CN108382484A - A kind of Multifeet walking robot for flexibly turning to advance - Google Patents
A kind of Multifeet walking robot for flexibly turning to advance Download PDFInfo
- Publication number
- CN108382484A CN108382484A CN201810167135.5A CN201810167135A CN108382484A CN 108382484 A CN108382484 A CN 108382484A CN 201810167135 A CN201810167135 A CN 201810167135A CN 108382484 A CN108382484 A CN 108382484A
- Authority
- CN
- China
- Prior art keywords
- unit
- walking
- passive
- leg
- motor
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 210000002414 leg Anatomy 0.000 claims abstract description 71
- 210000000689 upper leg Anatomy 0.000 claims abstract description 14
- 244000309466 calf Species 0.000 abstract description 5
- 238000010586 diagram Methods 0.000 description 6
- 238000011065 in-situ storage Methods 0.000 description 3
- 238000000034 method Methods 0.000 description 3
- 230000008878 coupling Effects 0.000 description 2
- 238000010168 coupling process Methods 0.000 description 2
- 238000005859 coupling reaction Methods 0.000 description 2
- 230000007123 defense Effects 0.000 description 2
- 210000004394 hip joint Anatomy 0.000 description 2
- 230000006872 improvement Effects 0.000 description 2
- 210000001503 joint Anatomy 0.000 description 2
- 238000004519 manufacturing process Methods 0.000 description 2
- 238000011160 research Methods 0.000 description 2
- 241000238631 Hexapoda Species 0.000 description 1
- 230000006978 adaptation Effects 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 230000007812 deficiency Effects 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 238000001514 detection method Methods 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 230000005021 gait Effects 0.000 description 1
- 230000007774 longterm Effects 0.000 description 1
- 230000007246 mechanism Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 230000008569 process Effects 0.000 description 1
- 230000037078 sports performance Effects 0.000 description 1
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B62—LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
- B62D—MOTOR VEHICLES; TRAILERS
- B62D57/00—Vehicles characterised by having other propulsion or other ground- engaging means than wheels or endless track, alone or in addition to wheels or endless track
- B62D57/02—Vehicles characterised by having other propulsion or other ground- engaging means than wheels or endless track, alone or in addition to wheels or endless track with ground-engaging propulsion means, e.g. walking members
- B62D57/032—Vehicles characterised by having other propulsion or other ground- engaging means than wheels or endless track, alone or in addition to wheels or endless track with ground-engaging propulsion means, e.g. walking members with alternately or sequentially lifted supporting base and legs; with alternately or sequentially lifted feet or skid
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- Transportation (AREA)
- Mechanical Engineering (AREA)
- Manipulator (AREA)
Abstract
本发明属于机器人领域,并公开了一种可灵活转向行进的多足步行机器人,包括躯干单元和多个行走腿单元,行走腿单元包括第一支撑架、第一电机驱动模块、第二支撑架、被动足模块和两个腿部推进模块;腿部推进模块包括第二电机驱动模块、大腿和小腿;所述被动足模块包括被动支撑足和被动转动关节,所述被动支撑足固定安装在所述被动转动关节上,所述被动转动关节可转动安装在其中一个所述小腿的下端。本机器人的第一电机驱动模块可以驱动行走腿单元整体旋转从而改变推进平面,再与被动旋转关节和支撑足结合起来,可实现机器人原地360度灵活转向,转向所需力矩极小仅需克服关节摩擦力,腿部推进模块可以实现机器人的行走推进功能。
The invention belongs to the field of robots, and discloses a multi-legged walking robot that can flexibly turn and move, including a trunk unit and a plurality of walking leg units, and the walking leg unit includes a first support frame, a first motor drive module, and a second support frame , a passive foot module and two leg propulsion modules; the leg propulsion module includes a second motor drive module, a thigh and a calf; the passive foot module includes a passive support foot and a passive rotation joint, and the passive support foot is fixedly installed on the On the passive rotary joint, the passive rotary joint is rotatably mounted on the lower end of one of the lower legs. The first motor drive module of this robot can drive the walking leg unit to rotate as a whole to change the propulsion plane, and then combine with the passive rotating joint and support foot to realize 360-degree flexible turning of the robot on the spot, and the torque required for turning is extremely small and only needs to be overcome The joint friction force and the leg propulsion module can realize the walking propulsion function of the robot.
Description
技术领域technical field
本发明属于机器人领域,更具体地,涉及一种可灵活转向行进的多足步行机器人。The invention belongs to the field of robots, and more particularly relates to a multi-legged walking robot that can flexibly turn and move.
背景技术Background technique
足式机器人因其离散支撑方式,使其具备得天独厚的地形适应性,进而使其成为代替人,扩展人的功能的理想载体。具有非常广阔的应用前景,例如:国防军事、抢险救灾、星球表面探测、助老助残、家居助手、安防、教育娱乐等。多个发达国家都将其作为具有战略意义的前沿技术,纷纷投入巨资,支持开展全面和深入的研究工作。例如美国BostonDynamics公司在美国国防先端研究计划署(DARPA)的长期支持下,在2004年至今,发布了多款性能领先的液压四足、两足及电动四足机器人,展示了一定的复杂环境适应能力。引领着足式机器人发展方向。Due to its discrete support method, the legged robot has unique terrain adaptability, which makes it an ideal carrier to replace and expand human functions. It has very broad application prospects, such as: national defense and military affairs, emergency rescue and relief, planetary surface detection, helping the elderly and the disabled, home assistants, security, education and entertainment, etc. Many developed countries regard it as a cutting-edge technology of strategic significance, and have invested huge sums of money to support comprehensive and in-depth research work. For example, with the long-term support of the US Defense Advanced Research Projects Agency (DARPA), BostonDynamics has released a variety of hydraulic quadruped, biped and electric quadruped robots with leading performance since 2004, demonstrating certain complex environment adaptation. ability. Leading the development direction of legged robots.
在已公布的、技术较为成熟的多足机器人中,腿部结构基本采用哺乳构型或昆虫构型,都存在着转弯不灵活,转弯步态控制复杂的不足。Among the published and relatively mature multi-legged robots, the leg structure basically adopts the breast-feeding configuration or the insect configuration, all of which have the disadvantages of inflexible turning and complex turning gait control.
发明内容Contents of the invention
本发明针对现有足式机器人转向运动性能较低,控制复杂的不足,目的是提供一种结构简单、容易制造和控制、可原地360度灵活转向的多足步行机器人。The present invention aims at the deficiencies of low turning performance and complex control of existing legged robots, and aims to provide a multi-legged walking robot with simple structure, easy manufacture and control, and flexible turning of 360 degrees on the spot.
为实现上述目的,按照本发明,提供了一种可灵活转向行进的多足步行机器人,其特征在于,包括躯干单元和安装在所述躯干单元上的多个行走腿单元,其中,In order to achieve the above object, according to the present invention, a multi-legged walking robot that can flexibly turn and move is provided, which is characterized in that it includes a trunk unit and a plurality of walking leg units installed on the trunk unit, wherein,
每个所述行走腿单元均包括第一支撑架、第一电机驱动模块、第二支撑架、被动足模块和两个腿部推进模块,其中所述第一支撑架安装在所述躯干单元上,所述第一电机驱动模块安装在所述第一支撑架上,该第一电机驱动模块包括第一电机,该第一电机的电机轴竖直设置并且该电机轴上安装所述第二支撑架,两个所述腿部推进模块均安装在所述第二支撑架上;Each of the walking leg units includes a first support frame, a first motor drive module, a second support frame, a passive foot module and two leg propulsion modules, wherein the first support frame is installed on the trunk unit , the first motor drive module is installed on the first support frame, the first motor drive module includes a first motor, the motor shaft of the first motor is vertically arranged and the second support is installed on the motor shaft frame, and the two leg propulsion modules are installed on the second support frame;
每个所述腿部推进模块均包括第二电机驱动模块、大腿和小腿,其中,所述第二电机驱动模块包括第二电机,所述第二电机的电机轴水平设置并且该电机轴上安装所述大腿的上端,所述大腿的下端通过水平设置的第一铰轴铰接所述小腿的上端;Each of the leg propulsion modules includes a second motor drive module, a thigh and a shank, wherein the second motor drive module includes a second motor, the motor shaft of the second motor is horizontally arranged and installed on the motor shaft The upper end of the thigh and the lower end of the thigh are hinged to the upper end of the lower leg through a horizontally arranged first hinge shaft;
两个所述小腿的下端通过水平设置的第二铰轴铰接在一起;The lower ends of the two lower legs are hinged together by a second hinge shaft arranged horizontally;
所述被动足模块包括被动支撑足和被动转动关节,所述被动支撑足固定安装在所述被动转动关节上,所述被动转动关节可转动安装在其中一个所述小腿的下端。The passive foot module includes a passive support foot and a passive rotation joint, the passive support foot is fixedly mounted on the passive rotation joint, and the passive rotation joint is rotatably mounted on the lower end of one of the lower legs.
优选地,所述躯干单元优选由多根板材或管材拼接而成,并且整体呈正方形、长方形、正五边形或正六边形。Preferably, the torso unit is spliced by a plurality of plates or pipes, and is in the shape of a square, a rectangle, a regular pentagon or a regular hexagon as a whole.
优选地,对于长方形的躯干单元而言,设置在所述躯干单元上的行走腿单元的个数为四个,并且每个行走腿单元分别设置在长方形的躯干单元的一个顶点处。Preferably, for the rectangular torso unit, the number of walking leg units arranged on the torso unit is four, and each walking leg unit is respectively arranged at a vertex of the rectangular torso unit.
优选地,对于长方形的躯干单元而言,设置在所述躯干单元上的行走腿单元的个数为六个,并且躯干单元的每条长边上分别设置三个所述行走腿单元。Preferably, for a rectangular torso unit, the number of walking leg units arranged on the torso unit is six, and three walking leg units are respectively arranged on each long side of the torso unit.
优选地,对于正五边形的躯干单元而言,设置在所述躯干单元上的行走腿单元的个数为五个,并且每个行走腿单元分别设置在躯干单元的一个顶点处。Preferably, for a regular pentagonal torso unit, the number of walking leg units arranged on the torso unit is five, and each walking leg unit is respectively arranged at a vertex of the torso unit.
优选地,对于正六边形的躯干单元而言,设置在所述躯干单元上的行走腿单元的个数为六个,并且每个行走腿单元分别设置在躯干单元的一个顶点处。Preferably, for a regular hexagonal torso unit, the number of walking leg units arranged on the torso unit is six, and each walking leg unit is respectively arranged at a vertex of the torso unit.
优选地,所述电机驱动模块还包括安装在所述电机上的编码器和电磁制动器。Preferably, the motor drive module further includes an encoder and an electromagnetic brake installed on the motor.
总体而言,通过本发明所构思的以上技术方案与现有技术相比,能够取得下列有益效果:Generally speaking, compared with the prior art, the above technical solutions conceived by the present invention can achieve the following beneficial effects:
1)第一电机驱动模块可以驱动行走腿单元整体旋转,从而改变推进平面,再与被动旋转关节和被动支撑足结合起来,可实现机器人原地360度灵活转向,转向所需力矩极小仅需克服关节摩擦力,腿部推进模块可以实现机器人的行走推进功能。1) The first motor drive module can drive the walking leg unit to rotate as a whole, thereby changing the propulsion plane, and then combined with the passive rotary joint and passive support foot, it can realize 360-degree flexible steering of the robot in situ, and the torque required for steering is extremely small and only needs Overcoming the joint friction, the leg propulsion module can realize the walking propulsion function of the robot.
2)两个腿部推进模块结合起来使用,电机驱动模块集中在第二支撑架部位,减轻了腿部转动惯量,有利于运动性能提升。2) The two leg propulsion modules are used in combination, and the motor drive module is concentrated on the second support frame, which reduces the moment of inertia of the legs and is conducive to the improvement of sports performance.
3)本发明结构采用模块化设计,简洁,紧凑,制造装配方便;机器人转向控制简单,转向运动性能优越。3) The structure of the present invention adopts a modular design, which is simple, compact, and convenient to manufacture and assemble; the steering control of the robot is simple, and the steering performance is superior.
附图说明Description of drawings
图1是本发明可灵活转向行进的多足步行机器人立体结构示意图;Fig. 1 is a three-dimensional structural schematic diagram of a multi-legged walking robot that can flexibly turn to advance in the present invention;
图2a~图2d是本发明多足步行机器人躯干及腿分布演化示意图;Figures 2a to 2d are schematic diagrams of the distribution evolution of the torso and legs of the multi-legged walking robot of the present invention;
图3a是本发明中单腿结构示意图;Fig. 3a is a schematic diagram of a single-leg structure in the present invention;
图3b是本发明中两个支撑架上安装电机驱动模块的示意图;Fig. 3b is a schematic diagram of installing a motor drive module on two support frames in the present invention;
图4a~图4c是本发明迈步示意图;Fig. 4a~Fig. 4c are the schematic diagrams of the steps of the present invention;
图5a~图5c是本发明转向示意图。5a to 5c are schematic views of the steering of the present invention.
具体实施方式Detailed ways
为了使本发明的目的、技术方案及优点更加清楚明白,以下结合附图及实施例,对本发明进行进一步详细说明。应当理解,此处所描述的具体实施例仅仅用以解释本发明,并不用于限定本发明。此外,下面所描述的本发明各个实施方式中所涉及到的技术特征只要彼此之间未构成冲突就可以相互组合。In order to make the object, technical solution and advantages of the present invention clearer, the present invention will be further described in detail below in conjunction with the accompanying drawings and embodiments. It should be understood that the specific embodiments described here are only used to explain the present invention, not to limit the present invention. In addition, the technical features involved in the various embodiments of the present invention described below can be combined with each other as long as they do not constitute a conflict with each other.
参照各附图,一种可灵活转向行进的多足步行机器人,包括躯干单元100和安装在所述躯干单元100上的多个行走腿单元,其中,Referring to the accompanying drawings, a multi-legged walking robot that can flexibly turn and move includes a trunk unit 100 and a plurality of walking leg units installed on the trunk unit 100, wherein,
每个所述行走腿单元均包括第一支撑架301、第一电机驱动模块302、第二支撑架304、被动足模块和两个腿部推进模块,其中所述第一支撑架301安装在所述躯干单元100上,所述第一电机驱动模块302安装在所述第一支撑架301上,该第一电机驱动模块302包括第一电机,该第一电机的电机轴竖直设置并且该电机轴上安装所述第二支撑架304,两个所述腿部推进模块均安装在所述第二支撑架304上;优选地,第二支撑架304通过旋转轴及联轴器安装在该电机轴上,在第二支撑架304上和旋转轴之间还设置有止推轴承303;Each of the walking leg units includes a first support frame 301, a first motor drive module 302, a second support frame 304, a passive foot module and two leg propulsion modules, wherein the first support frame 301 is installed on the On the torso unit 100, the first motor drive module 302 is installed on the first support frame 301, the first motor drive module 302 includes a first motor, the motor shaft of the first motor is vertically arranged and the motor The second support frame 304 is installed on the shaft, and the two leg propulsion modules are installed on the second support frame 304; preferably, the second support frame 304 is installed on the motor through a rotating shaft and a coupling On the shaft, a thrust bearing 303 is also arranged between the second support frame 304 and the rotating shaft;
每个所述腿部推进模块均包括第二电机驱动模块305、大腿306和小腿307,其中,所述第二电机驱动模块305包括第二电机,所述第二电机的电机轴水平设置并且该电机轴上安装所述大腿306的上端,所述大腿306的下端通过水平设置的第一铰轴铰接所述小腿307的上端;Each of the leg propulsion modules includes a second motor drive module 305, a thigh 306 and a shank 307, wherein the second motor drive module 305 includes a second motor, the motor shaft of the second motor is horizontally arranged and the The upper end of the thigh 306 is installed on the motor shaft, and the lower end of the thigh 306 is hinged to the upper end of the lower leg 307 by a horizontally arranged first hinge shaft;
两个所述小腿307的下端通过水平设置的第二铰轴铰接在一起;The lower ends of the two shanks 307 are hinged together by a second hinge shaft arranged horizontally;
所述被动足模块包括被动支撑足309和被动转动关节308,所述被动支撑足309固定安装在所述被动转动关节308上,所述被动转动关节308可转动安装在其中一个所述小腿307的下端。The passive foot module includes a passive support foot 309 and a passive rotation joint 308, the passive support foot 309 is fixedly mounted on the passive rotation joint 308, and the passive rotation joint 308 is rotatably mounted on one of the lower legs 307 lower end.
进一步,所述躯干单元100由多根板材或管材拼接而成,并且整体呈正方形、长方形、正五边形或正六边形。Further, the torso unit 100 is spliced by a plurality of plates or pipes, and is in the shape of a square, a rectangle, a regular pentagon or a regular hexagon as a whole.
进一步,对于长方形的躯干单元100而言,设置在所述躯干单元100上的行走腿单元的个数为四个,并且每个行走腿单元分别设置在长方形的躯干单元100的一个顶点处。Further, for the rectangular torso unit 100 , the number of walking leg units arranged on the torso unit 100 is four, and each walking leg unit is respectively arranged at a vertex of the rectangular torso unit 100 .
进一步,对于长方形的躯干单元100而言,设置在所述躯干单元100上的行走腿单元的个数为六个,并且躯干单元100的每条长边上分别设置三个所述行走腿单元。图1中的躯干单元100呈长方形,其上设置了六个行走腿单元,分别为第一行走腿单元200、第二行走腿单元300、第三行走腿单元400,第四行走腿单元500,第五行走腿单元600,第六行走腿单元700。Further, for the rectangular torso unit 100 , the number of walking leg units arranged on the torso unit 100 is six, and three walking leg units are respectively arranged on each long side of the torso unit 100 . The trunk unit 100 among Fig. 1 is rectangular, and six walking leg units are arranged on it, are respectively the first walking leg unit 200, the second walking leg unit 300, the third walking leg unit 400, the fourth walking leg unit 500, The 5th walking leg unit 600, the 6th walking leg unit 700.
进一步,对于正五边形的躯干单元100而言,设置在所述躯干单元100上的行走腿单元的个数为五个,并且每个行走腿单元分别设置在躯干单元100的一个顶点处。Further, for the regular pentagonal torso unit 100 , the number of walking leg units arranged on the torso unit 100 is five, and each walking leg unit is respectively arranged at a vertex of the torso unit 100 .
进一步,对于正六边形的躯干单元100而言,设置在所述躯干单元100上的行走腿单元的个数为六个,并且每个行走腿单元分别设置在躯干单元100的一个顶点处。Further, for the regular hexagonal torso unit 100 , the number of walking leg units arranged on the torso unit 100 is six, and each walking leg unit is respectively arranged at a vertex of the torso unit 100 .
进一步,所述电机驱动模块还包括安装在所述电机上的编码器和电磁制动器。Further, the motor drive module further includes an encoder and an electromagnetic brake installed on the motor.
本发明的行走腿单元是串并联结构,髋关节部位(第一支撑架和第二支撑架的部位)有三个主动自由度(每个电机驱动模块有一个旋转自由度),足端一个被动自由度(转动自由度)。两个同轴安装的第二电机可实现推进功能。与现有的机器人机构相比,本发明一改传统的利用侧摆关节转向的方式,使机器人不再有前后左右之分,可原地360度方向行进;采用并联式推进腿结构,电机集中在机器人腿髋关节靠近机身位置,减小了腿部的转动惯量,提高了机器人运动性能。The walking leg unit of the present invention is a series-parallel structure, and the hip joint (the position of the first support frame and the second support frame) has three active degrees of freedom (each motor drive module has a rotational degree of freedom), and one passive degree of freedom at the foot end. degrees (rotational degrees of freedom). Two coaxially mounted second electric motors perform the propulsion function. Compared with the existing robot mechanism, this invention changes the traditional way of using side swing joints to steer, so that the robot no longer has the distinction of front, back, left, and right, and can travel in 360-degree directions on the spot; it adopts a parallel propulsion leg structure, and the motors are centralized At the position where the hip joint of the robot leg is close to the fuselage, the moment of inertia of the leg is reduced, and the kinematic performance of the robot is improved.
所述被动转动关节308主要是由转动轴及止推轴承组成,可保证机器人原地转向时摩擦力小。The passive rotating joint 308 is mainly composed of a rotating shaft and a thrust bearing, which can ensure that the frictional force is small when the robot turns in situ.
本发明的机器人躯干是一个近似等多边形的结构,主要是保证机器人沿360度方向行进时的稳定性。The robot torso of the present invention is an approximate equi-polygonal structure, mainly to ensure the stability of the robot when it travels along a 360-degree direction.
本发明的电机驱动模块可保证结构紧凑、质量轻。The motor drive module of the invention can ensure compact structure and light weight.
本发明的第一支撑架与躯干单元通过螺栓连接。第一电机驱动模块顶端有均布螺栓孔通过螺栓与第一支撑架连接,第一电机驱动模块输出架通过联轴器10与旋转轴20连接,旋转轴20与第一支撑架301通过螺栓固结。第一支撑架301和第二支撑架304通过轴连接部位安装有止推轴承303,这样第一支撑架301垂向受力通过止推轴承303传递到第二支撑架304。第二电机驱动模块通过螺栓与第二支撑架连接。两个第二电机驱动模块的第二电机的电机轴同轴安装,输出架与大腿306通过螺栓连接。大腿306分别与小腿连接,小腿通过被动转动关节与被动支撑足连接。小腿307与在另一端等长连接,小腿307延长部分有一个被动转动关节308,延长部分末端是一个球形足,当落足点在电机轴线上时,小腿307延长部分与轴线重合,也即被动转动关节308与轴线重合,从而保证落足点在转向电机轴线上时原地转向力矩小。The first support frame of the present invention is connected with the trunk unit through bolts. There are evenly distributed bolt holes on the top of the first motor drive module and are connected to the first support frame by bolts, the output frame of the first motor drive module is connected to the rotating shaft 20 through the coupling 10, and the rotating shaft 20 is fixed to the first support frame 301 by bolts. Knot. The first support frame 301 and the second support frame 304 are installed with a thrust bearing 303 through the shaft connection portion, so that the vertical force of the first support frame 301 is transmitted to the second support frame 304 through the thrust bearing 303 . The second motor drive module is connected to the second support frame through bolts. The motor shafts of the second motors of the two second motor drive modules are installed coaxially, and the output frame is connected to the thigh 306 by bolts. The thighs 306 are respectively connected with the lower legs, and the lower legs are connected with the passive support feet through passive rotation joints. The calf 307 is connected with the other end at the same length. The extended part of the calf 307 has a passive rotating joint 308. The end of the extended part is a spherical foot. When the footing point is on the axis of the motor, the extended part of the calf 307 coincides with the axis, that is, passive rotation The joint 308 coincides with the axis, so as to ensure that the in-situ steering moment is small when the foothold is on the axis of the steering motor.
本发明的多足机器人迈步行走过程如图4a~图4c所示:电机驱动模块驱动大腿306转动,从而带动小腿307转动,实现了足端的迈步运动,行进时转向电机处在抱死状态。The walking process of the multi-legged robot of the present invention is shown in Figures 4a to 4c: the motor drive module drives the thigh 306 to rotate, thereby driving the calf 307 to rotate, realizing the stepping movement of the foot end, and the steering motor is in a locked state when moving.
本发明的多足机器人转向示意图如图5a~图5c所示:电机驱动模块带动大腿306支撑架转动,从而改变腿迈步平面。转向可以在足端点抬起的时刻转向,也可以在足端点处在转向驱动电机模块轴线下时,站立在原地转向,由于足端有一个被动旋转关节,所以使转向力矩仅需克服关节摩擦。The steering diagram of the multi-legged robot of the present invention is shown in Figures 5a to 5c: the motor drive module drives the support frame of the thigh 306 to rotate, thereby changing the stepping plane of the legs. Steering can be done when the foot end is lifted, or when the foot end is under the axis of the steering drive motor module, it can be turned while standing. Since the foot end has a passive rotation joint, the steering torque only needs to overcome the joint friction.
本领域的技术人员容易理解,以上所述仅为本发明的较佳实施例而已,并不用以限制本发明,凡在本发明的精神和原则之内所作的任何修改、等同替换和改进等,均应包含在本发明的保护范围之内。It is easy for those skilled in the art to understand that the above descriptions are only preferred embodiments of the present invention, and are not intended to limit the present invention. Any modifications, equivalent replacements and improvements made within the spirit and principles of the present invention, All should be included within the protection scope of the present invention.
Claims (7)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201810167135.5A CN108382484A (en) | 2018-02-28 | 2018-02-28 | A kind of Multifeet walking robot for flexibly turning to advance |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201810167135.5A CN108382484A (en) | 2018-02-28 | 2018-02-28 | A kind of Multifeet walking robot for flexibly turning to advance |
Publications (1)
Publication Number | Publication Date |
---|---|
CN108382484A true CN108382484A (en) | 2018-08-10 |
Family
ID=63069024
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201810167135.5A Pending CN108382484A (en) | 2018-02-28 | 2018-02-28 | A kind of Multifeet walking robot for flexibly turning to advance |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN108382484A (en) |
Cited By (18)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN109773825A (en) * | 2018-12-31 | 2019-05-21 | 南京工程学院 | Robot joint driven in parallel by dual brushless DC motors and its control method |
CN109774811A (en) * | 2018-12-31 | 2019-05-21 | 南京工程学院 | A small biped robot driven by a brushless DC motor and its control method |
CN110027643A (en) * | 2019-05-30 | 2019-07-19 | 贾春平 | Multi-foot robot and its control method |
CN110193848A (en) * | 2019-05-29 | 2019-09-03 | 北京理工大学 | A kind of robot integration driving joint reducing leg rotary inertia |
CN110217311A (en) * | 2019-05-28 | 2019-09-10 | 广东省智能制造研究所 | A kind of quick quadruped robot based on coaxial parallel-connection mechanism |
CN110406611A (en) * | 2019-08-09 | 2019-11-05 | 桂林航天工业学院 | A multi-legged mobile engineering equipment chassis |
CN110466641A (en) * | 2019-07-09 | 2019-11-19 | 深圳市朗驰欣创科技股份有限公司 | Pedipulator and robot |
CN110843953A (en) * | 2019-12-06 | 2020-02-28 | 北京理工大学 | A parallel robot leg with cushioning and boosting functions |
CN111003075A (en) * | 2019-12-16 | 2020-04-14 | 湖北第二师范学院 | A high-bounce compound multi-legged robot |
CN111137441A (en) * | 2020-01-20 | 2020-05-12 | 华南农业大学 | Folding type walking device, field walking frame, unmanned aerial vehicle and walking operation method |
CN111301552A (en) * | 2020-02-26 | 2020-06-19 | 北京理工大学珠海学院 | A robot leg dynamic system and its control method |
CN111391935A (en) * | 2020-03-19 | 2020-07-10 | 上海工程技术大学 | A self-deformable and reconfigurable multi-terrain robot |
CN112092939A (en) * | 2020-07-30 | 2020-12-18 | 北京理工大学 | Bionic robot with multiple motion modes |
CN112092941A (en) * | 2020-07-30 | 2020-12-18 | 北京理工大学 | A parallel leg structure for bionic robot and bionic robot |
CN112124452A (en) * | 2020-10-13 | 2020-12-25 | 济南大学 | A multi-legged walking robot |
CN112193346A (en) * | 2020-11-09 | 2021-01-08 | 大连工业大学 | Parallel four-foot robot dog |
CN112873220A (en) * | 2021-01-08 | 2021-06-01 | 格物创意(深圳)科技有限公司 | Polymorphic STEM educational machine people |
CN116118896A (en) * | 2022-12-07 | 2023-05-16 | 浙江大学 | Service robot chassis and control method thereof |
Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE4441586A1 (en) * | 1994-11-11 | 1996-07-18 | Schroeter Wolfgang Dipl Ing | Walking machine with articulated legs |
CN2582823Y (en) * | 2002-11-14 | 2003-10-29 | 华中科技大学 | Multifeet walking robot |
CN1974300A (en) * | 2006-12-01 | 2007-06-06 | 华中科技大学 | Polypod walking robot capable of being disassembled and reconstructed |
CN101850797A (en) * | 2010-01-07 | 2010-10-06 | 郑州轻工业学院 | A modular multi-legged walking robot that can realize the function conversion of hands and feet |
CN102050156A (en) * | 2009-11-05 | 2011-05-11 | 西北工业大学 | Bionic hopping robot with two degrees of freedom |
CN102092429A (en) * | 2011-03-24 | 2011-06-15 | 天津理工大学 | Two-leg walking mechanism |
CN103481963A (en) * | 2013-09-13 | 2014-01-01 | 北京航空航天大学 | Two-stage buffer foot device applicable to obstacle crossing robot |
WO2016053123A1 (en) * | 2014-09-30 | 2016-04-07 | Ktg Sp. Z O.O. | Robot for over-ceiling space inspection |
CN105752197A (en) * | 2016-04-05 | 2016-07-13 | 重庆大学 | Resilient four-link mechanical leg and test platform thereof |
-
2018
- 2018-02-28 CN CN201810167135.5A patent/CN108382484A/en active Pending
Patent Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE4441586A1 (en) * | 1994-11-11 | 1996-07-18 | Schroeter Wolfgang Dipl Ing | Walking machine with articulated legs |
CN2582823Y (en) * | 2002-11-14 | 2003-10-29 | 华中科技大学 | Multifeet walking robot |
CN1974300A (en) * | 2006-12-01 | 2007-06-06 | 华中科技大学 | Polypod walking robot capable of being disassembled and reconstructed |
CN102050156A (en) * | 2009-11-05 | 2011-05-11 | 西北工业大学 | Bionic hopping robot with two degrees of freedom |
CN101850797A (en) * | 2010-01-07 | 2010-10-06 | 郑州轻工业学院 | A modular multi-legged walking robot that can realize the function conversion of hands and feet |
CN102092429A (en) * | 2011-03-24 | 2011-06-15 | 天津理工大学 | Two-leg walking mechanism |
CN103481963A (en) * | 2013-09-13 | 2014-01-01 | 北京航空航天大学 | Two-stage buffer foot device applicable to obstacle crossing robot |
WO2016053123A1 (en) * | 2014-09-30 | 2016-04-07 | Ktg Sp. Z O.O. | Robot for over-ceiling space inspection |
CN105752197A (en) * | 2016-04-05 | 2016-07-13 | 重庆大学 | Resilient four-link mechanical leg and test platform thereof |
Cited By (23)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN109773825A (en) * | 2018-12-31 | 2019-05-21 | 南京工程学院 | Robot joint driven in parallel by dual brushless DC motors and its control method |
CN109774811A (en) * | 2018-12-31 | 2019-05-21 | 南京工程学院 | A small biped robot driven by a brushless DC motor and its control method |
CN110217311A (en) * | 2019-05-28 | 2019-09-10 | 广东省智能制造研究所 | A kind of quick quadruped robot based on coaxial parallel-connection mechanism |
CN110217311B (en) * | 2019-05-28 | 2024-01-26 | 广东省智能制造研究所 | Agile four-foot robot based on coaxial parallel mechanism |
CN110193848A (en) * | 2019-05-29 | 2019-09-03 | 北京理工大学 | A kind of robot integration driving joint reducing leg rotary inertia |
CN110193848B (en) * | 2019-05-29 | 2021-01-19 | 北京理工大学 | A robot integrated drive joint that reduces the moment of inertia of the legs |
CN110027643A (en) * | 2019-05-30 | 2019-07-19 | 贾春平 | Multi-foot robot and its control method |
CN110466641A (en) * | 2019-07-09 | 2019-11-19 | 深圳市朗驰欣创科技股份有限公司 | Pedipulator and robot |
CN110406611A (en) * | 2019-08-09 | 2019-11-05 | 桂林航天工业学院 | A multi-legged mobile engineering equipment chassis |
CN110843953A (en) * | 2019-12-06 | 2020-02-28 | 北京理工大学 | A parallel robot leg with cushioning and boosting functions |
CN111003075A (en) * | 2019-12-16 | 2020-04-14 | 湖北第二师范学院 | A high-bounce compound multi-legged robot |
CN111137441A (en) * | 2020-01-20 | 2020-05-12 | 华南农业大学 | Folding type walking device, field walking frame, unmanned aerial vehicle and walking operation method |
CN111137441B (en) * | 2020-01-20 | 2024-04-12 | 华南农业大学 | Folding walking device, field walking frame, unmanned aerial vehicle and walking operation method |
CN111301552A (en) * | 2020-02-26 | 2020-06-19 | 北京理工大学珠海学院 | A robot leg dynamic system and its control method |
CN111301552B (en) * | 2020-02-26 | 2022-03-08 | 佛山职业技术学院 | Robot leg power system and control method thereof |
CN111391935A (en) * | 2020-03-19 | 2020-07-10 | 上海工程技术大学 | A self-deformable and reconfigurable multi-terrain robot |
CN112092941A (en) * | 2020-07-30 | 2020-12-18 | 北京理工大学 | A parallel leg structure for bionic robot and bionic robot |
CN112092939B (en) * | 2020-07-30 | 2021-12-07 | 北京理工大学 | Wheel-leg driving combined and multi-motion mode composite operation arm four-footed robot |
CN112092939A (en) * | 2020-07-30 | 2020-12-18 | 北京理工大学 | Bionic robot with multiple motion modes |
CN112124452A (en) * | 2020-10-13 | 2020-12-25 | 济南大学 | A multi-legged walking robot |
CN112193346A (en) * | 2020-11-09 | 2021-01-08 | 大连工业大学 | Parallel four-foot robot dog |
CN112873220A (en) * | 2021-01-08 | 2021-06-01 | 格物创意(深圳)科技有限公司 | Polymorphic STEM educational machine people |
CN116118896A (en) * | 2022-12-07 | 2023-05-16 | 浙江大学 | Service robot chassis and control method thereof |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN108382484A (en) | A kind of Multifeet walking robot for flexibly turning to advance | |
CN102815348B (en) | Four-feet climbing robot | |
CN110525149B (en) | A wheel-legged amphibious mobile robot with variable attack angle | |
CN102556200B (en) | Four-feet walker | |
CN103770116B (en) | A kind of ten seven freedom anthropomorphic robots | |
CN209454890U (en) | A wheeled crawling freely switching hexapod robot | |
CN101391417B (en) | A biped humanoid robot based on passive locomotion | |
CN108583941B (en) | A bionic wall-climbing robot adapted to the complex and narrow space in the microgravity environment of the space station | |
CN201140734Y (en) | A walking wheel-track compound mobile robot | |
CN105383586A (en) | Composite mobile robot with wheel-track legs | |
CN104548608B (en) | A bionic kangaroo robot | |
CN110466637B (en) | Single-axis driven quadruped omnidirectional climbing robot and its control method | |
CN105599822B (en) | A kind of under-actuated bipod walking robot based on flexible actuator | |
CN211076125U (en) | Position and force control hydraulic biped robot lower limb mechanism | |
CN102849140A (en) | Multi-moving-mode bionic moving robot | |
CN203946188U (en) | A kind of cross joint module for walking robot | |
CN103963868A (en) | Three-legged robot capable of turning over in midair in crossed mode | |
CN109927808A (en) | A kind of caterpillar four-footed robot dog of collaboration | |
CN218806218U (en) | A self-balancing wheel-legged biped robot | |
CN109774812A (en) | A multi-legged robotic device with two motion modes | |
CN114735105B (en) | Electro-hydraulic hybrid driven lower limb mechanism of humanoid robot | |
CN211592758U (en) | Redundant series-parallel electro-hydraulic hybrid driving anthropomorphic mechanical leg | |
CN207972817U (en) | Adapt to the bionic wall climbing robot of complicated small space in the microgravity environment of space station | |
CN115781659A (en) | Posture-adjustable six-foot ground moving operation device with stewart mechanism | |
CN206664749U (en) | A spherical wheel-legged robot |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
RJ01 | Rejection of invention patent application after publication |
Application publication date: 20180810 |
|
RJ01 | Rejection of invention patent application after publication |