl-4- (1, 1-dimethylethyl) -1, 7-heptanediol, wherein the structural formula of the 4-methyl-4- (1, 1-dimethylethyl) -1, 7-heptanediol is as follows:
(b) performing esterification reaction; preparing terephthalic acid, ethylene glycol and 4-methyl-4- (1, 1-dimethylethyl) -1, 7-heptanediol with the molar ratio of 1:2.0:0.05 into slurry, adding antimony acetate and trimethyl phosphate, uniformly mixing, pressurizing in a nitrogen atmosphere to perform esterification reaction, wherein the pressurizing pressure is normal pressure MPa, the esterification reaction temperature is 251 ℃, and the esterification reaction end point is determined when the water distillation amount in the esterification reaction reaches 96% of a theoretical value, wherein the adding amount of the antimony acetate is 0.05% of the weight of the terephthalic acid, and the adding amount of the trimethyl phosphate is 0.04% of the weight of the terephthalic acid;
(c) performing polycondensation reaction; after the esterification reaction is finished, starting the polycondensation reaction in the low vacuum stage under the condition of negative pressure, smoothly pumping the pressure from normal pressure to the absolute pressure of 420Pa within 30min, the reaction temperature is 267 ℃, the reaction time is 50min, then continuing to pump the vacuum, carrying out the polycondensation reaction in the high vacuum stage, further reducing the reaction pressure to the absolute pressure of 80Pa, the reaction temperature is 280 ℃, and the reaction time is 90min, thus obtaining the modified polyester, wherein the molecular chain of the modified polyester comprises a terephthalic acid chain segment, a glycol chain segment and a 4-methyl-4- (1, 1-dimethylethyl) -1, 7-heptanediol chain segment, the content of cyclic oligomer in the modified polyester is 0.25 wt%, the number average molecular weight is 24000, the molecular weight distribution index is 2.2, and the 4-methyl-4- (1, 1-dimethylethyl) -1 in the modified polyester, the molar content of the 7-heptanediol chain segment is 4 percent of the molar content of the terephthalic acid chain segment;
(2) preparing an oiling agent; uniformly mixing 2-hydroxymethyl-15-crown-5 with dodecyl phosphate potassium salt, trimethylolpropane laurate and sodium dodecyl sulfate at normal temperature, and uniformly stirring at 55 ℃ for 3 hours to obtain an oil agent; the addition amount of each component is as follows according to the parts by weight: 15 parts of trimethylolpropane laurate; 2-hydroxymethyl-15-crown-590 parts; 8 parts of dodecyl phosphate potassium salt; 7 parts of sodium dodecyl sulfate. The prepared oil agent has the crown ether content of 81.81 wt%, excellent high temperature resistance, thermal weight loss of 10 wt% after heating treatment at 200 ℃ for 2h, low viscosity of the oil agent, and kinematic viscosity of 29.7mm at (50 +/-0.01) ° C2(s) a kinematic viscosity of 0.94mm after preparation with water as an emulsion having a concentration of 10% by weight2The oil film strength of the oil agent was 126N. The surface tension of the oil agent was 24.8cN/cm, and the specific resistance was 1.8X 108Omega cm, coefficient of static friction (mu) between fibres (F/F) after oilings) 0.250, coefficient of dynamic friction (. mu.)d) 0.264, coefficient of static friction (. mu.m) between fiber and metal (F/M) after oilings) 0.210, coefficient of dynamic friction (. mu.)d) 0.321, when the prepared oil agent is used, water is used to prepare emulsion with the concentration of 14 wt%;
(3) the modified polyester is subjected to solid-phase polycondensation tackifying, melting, metering, extruding, cooling, oiling, stretching, heat setting and winding to prepare the polyester industrial yarn, the polyester industrial yarn is woven to form the reinforcing layer, the reinforcing layer is respectively bonded with two end surfaces of the base layer and then subjected to coating finishing to form the functional layer, and the surfboard canvas is prepared. Wherein the intrinsic viscosity of the modified polyester after solid-phase polycondensation and thickening is 1.09 dL/g. During cooling, the longitudinal height is kept unchanged, the cross-sectional area of the slow cooling chamber is increased, the temperature of the plate surface of the spinneret plate is kept by the slow cooling chamber in a heat preservation mode, the structure of the slow cooling chamber is basically the same as that of embodiment 1, the difference is that the thickness of the spacer is 3mm, the heat preservation material filled in the heat preservation plate is rock wool, the heat resistance temperature of the heat preservation plate is 410 ℃, the thickness of the heat preservation plate is 50mm, the wall thickness of the stainless steel plate is 1.5mm, and the thickness of the heat preservation plate is.
The spinning process parameters of the polyester industrial yarn are shown in the table 1.
The finally prepared surfboard canvas comprises a base layer, enhancement layers symmetrically arranged on two end faces of the base layer and a functional layer arranged on the enhancement layers, wherein the enhancement layers are of a net structure formed by interweaving polyester industrial yarns, the functional layer is of a multilayer structure and comprises a waterproof layer, a radiation-proof layer and a heat-insulating layer, and all performance parameters are shown in table 2.
Example 10
A preparation method of surfboard canvas comprises the following specific steps:
(1) preparing modified polyester:
(a) preparing 3-methyl-3-pentyl-1, 6-hexanediol; reacting 3-methyl-3-pentyl-propionaldehyde, propionaldehyde and triethylamine for 20min at 90 ℃ under a nitrogen atmosphere, adding the concentrated solution into a hydrogenation reactor with a Raney nickel catalyst, reacting at the hydrogen pressure of 2.914MPa and the temperature of 100 ℃, and cooling to separate out the catalyst after the reaction is finished. After the solution is treated by ion exchange resin, water is evaporated under reduced pressure, and the 3-methyl-3-pentyl-1, 6-hexanediol is obtained through separation and purification, wherein the structural formula of the 3-methyl-3-pentyl-1, 6-hexanediol is as follows:
(b) performing esterification reaction; preparing terephthalic acid, ethylene glycol and 3-methyl-3-pentyl-1, 6-hexanediol with a molar ratio of 1:1.2:0.06 into slurry, adding ethylene glycol antimony and trimethyl phosphite, uniformly mixing, and pressurizing in a nitrogen atmosphere to perform esterification reaction, wherein the pressurizing pressure is 0.1MPa, the esterification reaction temperature is 255 ℃, and the esterification reaction end point is the end point when the distilled water amount in the esterification reaction reaches 92% of a theoretical value, wherein the adding amount of the ethylene glycol antimony is 0.01% of the weight of the terephthalic acid, and the adding amount of the trimethyl phosphite is 0.01% of the weight of the terephthalic acid;
(c) performing polycondensation reaction; after the esterification reaction is finished, the polycondensation reaction in the low vacuum stage is started under the condition of negative pressure, the pressure is stably pumped from normal pressure to the absolute pressure of 490Pa within 50min, the reaction temperature is 269 ℃, the reaction time is 30min, then continuously vacuumizing, carrying out polycondensation reaction in a high vacuum stage, further reducing the reaction pressure to 100Pa absolute, the reaction temperature to 281 ℃, the reaction time to 55min, preparing modified polyester, wherein the molecular chain of the modified polyester comprises a terephthalic acid chain segment, an ethylene glycol chain segment and a 3-methyl-3-amyl-1, 6-hexanediol chain segment, the content of cyclic oligomer in the modified polyester is 0.1 wt%, the number average molecular weight is 20000, the molecular weight distribution index is 1.9, and the molar content of the 3-methyl-3-amyl-1, 6-hexanediol chain segment in the modified polyester is 3.5 percent of the molar content of the terephthalic acid chain segment;
(2) preparing an oiling agent; uniformly mixing 2-hydroxymethyl-15-crown-5 with dodecyl phosphate potassium salt, trimethylolpropane laurate and sodium dodecyl sulfate at normal temperature, and uniformly stirring at 55 ℃ for 3 hours to obtain an oil agent; the addition amount of each component is as follows according to the parts by weight: 15 parts of trimethylolpropane laurate; 2-hydroxymethyl-15-crown-590 parts; 8 parts of dodecyl phosphate potassium salt; 7 parts of sodium dodecyl sulfate. The prepared oil agent has the crown ether content of 81.81 wt%, excellent high temperature resistance, thermal weight loss of 10 wt% after heating treatment at 200 ℃ for 2h, low viscosity of the oil agent, and kinematic viscosity of 29.7mm at (50 +/-0.01) ° C2(s) a kinematic viscosity of 0.94mm after preparation with water as an emulsion having a concentration of 10% by weight2(s) 126N, which is a high oil film strength of the oil agent, 24.8cN/cm, which is a surface tension of the oil agent, and 1.8X 10 which is a specific resistance8Omega cm, coefficient of static friction (mu) between fibres (F/F) after oilings) 0.250, coefficient of dynamic friction (. mu.)d) 0.264, coefficient of static friction (. mu.m) between fiber and metal (F/M) after oilings) 0.210, coefficient of dynamic friction (. mu.)d) 0.321, preparing the prepared oil agent into an emulsion with the concentration of 15 wt% by using water when in use;
(3) the modified polyester is subjected to solid-phase polycondensation tackifying, melting, metering, extruding, cooling, oiling, stretching, heat setting and winding to prepare the polyester industrial yarn, the polyester industrial yarn is woven to form the reinforcing layer, the reinforcing layer is respectively bonded with two end surfaces of the base layer and then subjected to coating finishing to form the functional layer, and the surfboard canvas is prepared. Wherein the intrinsic viscosity of the modified polyester after solid-phase polycondensation and thickening is 1.1 dL/g. During the cooling, keep vertical height unchangeable, increase the cross-sectional area of slow cooling cavity, the slow cooling cavity adopts the heat retaining mode to keep the face temperature of spinneret simultaneously, and slow cooling cavity structure is the same basically with embodiment 1, and the difference lies in that it only has the heated board, does not superpose the heat insulating board under the heated board.
The spinning process parameters of the polyester industrial yarn are shown in the table 1.
The finally prepared surfboard canvas comprises a base layer, enhancement layers symmetrically arranged on two end faces of the base layer and a functional layer arranged on the enhancement layers, wherein the enhancement layers are of a net structure formed by interweaving polyester industrial yarns, the functional layer is of a multilayer structure and comprises a waterproof layer, a radiation-proof layer and a heat-insulating layer, and all performance parameters are shown in table 2.
Example 11
A preparation method of surfboard canvas comprises the following specific steps:
(1) preparing modified polyester:
(a) preparing 3, 3-diamyl-1, 5-pentanediol; reacting 3, 3-diamyl-propionaldehyde, acetaldehyde and triethylamine for 20min at 95 ℃ under nitrogen atmosphere, adding the concentrated solution into a hydrogenation reactor with a Raney nickel catalyst, reacting at the hydrogen pressure of 2.914MPa and the temperature of 100 ℃, and cooling to separate out the catalyst after the reaction is finished. After the solution is treated by ion exchange resin, water is evaporated under reduced pressure, and the 3, 3-diamyl-1, 5-pentanediol is obtained by separation and purification, wherein the structural formula of the 3, 3-diamyl-1, 5-pentanediol is as follows:
(b) performing esterification reaction; preparing terephthalic acid, ethylene glycol and 3, 3-diamyl-1, 5-pentanediol with the molar ratio of 1:2.0:0.03 into slurry, adding antimony acetate and trimethyl phosphite, uniformly mixing, and pressurizing in a nitrogen atmosphere to perform esterification reaction, wherein the pressurizing pressure is 0.2MPa, the esterification reaction temperature is 250 ℃, and the esterification reaction end point is determined when the distilled amount of water in the esterification reaction reaches 97% of a theoretical value, wherein the adding amount of the antimony acetate is 0.01% of the weight of the terephthalic acid, and the adding amount of the trimethyl phosphite is 0.05% of the weight of the terephthalic acid;
(c) performing polycondensation reaction; after the esterification reaction is finished, the polycondensation reaction in the low vacuum stage is started under the condition of negative pressure, the pressure is stably pumped from normal pressure to the absolute pressure of 500Pa within 45min, the reaction temperature is 260 ℃, the reaction time is 40min, then continuously vacuumizing, carrying out polycondensation reaction in a high vacuum stage, further reducing the reaction pressure to 92Pa absolute, the reaction temperature to 277 ℃, reacting for 80min, preparing modified polyester, wherein the molecular chain of the modified polyester comprises a terephthalic acid chain segment, an ethylene glycol chain segment and a 3, 3-diamyl-1, 5-pentanediol chain segment, the content of cyclic oligomer in the modified polyester is 0.35 wt%, the number average molecular weight is 25500, the molecular weight distribution index is 1.8, and the molar content of the 3, 3-diamyl-1, 5-pentanediol chain segment in the modified polyester is 5 percent of the molar content of the terephthalic acid chain segment;
(2) preparing an oiling agent; uniformly mixing 2-hydroxymethyl-12-crown-4 with dodecyl phosphate potassium salt, trimethylolpropane laurate and sodium dodecyl sulfate at normal temperature, adding into No. 9 mineral oil, and uniformly stirring at 40 ℃ for 1h to obtain an oil agent; the addition amount of each component is as follows according to the parts by weight: 2 parts of No. 9 mineral oil; 10 parts of trimethylolpropane laurate; 2-hydroxymethyl-12-crown-490 parts; 8 parts of dodecyl phosphate potassium salt; and 3 parts of sodium dodecyl sulfate. The prepared oil agent has crown ether content of 79.6 wt%, excellent high temperature resistance, thermal weight loss of 14.5 wt% after heating treatment at 200 ℃ for 2h, low viscosity of the oil agent, and kinematic viscosity of 29.6mm at (50 +/-0.01) ° C2(s) a kinematic viscosity of 0.93mm after preparation with water as an emulsion having a concentration of 10% by weight2(s) the oil has high oil film strength of 125N, surface tension of 24.8cN/cm, and specific resistance of 1.3X 108Omega cm, coefficient of static friction (mu) between fibres (F/F) after oilings) 0.255, coefficient of dynamic friction (. mu.)d) 0.266, after oiling, the coefficient of static friction (μ) between fiber and metal (F/M)s) 0.203, coefficient of dynamic friction (. mu.)d) 0.320, the prepared oil agent is prepared into the concentration of water when in use15 wt% of an emulsion;
(3) the modified polyester is subjected to solid-phase polycondensation tackifying, melting, metering, extruding, cooling, oiling, stretching, heat setting and winding to prepare the polyester industrial yarn, the polyester industrial yarn is woven to form the reinforcing layer, the reinforcing layer is respectively bonded with two end surfaces of the base layer and then subjected to coating finishing to form the functional layer, and the surfboard canvas is prepared. Wherein the intrinsic viscosity of the modified polyester after solid-phase polycondensation and thickening is 1.2 dL/g. During the cooling, keep vertical height unchangeable, increase the cross-sectional area of slow cooling cavity, the slow cooling cavity adopts the heat retaining mode to keep the face temperature of spinneret simultaneously, and slow cooling cavity structure is the same basically with embodiment 2, and the difference lies in that it only has the heated board, does not superpose the heat insulating board under the heated board.
The spinning process parameters of the polyester industrial yarn are shown in the table 1.
The finally prepared surfboard canvas comprises a base layer, enhancement layers symmetrically arranged on two end faces of the base layer and a functional layer arranged on the enhancement layers, wherein the enhancement layers are of a net structure formed by interweaving polyester industrial yarns, the functional layer is of a multilayer structure and comprises a waterproof layer, a radiation-proof layer and a heat-insulating layer, and all performance parameters are shown in table 2.
TABLE 1
TABLE 2
Claims (10)
1. A preparation method of surfboard canvas is characterized by comprising the following steps: the modified polyester is subjected to solid-phase polycondensation tackifying, melting, metering, extruding, cooling, oiling, stretching, heat setting and winding to prepare the polyester industrial yarn, the polyester industrial yarn is woven to form an enhancement layer, and the enhancement layer is respectively bonded with two end surfaces of the base layer and then subjected to coating finishing to form a functional layer, so that the surfboard canvas is prepared;
the polyester industrial yarn is made of modified polyester, a molecular chain of the modified polyester comprises a terephthalic acid chain segment, an ethylene glycol chain segment and a dihydric alcohol chain segment with a branched chain, and the structural formula of the dihydric alcohol with the branched chain is as follows:
in the formula, R1And R2Each independently selected from linear alkylene having 1 to 3 carbon atoms, R3Selected from alkyl with 1-5 carbon atoms, R4Selected from alkyl with 2-5 carbon atoms;
during cooling, the longitudinal height is kept unchanged, the cross section area of the slow cooling chamber is increased, and meanwhile, the slow cooling chamber keeps the plate surface temperature of the spinneret plate in a heat preservation mode;
the oiling oil agent contains crown ether, and the content of the crown ether is 67.30-85.58 wt%;
the crown ether is 2-hydroxymethyl-12-crown-4, 15-crown ether-5 or 2-hydroxymethyl-15-crown-5;
when the oil agent is used, the oil agent is prepared into an emulsion with the concentration of 13-18 wt% by using water.
2. The method for preparing surfboard canvas as claimed in claim 1, wherein the inherent viscosity of the modified polyester after solid phase polycondensation and tackifying is 1.0-1.2 dL/g;
the cross section area of the slow cooling chamber is increased by changing the cross section of the slow cooling chamber from a circle to a rectangle on the premise of keeping a spinneret plate connected with the slow cooling chamber unchanged;
the slow cooling chamber is formed by enclosing a heat insulation plate and spacers, the heat insulation plate is embedded and hung at the bottom of the spinning box body, a hollow chamber I is formed in the heat insulation plate, the spacers are inserted into the hollow chamber I to divide the heat insulation plate into a plurality of slow cooling chambers, and a spinneret plate is arranged in each slow cooling chamber;
the heat insulation plate is a stainless steel plate filled with heat insulation materials capable of resisting temperature of more than 400 ℃, the thickness of the heat insulation plate is 30-50 mm, and the wall thickness of the stainless steel plate is 0.9-1.5 mm;
the heat insulation material is rock wool or ceramic fiber;
the thickness of the spacer is 1-3 mm;
the plurality of spinneret plates in the hollow cavity I are circular spinneret plates, the diameters of the plurality of spinneret plates are the same, and the circle centers of the plurality of spinneret plates are positioned on the same straight line and are closely adjacent;
the cross section of the hollow cavity I is rectangular, the side parallel to the connection line of the circle centers of the plurality of spinneret plates is a long side, and the side perpendicular to the long side is a short side;
the length of the long side is 1.2 times of the sum of the diameters of the spinneret plates, and the length of the short side is 1.7 times of the diameter of the spinneret plate.
3. The method for manufacturing surfboard canvas according to claim 2, wherein a heat insulation plate is stacked under the heat insulation plate, the material of the heat insulation plate is the same as that of the heat insulation plate, a hollow chamber II is formed in the heat insulation plate, and the cross section shapes of the hollow chamber II and the hollow chamber I are the same;
at the position where the hollow chamber II is communicated with the hollow chamber I, two edges of the cross section of the hollow chamber II are respectively superposed with two short edges of the cross section of the hollow chamber I, and the lengths of the two edges are greater than the two short edges;
the thickness of the heat insulation plate is 25-45 mm.
4. The method for manufacturing surfboard canvas as claimed in claim 3, wherein the oil agent has a weight loss under heat of less than 15 wt% after heat treatment at 200 ℃ for 2 hours;
the kinematic viscosity of the oil agent is 27.5-30.1 mm at the temperature of (50 +/-0.01) ° C2The kinematic viscosity of the oil agent prepared from water into 10 wt% emulsion is 0.93-0.95 mm2/s;
The oil film strength of the oil agent is 121-127N;
the surface tension of the oil agent is 23.2-26.8 cN/cm, and the specific resistance is 1.0 x 108~1.8×108Ω·cm;
After oiling, the static friction coefficient between the fibers is 0.250-0.263, and the dynamic friction coefficient is 0.262-0.273;
after oiling, the static friction coefficient between the fiber and the metal is 0.202-0.210, and the dynamic friction coefficient is 0.320-0.332;
the oil agent also contains mineral oil, phosphate potassium salt, trimethylolpropane laurate and alkyl sodium sulfonate;
the mineral oil is one of 9# to 17# mineral oil;
the phosphate potassium salt is dodecyl phosphate potassium salt, isomeric tridecanol polyoxyethylene ether phosphate potassium salt or dodecatetradecanol phosphate potassium salt;
the sodium alkyl sulfonate is sodium dodecyl sulfonate, sodium pentadecyl sulfonate or sodium hexadecyl sulfonate;
the preparation method of the oil agent comprises the following steps: uniformly mixing crown ether, phosphate potassium salt, trimethylolpropane laurate and sodium alkyl sulfonate, adding the mixture into mineral oil, and uniformly stirring to obtain an oil agent; the addition amount of each component is as follows according to the parts by weight:
the mixing is carried out at normal temperature, the stirring temperature is 40-55 ℃, and the stirring time is 1-3 h.
6. the method of manufacturing a surfboard canvas as claimed in claim 1, in which: the anti-radiation fabric comprises a base layer, enhancement layers symmetrically arranged on two end faces of the base layer and a functional layer arranged on the enhancement layers, wherein the enhancement layers are of a net structure formed by interweaving polyester industrial yarns, and the functional layer is of a multilayer structure and comprises a waterproof layer, an anti-radiation layer and a heat insulation layer;
the breaking strength of the polyester industrial yarn is more than or equal to 7.5cN/dtex, the central value of the elongation at break is 19.0-21.0%, and the deviation rate of the elongation at break is +/-2.0%.
7. The method for manufacturing surfboard canvas according to claim 6, wherein the fineness of the polyester industrial yarn is 930-1440 dtex, the deviation rate of linear density is ± 1.5%, the CV value of breaking strength is less than or equal to 3.0%, the CV value of elongation at break is less than or equal to 8.0%, the network is 6 ± 2 pieces/m, and the oil content is 0.40-0.80%.
8. A method as claimed in claim 6 or 7, wherein the modified polyester has a cyclic oligomer content of 0.6 wt% or less;
the modified polyester has a number average molecular weight of 20000 to 27000 and a molecular weight distribution index of 1.8 to 2.2;
the molar content of the dihydric alcohol chain segment with the branched chain in the modified polyester is 3-5% of that of the terephthalic acid chain segment;
the dihydric alcohol with a branch chain is 2-ethyl-2-methyl-1, 3-propanediol, 2-diethyl-1, 3-propanediol, 2-butyl-2-ethyl-1, 3-propanediol, 3-diethyl-1, 5-pentanediol, 4-diethyl-1, 7-heptanediol, 4-di (1, -methylethyl) -1, 7-heptanediol, 3-dipropyl-1, 5-pentanediol, 4-dipropyl-1, 7-heptanediol, 4-methyl-4- (1, 1-dimethylethyl) -1, 7-heptanediol, 3-methyl-3-pentyl-1, 6-hexanediol or 3, 3-dipentyl-1, 5-pentanediol.
9. The method of manufacturing a surfboard canvas as claimed in claim 8, wherein the modified polyester is prepared by: uniformly mixing terephthalic acid, ethylene glycol and the dihydric alcohol with the branched chain, and then sequentially carrying out esterification reaction and polycondensation reaction to obtain modified polyester; the modified polyester comprises the following specific preparation steps:
(1) performing esterification reaction;
preparing terephthalic acid, ethylene glycol and the dihydric alcohol with the branched chain into slurry, adding a catalyst and a stabilizer, uniformly mixing, pressurizing in a nitrogen atmosphere to perform esterification reaction, wherein the pressurizing pressure is normal pressure to 0.3MPa, the esterification reaction temperature is 250-260 ℃, and the esterification reaction endpoint is determined when the distilled amount of water in the esterification reaction reaches more than 90% of a theoretical value;
(2) performing polycondensation reaction;
and after the esterification reaction is finished, starting the polycondensation reaction in a low vacuum stage under the negative pressure condition, stably pumping the pressure in the low vacuum stage from normal pressure to below 500Pa in 30-50 min at the reaction temperature of 260-270 ℃ for 30-50 min, then continuously pumping the vacuum to perform the polycondensation reaction in a high vacuum stage, further reducing the reaction pressure to below 100Pa, controlling the reaction temperature to 275-285 ℃ and the reaction time to be 50-90 min, and thus obtaining the modified polyester.
10. The method for manufacturing surfboard canvas according to claim 9, wherein in the step (1), the molar ratio of the terephthalic acid, the ethylene glycol and the branched glycol is 1: 1.2-2.0: 0.03-0.06, the catalyst is added in an amount of 0.01-0.05% by weight of the terephthalic acid, and the stabilizer is added in an amount of 0.01-0.05% by weight of the terephthalic acid;
the catalyst is antimony trioxide, ethylene glycol antimony or antimony acetate, and the stabilizer is triphenyl phosphate, trimethyl phosphate or trimethyl phosphite.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201711342768.7A CN108383984B (en) | 2017-12-14 | 2017-12-14 | Surfboard canvas and preparation method thereof |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201711342768.7A CN108383984B (en) | 2017-12-14 | 2017-12-14 | Surfboard canvas and preparation method thereof |
Publications (2)
Publication Number | Publication Date |
---|---|
CN108383984A CN108383984A (en) | 2018-08-10 |
CN108383984B true CN108383984B (en) | 2020-04-21 |
Family
ID=63076605
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201711342768.7A Active CN108383984B (en) | 2017-12-14 | 2017-12-14 | Surfboard canvas and preparation method thereof |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN108383984B (en) |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2007197887A (en) * | 2005-09-30 | 2007-08-09 | Toray Ind Inc | Polyamide fiber and method for producing the same |
Family Cites Families (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN201648571U (en) * | 2010-04-16 | 2010-11-24 | 绍兴市云翔化纤有限公司 | Slow cooling device of spinning machine |
CN105019244B (en) * | 2015-07-31 | 2017-11-03 | 江苏恒科新材料有限公司 | A kind of high-tenacity polyester yarn fiber and preparation method thereof |
CN106283250B (en) * | 2016-08-31 | 2018-09-14 | 江苏恒力化纤股份有限公司 | A kind of high-strength ultralow miniature polyester industrial fiber of high uniformity and preparation method thereof |
-
2017
- 2017-12-14 CN CN201711342768.7A patent/CN108383984B/en active Active
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2007197887A (en) * | 2005-09-30 | 2007-08-09 | Toray Ind Inc | Polyamide fiber and method for producing the same |
Also Published As
Publication number | Publication date |
---|---|
CN108383984A (en) | 2018-08-10 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN108385189B (en) | Low-shrinkage high-strength polyester industrial yarn and preparation method thereof | |
CN108385194B (en) | Dyeing polyester FDY fiber and preparation method thereof | |
CN108385186B (en) | Polyester POY fiber and preparation method thereof | |
CN108071009B (en) | Method for reducing hairiness of polyester yarn | |
CN107988649B (en) | Superfine terylene low stretch yarn and preparation method thereof | |
CN108130609B (en) | Low-shrinkage polyester industrial yarn and preparation method thereof | |
CN108385195B (en) | Polyester DTY fiber and preparation method thereof | |
CN108130611B (en) | High-elongation low-shrinkage polyester industrial yarn and preparation method thereof | |
CN108130624B (en) | Polyester linen-like different-shrinkage composite yarn and preparation method thereof | |
CN108130614B (en) | Polyester HOY fiber and preparation method thereof | |
CN108035007B (en) | Superfine denier polyester drawn yarn and preparation method thereof | |
CN108130610B (en) | Ultrahigh-strength polyester industrial yarn and preparation method thereof | |
CN108035011B (en) | Melt direct spinning colored polyester fiber and preparation method thereof | |
EP3508625B1 (en) | Different-shrinkage composite yarn and preparation method therefor | |
CN108385418B (en) | High-modulus low-shrinkage hard cord and preparation method thereof | |
CN107904694B (en) | Preparation method of high-strength activated polyester industrial yarn | |
CN108130743B (en) | Ultralow-shrinkage sun-shading cloth and preparation method thereof | |
CN107987260B (en) | Modified polyester and preparation method thereof | |
CN108385187B (en) | High-strength airplane safety belt and preparation method thereof | |
WO2018040691A1 (en) | Multi-hole ultra-soft superfine denier polyester fibre and preparation method therefor | |
CN108385196B (en) | High-strength colored polyester industrial yarn and preparation method thereof | |
CN108130616B (en) | High-strength polyester industrial yarn and preparation method thereof | |
CN108383984B (en) | Surfboard canvas and preparation method thereof | |
CN108385188B (en) | Low-shrinkage activated polyester industrial yarn and preparation method thereof | |
CN108130615B (en) | Method for reducing oligomer content in polyester fiber |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |