CN108375907B - Adaptive compensation control method of hypersonic aircraft based on neural network - Google Patents
Adaptive compensation control method of hypersonic aircraft based on neural network Download PDFInfo
- Publication number
- CN108375907B CN108375907B CN201810262739.8A CN201810262739A CN108375907B CN 108375907 B CN108375907 B CN 108375907B CN 201810262739 A CN201810262739 A CN 201810262739A CN 108375907 B CN108375907 B CN 108375907B
- Authority
- CN
- China
- Prior art keywords
- function
- elevator
- hypersonic
- radial basis
- nonlinear
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 230000003044 adaptive effect Effects 0.000 title claims abstract description 41
- 238000000034 method Methods 0.000 title claims abstract description 37
- 238000013528 artificial neural network Methods 0.000 title claims abstract description 22
- 239000000446 fuel Substances 0.000 claims description 11
- 229920006395 saturated elastomer Polymers 0.000 claims description 10
- 238000009499 grossing Methods 0.000 claims description 9
- 239000000654 additive Substances 0.000 claims description 3
- 230000000996 additive effect Effects 0.000 claims description 3
- 230000036541 health Effects 0.000 claims description 3
- 239000011159 matrix material Substances 0.000 description 4
- 238000004088 simulation Methods 0.000 description 4
- 238000010586 diagram Methods 0.000 description 3
- 230000009286 beneficial effect Effects 0.000 description 2
- 238000012938 design process Methods 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 238000004364 calculation method Methods 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 230000001066 destructive effect Effects 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000008569 process Effects 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 230000008054 signal transmission Effects 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G05—CONTROLLING; REGULATING
- G05B—CONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
- G05B13/00—Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion
- G05B13/02—Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion electric
- G05B13/04—Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion electric involving the use of models or simulators
- G05B13/042—Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion electric involving the use of models or simulators in which a parameter or coefficient is automatically adjusted to optimise the performance
Landscapes
- Engineering & Computer Science (AREA)
- Health & Medical Sciences (AREA)
- Artificial Intelligence (AREA)
- Computer Vision & Pattern Recognition (AREA)
- Evolutionary Computation (AREA)
- Medical Informatics (AREA)
- Software Systems (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Automation & Control Theory (AREA)
- Feedback Control In General (AREA)
- Control Of Position, Course, Altitude, Or Attitude Of Moving Bodies (AREA)
Abstract
本发明公开了一种基于神经网络的高超声速飞行器自适应补偿控制方法,包括以下步骤:建立高超声速飞行器的纵向动力学模型,并将其分解为姿态子系统和速度子系统;建立高超声速飞行器的升降舵故障模型;构建平滑函数来估计非线性输入饱和,并引入径向基函数神经网络来估计高超声速飞行器的纵向动力学模型中的非线性函数;通过反步法设计高超声速飞行器的自适应补偿控制器及相应的自适应参数更新律。本发明提供了一种考虑了升降舵故障以及输入饱和的径向基神经网络自适应补偿控制方法,解决了高超声速飞行器飞行过程中各类升降舵故障以及执行器饱和对飞行器的影响,保证了系统的容错能力和鲁棒性。
The invention discloses a neural network-based adaptive compensation control method for a hypersonic aircraft, comprising the following steps: establishing a longitudinal dynamics model of the hypersonic aircraft, and decomposing it into an attitude subsystem and a velocity subsystem; establishing a hypersonic aircraft The elevator fault model of the hypersonic vehicle is constructed; a smooth function is constructed to estimate the nonlinear input saturation, and a radial basis function neural network is introduced to estimate the nonlinear function in the longitudinal dynamic model of the hypersonic vehicle; the adaptive design of the hypersonic vehicle is designed by the backstepping method Compensation controller and corresponding adaptive parameter update law. The present invention provides a radial basis neural network adaptive compensation control method that considers elevator faults and input saturation, solves the influence of various elevator faults and actuator saturation on the aircraft during the flight of a hypersonic aircraft, and ensures system reliability. Fault tolerance and robustness.
Description
技术领域technical field
本发明属于飞行器控制技术领域,具体来说,涉及一种基于神经网络的高超声速飞行器自适应补偿控制方法。The invention belongs to the technical field of aircraft control, and in particular relates to a neural network-based adaptive compensation control method for a hypersonic aircraft.
背景技术Background technique
近几年来,高超声速飞行器作为一种通往临近空间的可靠且经济的运输工具,吸引了极大的商业和军事关注。然而由于其特殊的构造,独特的飞行条件,导致高超声速飞行器对空气动力学参数极其敏感,以及其动力学特征的高度非线性,所有的这些因素使得高超声速飞行器的控制设计具有很大难度。In recent years, hypersonic vehicles have attracted significant commercial and military attention as a reliable and economical means of transportation to near space. However, due to its special structure and unique flight conditions, hypersonic vehicles are extremely sensitive to aerodynamic parameters, and their dynamic characteristics are highly nonlinear. All these factors make the control design of hypersonic vehicles very difficult.
运用径向基神经网络自适应补偿控制可以很好的解决系统中存在未知非线性环节这一问题,能保证系统在满足稳定性要求的同时达到相应的控制要求。目前为止,包括鲁棒控制,滑模控制以及线性二次控制等控制方法都已经被运用于高超声速飞行器纵向模型的控制设计,相比较于这些提到的控制方法,自适应反步控制提供了一种解决未知非线性模型的有效方法。一方面,在飞行器控制中,执行器饱和可能会导致控制效果恶化甚至完全失控,具有输入饱和特性系统的控制问题近些年来受到了极大的关注,通过构建辅助系统,系统输入饱和问题可以得到解决。但是当系统具有未知的时延环节时,辅助系统模型难以建立,并且给闭环系统稳定性分析造成很大难度,运用自适应补偿控制可以很好的解决系统中存在未知增益环节这一问题。另一方面,由于频繁的运作以及严酷的工作环境飞行器升降舵可能会受到故障的影响,这些故障对于飞行器而言时毁灭性的,而在现今的控制研究中故障模型的建立往往被假设为每一个升降舵只会发生一次故障,而且故障的模式(控制效果完全失效)以及参数不会发生改变。显然这是一种极端的情况,实际的飞行器升降舵故障所包含的类型是复杂的。本专利中所提出的升降舵故障模型可以很好的涵盖各种类型的故障,对故障的数目没有限制要求,更具实际性。Using radial basis neural network adaptive compensation control can well solve the problem of unknown nonlinear links in the system, and can ensure that the system can meet the corresponding control requirements while meeting the stability requirements. So far, control methods including robust control, sliding mode control, and linear quadratic control have been used in the control design of the longitudinal model of hypersonic vehicles. Compared with these mentioned control methods, adaptive backstepping control provides An efficient method for solving unknown nonlinear models. On the one hand, in aircraft control, actuator saturation may cause the control effect to deteriorate or even completely out of control. The control problem of systems with input saturation characteristics has received great attention in recent years. By building an auxiliary system, the system input saturation problem can be obtained. solve. However, when the system has an unknown time delay link, the auxiliary system model is difficult to establish, and it is very difficult to analyze the stability of the closed-loop system. The use of adaptive compensation control can solve the problem of unknown gain links in the system. On the other hand, due to the frequent operation and harsh working environment, the aircraft elevator may be affected by failures, which are destructive for the aircraft, and the establishment of failure models in current control research is often assumed for each The elevator will only fail once, and the mode of failure (complete failure of the control effect) and parameters will not change. Obviously this is an extreme case, and the types involved in actual aircraft elevator failures are complex. The elevator fault model proposed in this patent can well cover various types of faults, and there is no limit to the number of faults, which is more practical.
发明内容SUMMARY OF THE INVENTION
本发明解决的技术问题是:由于高超声速飞行器飞行过程中可能受到各方面扰动因素的影响,从而导致升降舵出现各类故障,以及高超声速飞行器在飞行过程中可能存在执行器输入饱和现象,本发明提供了一种考虑了升降舵故障以及输入饱和的径向基神经网络自适应补偿控制方法,解决了高超声速飞行器飞行过程中各类升降舵故障以及执行器饱和对飞行器的影响,保证了系统的容错能力和鲁棒性。The technical problems solved by the present invention are: due to the influence of various disturbance factors during the flight of the hypersonic aircraft, various types of elevator failures may occur, and the hypersonic aircraft may have actuator input saturation during the flight process. A radial basis neural network adaptive compensation control method considering elevator failure and input saturation is provided, which solves the influence of various elevator failures and actuator saturation on the aircraft during the flight of hypersonic aircraft, and ensures the fault tolerance of the system. and robustness.
为实现上述技术目的,本发明的技术方案如下:For realizing the above-mentioned technical purpose, the technical scheme of the present invention is as follows:
一种基于神经网络的高超声速飞行器自适应补偿控制方法,包括以下步骤:A neural network-based adaptive compensation control method for hypersonic aircraft, comprising the following steps:
S1:建立高超声速飞行器的纵向动力学模型,并将其分解为姿态子系统和速度子系统;S1: Establish the longitudinal dynamics model of hypersonic vehicle and decompose it into attitude subsystem and velocity subsystem;
S2:建立高超声速飞行器的升降舵故障模型;S2: Establish the elevator failure model of the hypersonic vehicle;
S3:构建平滑函数来估计非线性输入饱和,并引入径向基函数神经网络来估计高超声速飞行器的纵向动力学模型中非线性函数Fi(i=1,2,3);S3: Construct a smooth function to estimate the nonlinear input saturation, and introduce a radial basis function neural network to estimate the nonlinear function F i (i=1, 2, 3) in the longitudinal dynamics model of the hypersonic vehicle;
S4:通过反步法设计高超声速飞行器的自适应补偿控制器及相应的自适应参数更新律。S4: Design the adaptive compensation controller and the corresponding adaptive parameter update law of the hypersonic vehicle through the backstepping method.
进一步地,S1中,所述纵向动力学模型为:Further, in S1, the longitudinal dynamics model is:
其中,V,h,γ,α和q分别为速度,高度,航迹倾斜角,攻角和俯仰率;m,Re,μ和Iyy分别为飞行器质量,地球半径,万有引力常数和惯性力矩;T,D,L和Myy分别表示推力,阻力,升力和俯仰力矩。Among them, V, h, γ, α and q are the velocity, altitude, track inclination angle, angle of attack and pitch rate, respectively; m, R e , μ and I yy are the mass of the aircraft, the radius of the earth, the gravitational constant and the moment of inertia, respectively ; T, D, L and M yy represent thrust, drag, lift and pitching moment, respectively.
进一步地,S1中,所述姿态子系统的模型为:Further, in S1, the model of the attitude subsystem is:
y=x1 y = x1
其中,状态变量x1=γ,x2=θp,x3=q,θp为高超声速飞行器的俯仰角;f1(x1,V),f3(x1,x2,x3,V)和g3(V)为通过径向基函数处理的非线性函数,f2和g2为已知常数;uj=δej,j∈N表示第j个升降舵,N为非负整数集合,δej为第j个升降舵的偏转角;dj表示第j个偏转角的增益,sat(uj)为表示第j个升降舵的偏转角的饱和非线性函数。Among them, the state variables x 1 =γ, x 2 =θ p , x 3 =q, θ p is the pitch angle of the hypersonic vehicle; f 1 (x 1 ,V), f 3 (x 1 ,x 2 ,x 3 , V) and g 3 (V) are nonlinear functions processed by radial basis functions, f 2 and g 2 are known constants; u j =δ ej , j∈N represents the jth elevator, and N is non-negative Set of integers, δ ej is the deflection angle of the j-th elevator; d j represents the gain of the j-th deflection angle, and sat(u j ) is a saturated nonlinear function representing the deflection angle of the j-th elevator.
所述速度子系统的模型为:The model of the velocity subsystem is:
其中,fV(x1,x2,x3h,V)和gV(x1,x2,x3,h,V)是通过径向基函数处理的非线性函数;uV=β,β为燃料当量比,sat(uV)为表示燃料当量比的饱和非线性函数。where f V (x 1 ,x 2 ,x 3 h,V) and g V (x 1 ,x 2 ,x 3 ,h,V) are nonlinear functions processed by radial basis functions; u V =β , β is the fuel equivalence ratio, and sat(u V ) is a saturated nonlinear function representing the fuel equivalence ratio.
进一步地,S2中,所述升降舵故障模型为:Further, in S2, the elevator failure model is:
其中,h∈N表示第h个故障,kj,h,和都是根据升降舵具体故障以及发生时间所确定的常数,其中0≤kj,h≤1,表示第j个升降舵发生第h个故障时第j个升降舵的健康指数,和分别表示第j个升降舵发生第h个故障的起始时间和结束时间,且 是分段连续的有界函数,用来表示第j个升降舵发生第h个故障时中的加性故障部分,vj(t)表示升降舵偏转角的控制信号。where h∈N denotes the hth fault, k j,h , and are constants determined according to the specific failure of the elevator and the occurrence time, where 0≤k j,h ≤1, which means the health index of the j-th elevator when the j-th elevator has the h-th fault, and represent the start time and end time of the hth failure of the jth elevator, respectively, and is a piecewise continuous bounded function, used to represent the additive fault part of the jth elevator when the hth fault occurs, v j (t) represents the control signal of the elevator deflection angle.
优选地,S3中,所述平滑函数是基于升降舵的偏转角输入饱和时构建的;Preferably, in S3, the smoothing function is constructed when the deflection angle input of the elevator is saturated;
所述平滑函数的形式如下:The smoothing function is of the form:
sat(uj)=ψ(uj)+ψd(uj)sat(u j )=ψ(u j )+ψ d (u j )
其中,ψd(uj)是一个有界函数;和分别代表uj的上界和下界;ψ(uj)=ψauj,即sat(uj)=ψauj+ψd(uj),ψa为连续有界的非线性函数。in, ψ d (u j ) is a bounded function; and respectively represent the upper and lower bounds of u j ; ψ(u j )=ψ a u j , that is, sat(u j )=ψ a u j +ψ d (u j ), ψ a is a continuous and bounded nonlinear function .
优选地,S3中,所述平滑函数是基于燃料当量比输入饱和时构建的;Preferably, in S3, the smoothing function is constructed based on the input saturation of the fuel equivalence ratio;
所述平滑函数的形式如下:The smoothing function has the following form:
sat(uV)=ψaVuV+ψdV(uV)sat(u V )=ψ aV u V +ψ dV (u V )
其中,ψdV(uV)是一个有界函数;和分别代表uV的上界和下界;ψaV(uV)=ψauV,即sat(uV)=ψaVuV+ψdV(uV),ψaV为连续有界的非线性函数。in, ψ dV (u V ) is a bounded function; and Represent the upper and lower bounds of u V ; _ function.
进一步地,S3中,所述引入径向基函数神经网络来估计系统中非线性函数Fi(i=1,2,3)的具体形式如下:Further, in S3, the specific form of introducing the radial basis function neural network to estimate the nonlinear function F i (i=1, 2, 3) in the system is as follows:
其中,θi∈RN是径向基函数中的N个节点的最优权重向量,RN为N维实数空间,φi(ξi)=[φi1(ξi),…,φiN(ξi)]T∈RN是径向基函数中的基函数向量;Δ(ξi)表示近似误差,δi为一常数,其中οij和bi分别为径向基函数的中心和宽度;定义一个常数 是的估计值,为估计误差,gm是常数,且0<gm≤min[inf{g1(V)},g2,inf{g3(V)},inf{gV(x1,x2,x3,h,V)}]。Among them, θ i ∈ R N is the optimal weight vector of N nodes in the radial basis function, R N is an N-dimensional real number space, φ i (ξ i )=[φ i1 (ξ i ),…,φ iN (ξ i )] T ∈R N is the basis function vector in the radial basis function; Δ(ξ i ) represents the approximation error, δ i is a constant, where ο ij and b i are the center and width of the radial basis function, respectively; define a constant Yes the estimated value of , is the estimation error, g m is a constant, and 0<g m ≤min[inf{g 1 (V)},g 2 ,inf{g 3 (V)},inf{g V (x 1 ,x 2 ,x 3 ,h,V)}].
进一步地,S4中,所述通过反步法设计高超声速飞行器的自适应补偿控制器及相应的自适应参数更新律的具体形式如下:Further, in S4, the specific form of the adaptive compensation controller and the corresponding adaptive parameter update law designed by the backstepping method for the hypersonic aircraft is as follows:
定义误差变量s1、s2、s3:Define error variables s 1 , s 2 , s 3 :
s1=x1-γr s 1 =x 1 -γ r
s2=x2-x2d s 2 =x 2 -x 2d
s3=x3-x3d s 3 =x 3 -x 3d
其中,γr为航迹倾斜角γ的控制信号,定义hr为高度h的参考信号,选取以保证当γ追踪其控制信号γr时,h追踪其参考信号hr;x2d为姿态子系统第一状态方程的虚拟控制信号,x3d为姿态子系统第二状态方程的虚拟控制信号;Among them, γ r is the control signal of the track inclination angle γ , and hr is defined as the reference signal of the height h. To ensure that when γ tracks its control signal γ r , h tracks its reference signal hr ; x 2d is the first state equation of the attitude subsystem The virtual control signal of x 3d is the second state equation of the attitude subsystem the virtual control signal;
所述姿态子系统的虚拟控制器设计如下:The virtual controller of the attitude subsystem is designed as follows:
x2d对应的自适应参数更新律为:The adaptive parameter update law corresponding to x 2d is:
x3d对应的自适应参数更新律为:The adaptive parameter update law corresponding to x 3d is:
所述姿态子系统的实际控制器设计如下:The actual controller design of the attitude subsystem is as follows:
vj对应的自适应参数更新律为:The adaptive parameter update law corresponding to v j is:
定义Vr为速度V的参考信号,为V的追踪误差,所述速度子系统的控制器为:Define V r as the reference signal of speed V, is the tracking error of V, the controller of the velocity subsystem is:
uV对应的自适应参数更新律为:The adaptive parameter update law corresponding to u V is:
其中,ε(t)=[d1(ψa1u1+ψd1),d2(ψa2u2+ψd2),…,dn(ψanun+ψdn)]T, 和分别为ζ和p的估计值,和分别为ζV和pV的估计值,ξ1=(x1,γr,h,V)T,ξV=(x1,x2,x3,h,V)T,∈,ci,λi和μi均为正常数。in, ε(t)=[d 1 (ψ a1 u 1 +ψ d1 ),d2(ψ a2 u 2 +ψ d2 ),…,d n (ψ an u n +ψ dn )] T , and are the estimated values of ζ and p, respectively, and are the estimated values of ζ V and p V , respectively, ξ 1 =(x 1 ,γ r ,h,V) T , ξ V =(x 1 ,x 2 ,x 3 ,h,V) T , ∈, c i , λ i and μ i are all positive numbers.
本发明的有益效果:Beneficial effects of the present invention:
(1)与现有的飞行器设计过程中建立的故障模型相比,本发明中所建立的故障模型更适用于高超声速飞行器升降舵故障的一般情况,可以很好的涵盖各种类型的故障,更加符合实际。(1) Compared with the fault model established in the existing aircraft design process, the fault model established in the present invention is more suitable for the general situation of hypersonic aircraft elevator failure, and can well cover various types of faults, more Realistic.
(2)与传统的高超声速飞行器的自适应控制方法相比,本发明通过建立平滑函数,解决了执行器的输入饱和问题,有利于反步法在自适应设计过程中得以直接使用。(2) Compared with the traditional adaptive control method of hypersonic aircraft, the present invention solves the problem of input saturation of the actuator by establishing a smooth function, which is beneficial to the direct use of the backstepping method in the adaptive design process.
(3)本发明通过引入径向基函数神经网络,解决了自适应补偿控制系统设计中的未知的非线性函数所带来的不便,并且通过定义关于神经网络最优权重向量的函数,使得无论神经网络最优权重向量维数多大,自适应参数更新律中每一步内只需更新一个参数,大大减小了计算量。(3) The present invention solves the inconvenience caused by the unknown nonlinear function in the design of the adaptive compensation control system by introducing the radial basis function neural network, and by defining the function of the optimal weight vector of the neural network, no matter How large is the optimal weight vector dimension of the neural network, only one parameter needs to be updated in each step in the adaptive parameter update law, which greatly reduces the amount of calculation.
附图说明Description of drawings
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。In order to more clearly illustrate the embodiments of the present invention or the technical solutions in the prior art, the accompanying drawings required in the embodiments will be briefly introduced below. Obviously, the drawings in the following description are only some of the present invention. In the embodiments, for those of ordinary skill in the art, other drawings can also be obtained according to these drawings without any creative effort.
图1为本方法的流程图;Fig. 1 is the flow chart of this method;
图2为本方法的系统框图;Fig. 2 is the system block diagram of this method;
图3为本方法中高度h跟踪高度参考信号hr的Matlab仿真结果图,其中横坐标表示时间(单位为s),纵坐标表示高度(单位为ft);Fig. 3 is the Matlab simulation result diagram of height h tracking height reference signal h r in this method, wherein the abscissa represents time (unit is s), and the ordinate represents height (unit is ft);
图4为本方法中速度V跟踪速度参考信号Vr的Matlab仿真结果图,其中横坐标表示时间(单位为s),纵坐标表示速度(单位为ft/s)。Figure 4 is a graph of the Matlab simulation result of the speed V tracking the speed reference signal V r in this method, wherein the abscissa represents time (unit is s), and the ordinate represents speed (unit is ft/s).
具体实施方式Detailed ways
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员所获得的所有其他实施例,都属于本发明保护的范围。The technical solutions in the embodiments of the present invention will be clearly and completely described below with reference to the accompanying drawings in the embodiments of the present invention. Obviously, the described embodiments are only a part of the embodiments of the present invention, but not all of the embodiments. Based on the embodiments in the present invention, all other embodiments obtained by those of ordinary skill in the art fall within the protection scope of the present invention.
如图1所示,基于神经网络的高超声速飞行器自适应补偿控制方法,包括以下步骤:As shown in Figure 1, the neural network-based adaptive compensation control method for hypersonic aircraft includes the following steps:
S1:建立一种标准的高超声速飞行器纵向动力学模型,并将其分解为姿态子系统和速度子系统;S1: Establish a standard hypersonic vehicle longitudinal dynamics model and decompose it into attitude subsystem and velocity subsystem;
建立一种标准的高超声速飞行器的纵向动力学模型如下:The longitudinal dynamics model of a standard hypersonic vehicle is established as follows:
其中,V,h,γ,α和q分别为速度,高度,航迹倾斜角,攻角和俯仰率;m,Re,μ和Iyy分别为飞行器质量,地球半径,万有引力常数和惯性力矩,取m=9375kg,Re=20903500ft和Iyy=7×106bf·ft;T,D,L和Myy分别表示推力,阻力,升力和俯仰力矩。Among them, V, h, γ, α and q are the velocity, altitude, track inclination angle, angle of attack and pitch rate, respectively; m, R e , μ and I yy are the mass of the aircraft, the radius of the earth, the gravitational constant and the moment of inertia, respectively , take m=9375kg, Re =20903500ft and I yy =7×10 6 bf·ft; T, D, L and My yy represent thrust, drag, lift and pitch moment respectively.
建立高超声速飞行器的姿态子系统的模型如下:The model for establishing the attitude subsystem of the hypersonic vehicle is as follows:
y=x1 y = x1
其中,状态变量x1=γ,x2=θp,x3=q,θp为高超声速飞行器的俯仰角;f1(x1,V),f3(x1,x2,x3,V)和g3(V)为通过径向基函数处理的非线性函数,f2和g2为已知常数;uj=δej,j∈N表示第j个升降舵,N为非负整数集合,δej为第j个升降舵的偏转角;dj表示第j个偏转角的增益,sat(uj)为表示第j个升降舵的偏转角的饱和非线性函数。Among them, the state variables x 1 =γ, x 2 =θ p , x 3 =q, θ p is the pitch angle of the hypersonic vehicle; f 1 (x 1 ,V), f 3 (x 1 ,x 2 ,x 3 , V) and g 3 (V) are nonlinear functions processed by radial basis functions, f 2 and g 2 are known constants; u j =δ ej , j∈N represents the jth elevator, and N is non-negative Set of integers, δ ej is the deflection angle of the j-th elevator; d j represents the gain of the j-th deflection angle, and sat(u j ) is a saturated nonlinear function representing the deflection angle of the j-th elevator.
建立高超声速飞行器的速度子系统的模型如下:The model of the velocity subsystem of the hypersonic vehicle is established as follows:
其中,fV(x1,x2,x3h,V)和gV(x1,x2,x3,h,V)是通过径向基函数处理的非线性函数;uV=β,β为燃料当量比,高超声速飞行器的飞行速率主要由燃料当量比β决定,故选取其为输入;sat(uV)为表示燃料当量比的饱和非线性函数。where f V (x 1 ,x 2 ,x 3 h,V) and g V (x 1 ,x 2 ,x 3 ,h,V) are nonlinear functions processed by radial basis functions; u V =β , β is the fuel equivalence ratio, the flight speed of the hypersonic vehicle is mainly determined by the fuel equivalence ratio β, so it is selected as the input; sat(u V ) is a saturated nonlinear function representing the fuel equivalence ratio.
S2:建立高超声速飞行器的升降舵故障模型;S2: Establish the elevator failure model of the hypersonic vehicle;
建立一种具有一般性的升降舵故障模型如下:A general elevator fault model is established as follows:
其中,h∈N表示第h个故障,kj,h,和都是根据升降舵具体故障以及发生时间所确定的常数,其中0≤kj,h≤1,表示第j个升降舵发生第h个故障时第j个升降舵的健康指数,和分别表示第j个升降舵发生第h个故障的起始时间和结束时间,且 是分段连续的有界函数,用来表示第j个升降舵发生第h个故障时中的加性故障部分,vj(t)表示升降舵偏转角的控制信号。本发明建立的故障模型相比于普通的故障模型更具有普遍性,可以表示两种不同的故障:where h∈N denotes the hth fault, k j,h , and are constants determined according to the specific failure of the elevator and the occurrence time, where 0≤k j,h ≤1, which means the health index of the jth elevator when the hth failure of the jth elevator occurs, and represent the start time and end time of the hth failure of the jth elevator, respectively, and is a piecewise continuous bounded function, used to represent the additive fault part of the jth elevator when the hth fault occurs, v j (t) represents the control signal of the elevator deflection angle. Compared with ordinary fault models, the fault model established by the present invention is more general and can represent two different faults:
第一种故障:当0≤kj,h≤1时,第j个升降舵失去了其部分有效性并且受到额外的故障的影响, First fault: when 0≤k j,h ≤1, the jth elevator loses some of its validity and suffers from additional faults Impact,
第二种故障:当kj,h=0时,升降舵完全失控,不再受控制信号控制, The second fault: when k j,h = 0, the elevator is completely out of control and is no longer controlled by the control signal,
S3:构建平滑函数来估计非线性输入饱和,并引入径向基函数神经网络来估计高超声速飞行器的纵向动力学模型中的非线性函数Fi(i=1,2,3);S3: Build a smooth function to estimate nonlinear input saturation, and introduce a radial basis function neural network to estimate the nonlinear function F i (i=1, 2, 3) in the longitudinal dynamics model of the hypersonic vehicle;
对于升降舵的偏转角输入饱和的情况,构建平滑函数的形式如下:For the case where the deflection angle input of the elevator is saturated, the smooth function is constructed in the following form:
sat(uj)=ψ(uj)+ψd(uj)sat(u j )=ψ(u j )+ψ d (u j )
其中,ψd(uj)是一个有界函数;和分别代表uj的上界和下界;ψ(uj)=ψauj,即sat(uj)=ψauj+ψd(uj),ψa为连续有界的非线性函数。in, ψ d (u j ) is a bounded function; and respectively represent the upper and lower bounds of u j ; ψ(u j )=ψ a u j , that is, sat(u j )=ψ a u j +ψ d (u j ), ψ a is a continuous and bounded nonlinear function .
对于燃料当量比输入饱和的情况,构建平滑函数的形式如下:For the case where the fuel equivalence ratio input is saturated, the smoothing function is constructed as follows:
sat(uV)=ψaVuV+ψdV(uV)sat(u V )=ψ aV u V +ψ dV (u V )
其中,ψdV(uV)是一个有界函数;和分别代表uV的上界和下界;ψaV(uV)=ψauV,即sat(uV)=ψaVuV+ψdV(uV),ψaV为连续有界的非线性函数。in, ψ dV (u V ) is a bounded function; and Represent the upper and lower bounds of u V ; _ function.
通过引入径向基函数神经网络来估计高超声速飞行器的纵向动力学模型中非线性函数Fi(i=1,2,3),将其表示如下:The nonlinear function F i (i=1, 2, 3) in the longitudinal dynamics model of the hypersonic vehicle is estimated by introducing the radial basis function neural network, which is expressed as follows:
Fi(ξi)=θi Tφi(ξi)+Δ(ξi),|Δ(ξi)|≤δi F i (ξ i )=θ i T φ i (ξ i )+Δ(ξ i ),|Δ(ξ i )|≤δ i
其中,θi∈RN是径向基函数中的N个节点的最优权重向量,RN为N维实数空间,φi(ξi)=[φi1(ξi),…,φiN(ξi)]T∈RN是径向基函数中的基函数向量;Δ(ξi)表示近似误差,δi为一常数,其中οij和bi分别为径向基函数的中心和宽度;定义一个常数 是的估计值,为估计误差,gm是常数,且0<gm≤min[inf{g1(V)},g2,inf{g3(V)},inf{gV(x1,x2,x3,h,V)}]。本发明中用到径向基函数神经网络进行近似的几处非线性环节如下所示: 其中ξ1=(x1,γr,h,V)T,ξV=(x1,x2,x3,h,V)T。Among them, θ i ∈ R N is the optimal weight vector of N nodes in the radial basis function, R N is an N-dimensional real number space, φ i (ξ i )=[φ i1 (ξ i ),…,φ iN (ξ i )] T ∈R N is the basis function vector in the radial basis function; Δ(ξ i ) represents the approximation error, δ i is a constant, where ο ij and b i are the center and width of the radial basis function, respectively; define a constant Yes the estimated value of , is the estimation error, gm is a constant, and 0<g m ≤min[inf{g 1 (V)},g 2 ,inf{g 3 (V)},inf{g V (x 1 ,x 2 ,x 3 ,h,V)}]. In the present invention, several nonlinear links used for approximation by radial basis function neural network are as follows: where ξ 1 =(x 1 ,γ r ,h,V) T , ξ V =(x 1 ,x 2 ,x 3 ,h,V) T .
S4:通过反步法设计高超声速飞行器的自适应补偿控制器及相应的自适应参数更新律;S4: Design the adaptive compensation controller and the corresponding adaptive parameter update law of the hypersonic vehicle through the backstepping method;
定义误差变量s1、s2、s3:Define error variables s 1 , s 2 , s 3 :
s1=x1-γr s 1 =x 1 -γ r
s2=x2-x2d s 2 =x 2 -x 2d
s3=x3-x3d s 3 =x 3 -x 3d
其中,γr为航迹倾斜角γ的控制信号,定义hr为高度h的控制信号,选取以保证当γ追踪其控制信号γr时,h追踪其控制信号hr;x2d为姿态子系统第一状态方程的虚拟控制信号,x3d为姿态子系统第二状态方程的虚拟控制信号;Among them, γ r is the control signal of the track inclination angle γ , and hr is defined as the control signal of the height h. To ensure that when γ tracks its control signal γ r , h tracks its control signal hr ; x 2d is the first state equation of the attitude subsystem The virtual control signal of x 3d is the second state equation of the attitude subsystem the virtual control signal;
所述姿态子系统的虚拟控制器设计如下:The virtual controller of the attitude subsystem is designed as follows:
x2d对应的自适应参数更新律为:The adaptive parameter update law corresponding to x 2d is:
x3d对应的自适应参数更新律为:The adaptive parameter update law corresponding to x 3d is:
所述姿态子系统的实际控制器设计如下:The actual controller design of the attitude subsystem is as follows:
vj对应的自适应参数更新律为:The adaptive parameter update law corresponding to v j is:
定义Vr为速度V的参考信号,为V的追踪误差,所述速度子系统的控制器为:Define V r as the reference signal of speed V, is the tracking error of V, the controller of the velocity subsystem is:
uV对应的自适应参数更新律为:The adaptive parameter update law corresponding to u V is:
其中,ε(t)=[d1(ψa1u1+ψd1),d2(ψa2u2+ψd2),…,dn(ψanun+ψdn)]T, 和分别为ζ和p的估计值,和分别为ζV和pV的估计值,ξ1=(x1,γr,h,V)T,ξV=(x1,x2,x3,h,V)T,∈,ci,λi和μi均为正常数。in, ε(t)=[d 1 (ψ a1 u 1 +ψ d1 ),d2(ψ a2 u 2 +ψ d2 ),…,d n (ψ an u n +ψ dn )] T , and are the estimated values of ζ and p, respectively, and are the estimated values of ζ V and p V , respectively, ξ 1 =(x 1 ,γ r ,h,V) T , ξ V =(x 1 ,x 2 ,x 3 ,h,V) T , ∈, c i , λ i and μ i are all positive numbers.
基于以上步骤的控制方法的系统框图如图2所示,自适应控制器通过对给定的信号(高度参考信号hr和速度参考信号Vr)以及系统的状态信息进行综合计算,从而得到升降舵和燃料节流阀的控制信号,进而对系统进行控制,图中箭头方向表示信号传递方向。The system block diagram of the control method based on the above steps is shown in Figure 2. The adaptive controller obtains the elevator by comprehensively calculating the given signals (altitude reference signal hr and speed reference signal V r ) and the state information of the system. And the control signal of the fuel throttle valve, and then control the system, the direction of the arrow in the figure indicates the direction of signal transmission.
本实施例中选取以下参数对本方法进行matlab仿真实现:∈=0.1,c1=40,c2=7,c3=5,cV=5,λ1=0.1,λ2=0.1,λ3=0.1,λ4=0.15,λ5=0.25,μ1=0.3,μ2=0.3,μ3=0.3,μ4=0.2,μ5=0.2,μV1=μV2=μV3=0.1,λV1=λV2=λV3=0.1。对于径向基函数神经网络的宽度以及中心点的选取如下:b1=b2=b3=10,bV=15。对于ο1=(ο11,ο12,ο13,ο14),ο1j分别选自矩阵的第j行,并进行排列组合,进而总共得到34=81个不同的ο1值,即对于φ1(ξ1)=[φ11(ξ1),…,φ1N(ξ1)]T∈RN总共使用了81个径向基函数,N=81。对于ο2=(ο21,ο22,ο23,ο24,ο25),ο2j分别选自矩阵的第j行,并进行排列组合,进而总共得到35=243个不同的ο2值,即对于φ2(ξ2)=[φ21(ξ2),…,φ2N(ξ2)]T∈RN总共使用了243个径向基函数,N=243。对于ο3=(ο31,ο32,ο33,ο34,ο35,ο36,ο37),ο3j分别选自矩阵的第j行,并进行排列组合,进而总共得到37=2187个不同的ο3值,即对于φ3(ξ3)=[φ31(ξ3),…,φ3N(ξ3)]T∈RN总共使用了2187个径向基函数,N=2187。对于οV=(οV1,οV2,οV3,οV4,οV5),οVj分别选自矩阵的第j行,并进行排列组合,进而总共得到35=243个不同的οV值,即对于φV(ξV)=[φV1(ξV),…,φVN(ξV)]T∈RN总共使用了243个径向基函数,N=243。In this embodiment, the following parameters are selected to carry out matlab simulation implementation of this method: ∈=0.1, c 1 =40, c 2 =7, c 3 =5, c V =5,λ 1 =0.1,λ 2 =0.1,λ 3 =0.1, λ 4 =0.15, λ 5 =0.25, μ 1 =0.3, μ 2 =0.3, μ 3 =0.3, μ 4 =0.2, μ 5 =0.2, μ V1 =μ V2 =μ V3 =0.1,λ V1 =λ V2 =λ V3 =0.1. The selection of the width and center point of the radial basis function neural network is as follows: b 1 =b 2 =b 3 =10, b V =15. For ο 1 =(ο 11 ,ο 12 ,ο 13 ,ο 14 ), ο 1j are respectively selected from the matrix The jth row of , and permutation and combination, and then get a total of 3 4 =81 different ο 1 values, that is, for φ 1 (ξ 1 )=[φ 11 (ξ 1 ),...,φ 1N (ξ 1 )] T ∈ R N uses a total of 81 radial basis functions, N=81. For ο 2 =(ο 21 ,ο 22 ,ο 23 ,ο 24 ,ο 25 ), ο 2j are respectively selected from the matrix The jth row of , and permutation and combination, and then get a total of 3 5 =243 different ο 2 values, that is, for φ 2 (ξ 2 )=[φ 21 (ξ 2 ),...,φ 2N (ξ 2 )] T ∈ R N uses a total of 243 radial basis functions, N=243. For ο 3 = (ο 31 ,ο 32 ,ο 33 ,ο 34 ,ο 35 ,ο 36 ,ο 37 ), ο 3j are respectively selected from the matrix The jth row of , and permutation and combination, and then get a total of 3 7 =2187 different ο 3 values, that is, for φ 3 (ξ 3 )=[φ 31 (ξ 3 ),...,φ 3N (ξ 3 )] T ∈ R N uses a total of 2187 radial basis functions, N=2187. For ο V = (ο V1 ,ο V2 ,ο V3 ,ο V4 ,ο V5 ), ο Vj are selected from the matrix The jth row of , and permutation and combination, and then get a total of 3 5 =243 different ο V values, that is, for φ V (ξ V )=[φ V1 (ξ V ),...,φ VN (ξ V )] T ∈ R N uses a total of 243 radial basis functions, N=243.
如图3和图4所示,通过Matlab仿真,可以得到基于径向基神经网络的自适应补偿控制方法,可以实现在高超声速飞行器存在升降舵故障以及执行器饱和情况下,高度和速度分别跟踪其控制信号,且能够满足跟踪误差足够小的性能要求,本方法具有较强容错能力和鲁棒性。As shown in Figure 3 and Figure 4, through Matlab simulation, an adaptive compensation control method based on radial basis neural network can be obtained, which can realize that in the case of elevator failure and actuator saturation of hypersonic aircraft, the altitude and speed can track its speed respectively. control signal, and can meet the performance requirements of sufficiently small tracking error, the method has strong fault tolerance and robustness.
以上所述仅为本发明的较佳实施例而已,并不用以限制本发明,凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。The above descriptions are only preferred embodiments of the present invention, and are not intended to limit the present invention. Any modification, equivalent replacement, improvement, etc. made within the spirit and principle of the present invention shall be included in the scope of the present invention. within the scope of protection.
Claims (9)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201810262739.8A CN108375907B (en) | 2018-03-28 | 2018-03-28 | Adaptive compensation control method of hypersonic aircraft based on neural network |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201810262739.8A CN108375907B (en) | 2018-03-28 | 2018-03-28 | Adaptive compensation control method of hypersonic aircraft based on neural network |
Publications (2)
Publication Number | Publication Date |
---|---|
CN108375907A CN108375907A (en) | 2018-08-07 |
CN108375907B true CN108375907B (en) | 2020-11-10 |
Family
ID=63031779
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201810262739.8A Active CN108375907B (en) | 2018-03-28 | 2018-03-28 | Adaptive compensation control method of hypersonic aircraft based on neural network |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN108375907B (en) |
Families Citing this family (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN109062055A (en) * | 2018-09-10 | 2018-12-21 | 南京航空航天大学 | A kind of Near Space Flying Vehicles control system based on Back-stepping robust adaptive dynamic surface |
CN108919651B (en) * | 2018-09-26 | 2020-09-01 | 北京航空航天大学 | An adaptive fault-tolerant control method for hypersonic aircraft considering actuator input constraints |
CN109508035B (en) * | 2018-12-24 | 2021-11-26 | 南京邮电大学 | Multi-region hierarchical unmanned aerial vehicle formation path planning method based on distributed control |
CN110231774A (en) * | 2019-04-08 | 2019-09-13 | 天津大学 | Disturbance-observer becomes air intake duct hypersonic aircraft fuzzy coordinated control method |
CN110187713A (en) * | 2019-04-12 | 2019-08-30 | 浙江大学 | A Longitudinal Control Method of Hypersonic Vehicle Based on Online Identification of Aerodynamic Parameters |
CN110340898B (en) * | 2019-08-22 | 2020-12-01 | 北京航空航天大学 | An adaptive fault-tolerant control method for a free-floating space manipulator |
CN110488852B (en) * | 2019-08-28 | 2020-12-01 | 北京航空航天大学 | A full-profile adaptive control method for hypersonic aircraft |
CN110673472B (en) * | 2019-09-09 | 2022-06-28 | 南京理工大学 | Adaptive Robust Control Method Based on Neural Network Compensation for Dead Zone Inversion Error |
CN111007724A (en) * | 2019-12-19 | 2020-04-14 | 哈尔滨工业大学 | A Quantitative Tracking Control Method for Specified Performance of Hypersonic Aircraft Based on Interval Type II Fuzzy Neural Network |
CN111158398A (en) * | 2020-01-15 | 2020-05-15 | 哈尔滨工业大学 | Adaptive control method for hypersonic vehicle considering angle of attack constraints |
CN112558484A (en) * | 2020-12-29 | 2021-03-26 | 彩虹无人机科技有限公司 | Design method of controller for displaying and considering dynamic characteristics of aircraft actuating mechanism |
CN113961010B (en) * | 2021-08-26 | 2023-07-18 | 中国科学院合肥物质科学研究院 | Tracking control method for quadrotor plant protection UAV |
Family Cites Families (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5102072A (en) * | 1990-11-19 | 1992-04-07 | General Dynamics Corporation, Convair Division | Adaptive gain and phase controller for autopilot for a hypersonic vehicle |
US6882992B1 (en) * | 1999-09-02 | 2005-04-19 | Paul J. Werbos | Neural networks for intelligent control |
CN102880052B (en) * | 2012-09-29 | 2014-12-31 | 西北工业大学 | Time scale function decomposition based hypersonic aircraft actuator saturation control method |
CN104898682B (en) * | 2015-05-05 | 2017-10-31 | 南京航空航天大学 | A kind of hypersonic aircraft reenters posture fault tolerant control method |
CN105843077B (en) * | 2016-04-07 | 2019-03-29 | 杭州电子科技大学 | A kind of gain switching method of Spacecraft Rendezvous system and maximum domain of attraction estimation |
CN106842912B (en) * | 2016-11-30 | 2020-08-14 | 南京航空航天大学 | Hypersonic speed maneuvering flight control surface saturation robust control method |
CN106934120B (en) * | 2017-02-23 | 2020-02-11 | 哈尔滨工业大学 | Three-dimensional guidance law design method for intercepting hypersonic aircraft based on forward guidance |
CN107479384B (en) * | 2017-09-05 | 2019-10-22 | 西北工业大学 | Neural network compound learning non-backstepping control method for hypersonic vehicle |
-
2018
- 2018-03-28 CN CN201810262739.8A patent/CN108375907B/en active Active
Also Published As
Publication number | Publication date |
---|---|
CN108375907A (en) | 2018-08-07 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN108375907B (en) | Adaptive compensation control method of hypersonic aircraft based on neural network | |
CN108919651B (en) | An adaptive fault-tolerant control method for hypersonic aircraft considering actuator input constraints | |
CN107450324B (en) | Adaptive fault-tolerant control method for hypersonic vehicle considering angle of attack constraint | |
CN107390531B (en) | Control method of hypersonic vehicle with finite time convergence of parameter learning | |
CN103616816B (en) | A kind of hypersonic aircraft elevator fault control method | |
CN102749851B (en) | Fine anti-interference tracking controller of flexible hypersonic vehicle | |
Jiang et al. | Adaptive neural observer‐based backstepping fault tolerant control for near space vehicle under control effector damage | |
CN102880052B (en) | Time scale function decomposition based hypersonic aircraft actuator saturation control method | |
CN110109361B (en) | Rapid smooth self-adaptive sliding mode control method for hypersonic aircraft | |
CN109358634B (en) | A robust adaptive control method for hypersonic aircraft | |
CN107479383B (en) | Neural network compound learning control method for hypersonic vehicle based on robust design | |
CN113485304B (en) | Aircraft hierarchical fault-tolerant control method based on deep learning fault diagnosis | |
CN108663940B (en) | Aircraft neural network lea rning control method based on the compound estimation of lump | |
CN113268084B (en) | Intelligent fault-tolerant control method for unmanned aerial vehicle formation | |
CN104199286A (en) | Hierarchical dynamic inverse control method for flight vehicle based on sliding mode interference observer | |
CN108776434B (en) | Rapid self-adaptive sliding mode fault-tolerant control method for hypersonic aircraft | |
CN105676852B (en) | Small-sized depopulated helicopter is unpowered to learn model structure Adaptive Attitude control method | |
CN105182742A (en) | Elastic body aircraft adaptive constrained tracking control indirect method | |
CN109062055A (en) | A kind of Near Space Flying Vehicles control system based on Back-stepping robust adaptive dynamic surface | |
CN110879535B (en) | Sliding mode fault-tolerant control method of T-S fuzzy UMV | |
CN105137999A (en) | Aircraft tracking control direct method with input saturation | |
CN115079574B (en) | Distributed fault compensation method for flexible hypersonic aircraft | |
CN112379595B (en) | A Learning Control Method for Compound Disturbances for Nonlinear Strict Feedback Switching Systems | |
CN107908114A (en) | Aircraft robust nonlinear control method and robust controller system | |
CN110362110B (en) | Fixed self-adaptive neural network unmanned aerial vehicle track angle control method |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |