CN108362412B - 一种光纤激光压力传感器及其压力测量方法 - Google Patents

一种光纤激光压力传感器及其压力测量方法 Download PDF

Info

Publication number
CN108362412B
CN108362412B CN201810379565.3A CN201810379565A CN108362412B CN 108362412 B CN108362412 B CN 108362412B CN 201810379565 A CN201810379565 A CN 201810379565A CN 108362412 B CN108362412 B CN 108362412B
Authority
CN
China
Prior art keywords
laser
bragg grating
active phase
optical fiber
fiber bragg
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201810379565.3A
Other languages
English (en)
Other versions
CN108362412A (zh
Inventor
何俊
王义平
郭奎奎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shenzhen University
Original Assignee
Shenzhen University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shenzhen University filed Critical Shenzhen University
Priority to CN201810379565.3A priority Critical patent/CN108362412B/zh
Publication of CN108362412A publication Critical patent/CN108362412A/zh
Application granted granted Critical
Publication of CN108362412B publication Critical patent/CN108362412B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L1/00Measuring force or stress, in general
    • G01L1/24Measuring force or stress, in general by measuring variations of optical properties of material when it is stressed, e.g. by photoelastic stress analysis using infrared, visible light, ultraviolet
    • G01L1/242Measuring force or stress, in general by measuring variations of optical properties of material when it is stressed, e.g. by photoelastic stress analysis using infrared, visible light, ultraviolet the material being an optical fibre
    • G01L1/246Measuring force or stress, in general by measuring variations of optical properties of material when it is stressed, e.g. by photoelastic stress analysis using infrared, visible light, ultraviolet the material being an optical fibre using integrated gratings, e.g. Bragg gratings

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Measuring Fluid Pressure (AREA)
  • Optical Transform (AREA)

Abstract

本发明适用于光纤传感技术领域,本发明提供的一种光纤激光压力传感器及其压力测量方法,利用有源相移光纤布拉格光栅接收泵浦激光器发出的激光光源,并激射激光,激射的所述激光会逆向传输到波分复用器,并从所述波分复用器的一个端口输入到隔离器;所述激光经过所述隔离器单相传输,并经过光电探测器转化为电信号后,传输到频谱分析仪;所述频谱分析仪在接收到所述电信号时,实时记录和显示所述激光的拍频信息;通过在有源相移光纤布拉格光栅上施加压力,所述频谱分析仪上的拍频信息会发生变化,在进行压力测试时,根据预先获取的所述拍频信息和横向压力值的对应关系得到横向压力的大小;本发明提供的压力测量方法灵敏度高且成本低。

Description

一种光纤激光压力传感器及其压力测量方法
技术领域
本发明属于光纤传感技术领域,尤其涉及一种光纤激光压力传感器及其压力测量方法。
背景技术
光纤激光器与传统的半导体激光器相比,具有光纤耦合性好、线宽窄、波长可选择性和高功率等优点。由于光纤的不均匀性、紫外光照射等因素引入双折射,光纤激光器输出的单纵模激光的两偏振态将不再重合。当两个偏振模式都同时满足阈值条件时,将会导致双频输出,会出现拍频现象。如果对相移光栅横向施加压力,会对光栅的两个偏振态产生影响,进而影响拍频信号变化。
目前报道在光纤传感领域内实现压力测试的主要是采用波长解调的方法,这些方法存在不足之处,灵敏度不高、响应慢、低压无法测量、价格昂贵、结构复杂等。
发明内容
本发明提供一种光纤激光压力传感器及其压力测量方法,旨在采用频率解调的方法,通过对有源相移光纤布拉格光栅横向施加压力,并检测拍频信号的变化进而实现对压力的传感,该测量方法灵敏度高、简单、高效并且成本低。
本发明提供了一种光纤激光压力传感器,包括:泵浦激光器、波分复用器和有源相移光纤布拉格光栅,还包括依次连接的隔离器、光电探测器和频谱分析仪;
所述波分复用器包括:输入端、第一输出端和第二输出端,其中,所述输入端、第二输出端位于所述波分复用器的一侧,所述第一输出端位于所述波分复用器的另一侧;所述输入端与所述泵浦激光器的输出端连接,所述第一输出端与所述有源相移光纤布拉格光栅的输入端连接,所述第二输出端与所述隔离器的一端连接;
所述泵浦激光器用于发出激光光源,所述波分复用器用于将所述激光光源泵浦到所述有源相移光纤布拉格光栅;所述有源相移光纤布拉格光栅用于在接收到所述激光光源后,激射激光,并将激射的所述激光逆向传输到所述波分复用器,并从所述波分复用器的第二输出端输入到所述隔离器;所述隔离器用于将所述激光单向传输到所述光电探测器,所述光电探测器用于将所述激光转换为电信号;所述频谱分析仪用于在接收到所述电信号时,实时记录和显示所述激光的拍频信息;并根据预先获取的所述拍频信息和横向压力值的对应关系,得到所述有源相移光纤布拉格光栅上所受的横向压力的大小。
进一步地,所述光纤激光压力传感器还包括:载物台、辅助光纤和载玻片;
所述辅助光纤与所述有源相移光纤布拉格光栅直径相同,所述有源相移光纤布拉格光栅和所述辅助光纤平行置于所述载物台上,所述载玻片置于所述有源相移光纤布拉格光栅和所述辅助光纤上面,通过施压模块给所述载玻片施加压力;
所述载玻片为石英玻璃片。
进一步地,所述光纤激光压力传感器还包括:光纤支架和光纤夹具,所述光纤夹具为旋转夹具,置于所述光纤支架上;
所述光纤支架用于调整所述有源相移光纤布拉格光栅的高度;
所述光纤夹具用于夹持所述有源相移光纤布拉格光栅。
进一步地,所述有源相移光纤布拉格光栅为掺铒有源相移光纤布拉格光栅,所述掺铒有源相移光纤布拉格光栅激射激光的波长为1550nm。
进一步地,所述泵浦激光器为980nm激光器。
进一步地,所述泵浦激光器的输出端和所述波分复用器的输入端通过第一跳线连接,所述波分复用器的第一输出端与所述有源相移光纤布拉格光栅的输入端通过第二跳线连接,所述波分复用器的第二输出端与所述隔离器的一端通过第三跳线连接,所述隔离器的另一端与所述光电探测器的输入端通过第四跳线连接,所述光电探测器的输出端与所述频谱分析仪通过射频线缆连接;
所述第一跳线允许传输的激光波长为980nm,所述第二跳线允许传输的激光波长为980nm和1550nm,所述第三跳线允许传输的激光波长为1550nm,所述第四跳线允许传输的激光波长为1550nm。
进一步地,所述隔离器为偏振相关光隔离器。
进一步地,所述频谱分析仪为即时频谱分析仪或扫瞄调谐频谱分析仪。
本发明还提供了一种光纤激光压力传感器的压力测量方法,包括:
步骤S1,调整所述有源相移光纤布拉格光栅至预置灵敏角度;
步骤S2,通过在所述有源相移光纤布拉格光栅上施加横向压力,并在所述频谱分析仪上读取拍频信息,根据预先获取的在所述预置灵敏角度下所述拍频信息和横向压力值之间的对应关系,得到所述有源相移光纤布拉格光栅上所受的横向压力的大小。
进一步地,所述步骤S1具体为:
步骤S11,调整所述光纤支架的高度,使所述有源相移光纤布拉格光栅脱离所述载物台的水平面,然后旋转所述光纤夹具来旋转所述有源相移光纤布拉格光栅,直至调整到预置灵敏角度;
步骤S12,再次调整所述光纤支架的高度,使所述有源相移光纤布拉格光栅位于所述载物台的水平面高度,松开所述光纤夹具使所述有源相移光纤布拉格光栅放置于所述载物台上。
本发明与现有技术相比,有益效果在于:本发明提供的一种光纤激光压力传感器及其压力测量方法,利用有源相移光纤布拉格光栅接收泵浦激光器发出的激光光源,并激射激光,激射的所述激光会逆向传输到波分复用器,并从所述波分复用器的一个端口输入到隔离器;所述有源相移光纤布拉格光栅的横向方向上所受的横向压力的不同,激射激光的拍频不同;所述激光经过所述隔离器单相传输,并经过光电探测器转化为电信号后,传输到频谱分析仪;所述频谱分析仪在接收到所述电信号时,实时记录和显示所述激光的拍频信息;并根据预先获取的所述拍频信息和横向压力值的对应关系,得到所述有源相移光纤布拉格光栅上所受的横向压力的大小;本发明与现有技术相比,采用频率解调的方法,对有源相移光纤布拉格光栅横向施加压力,通过拍频信号的频率变化进而实现对压力传感;由于有源相移光纤布拉格光栅的双折射受到微小横向压力就会发生变化,因此,该方法灵敏度高,并且简单、高效和成本低。
附图说明
图1是本发明实施例提供的一种光纤激光压力传感器的结构示意图;
图2是图1提供的一种光纤激光压力传感器的施压区域的相关装置示意图;
图3是本发明实施例提供的一种上述光纤激光压力传感器的压力测量方法的流程示意图;
图4是本发明实施例提供的对有源相移光纤布拉格光栅在特定方向施加压力的示意图;
图5a是本发明实施例提供的光纤激光压力传感器在不同压力下拍频信号强度变化的示意图;
图5b是本发明实施例提供的光纤激光压力传感器在不同压力下对应拍频信号的线性拟合结果的示意图。
具体实施方式
为了使本发明的目的、技术方案及优点更加清楚明白,以下结合附图及实施例,对本发明进行进一步详细说明。应当理解,此处所描述的具体实施例仅仅用以解释本发明,并不用于限定本发明。
由于现有技术中存在利用波长解调的方法进行压力测试时灵敏度不高等问题。
为了解决上述技术问题,本发明提出一种光纤激光压力传感器及其压力测量方法,采用频率解调的方法,对有源相移光纤布拉格光栅横向施加压力,通过拍频信号的频率变化进而实现对压力传感,提高了压力传感灵敏度。
下面具体介绍本发明实施例提供的一种光纤激光压力传感器,如图1所示,包括:泵浦激光器101、波分复用器102和有源相移光纤布拉格光栅103,还包括依次连接的隔离器104、光电探测器105和频谱分析仪106;
所述波分复用器102为三端口波分复用器,包括:输入端b1、第一输出端b2和第二输出端b3,其中,所述输入端b1、第二输出端b3位于所述波分复用器的一侧,所述第一输出端b2位于所述波分复用器102的另一侧。所述泵浦激光器101的输出端与所述波分复用器102的输入端之间通过第一跳线连接,所述有源相移光纤布拉格光栅103的输入端c1与所述波分复用器102的第一输出端之间通过第二跳线连接,所述隔离器104的一端与所述波分复用器102的第二输出端b3之间通过第三跳线连接;所述隔离器104的另一端与所述光电探测器105的输入端通过第四跳线连接,所述光电探测器105的输出端与所述频谱分析仪106通过射频线缆连接。
所述泵浦激光器101用于发出激光光源,以发出的所述激光光源作为泵浦光源,经过所述第一跳线传输到所述波分复用器102;所述波分复用器102用于将所述激光光源泵浦到所述有源相移光纤布拉格光栅103,具体地,经过所述波分复用器102的激光光源从所述第一输出端b2输出,并经过所述第二跳线,从所述有源相移光纤布拉格光栅103的输入端c1进入到所述有源相移光纤布拉格光栅103;所述有源相移光纤布拉格光栅103用于在接收到所述激光光源后,激射激光,激射的所述激光会发生反射,逆向传输到所述波分复用器102,并从所述波分复用器102的第二输出端b3输入到所述隔离器104。具体地,逆向传输的所述激光经过所述第二跳线和所述波分复用器102的第一输出端b2进入到所述波分复用器102,并从所述波分复用器102的第二输出端b3输入到所述隔离器。需要说明的是,所述有源相移光纤布拉格光栅103的横向方向上所受的横向压力不同,激射激光的拍频信号不同。所述隔离器104用于将所述激光单向传输到所述光电探测器105,所述光电探测器105用于将所述激光转换为电信号;所述频谱分析仪106用于在接收到所述电信号时,实时记录、监测和显示所述激光的拍频信息;并根据预先获取的所述拍频信息和横向压力值的对应关系,得到所述有源相移光纤布拉格光栅103上所受的横向压力的大小。
需要说明的是,所述拍频信息指的是拍频信号的频率信息;所述有源相移光纤布拉格光栅103上不施加压力时,所述频谱分析仪106上显示一个起始的拍频信息,通过在所述有源相移光纤布拉格光栅103上施加压力,所述拍频信息会发生变化;通过事先获取拍频信息和横向压力值的对应关系,那么,在实际测量时,通过读取所述频谱分析仪106上的拍频信息,并结合所述对应关系,即可获取到对应的横向压力值。
具体地,本发明实施例提供的所述有源相移光纤布拉格光栅103为掺铒有源相移光纤布拉格光栅,可以是低掺铒有源相移光纤布拉格光栅或高掺铒有源相移光纤布拉格光栅,所述掺铒有源相移光纤布拉格光栅激射激光的波长为1550nm;本发明实施例提供的所述泵浦激光器101为980nm激光器,所述隔离器104为偏振相关光隔离器,所述光电探测器105为高速光电探测器,所述频谱分析仪106为即时频谱分析仪或扫瞄调谐频谱分析仪。
具体地,本发明实施例提供的所述第一跳线只允许波长为980nm的激光传输,所述第二跳线只允许波长为980nm和1550nm的激光传输,所述第三跳线只允许波长为1550nm的激光传输,所述第四跳线只允许波长为1550nm的激光传输。
需要说明的是,本发明以所述有源相移光纤布拉格光栅103作为传感部位;具体地,通过给所述有源相移光纤布拉格光栅103施加横向压力,并利用所述光纤激光压力传感器对施加的横向压力进行检测。
具体地,如图2所示,所述光纤激光压力传感器还包括:载物台115、辅助光纤114和载玻片113,所述载物台115为恒温载物台,所述辅助光纤114与所述有源相移光纤布拉格光栅103直径相同,用于水平支撑所述载玻片113。具体地,所述有源相移光纤布拉格光栅103和所述辅助光纤114平行置于所述载物台115上,所述载玻片113为石英玻璃片,置于所述有源相移光纤布拉格光栅103和所述辅助光纤114上面,通过施压模块112可以给所述载玻片113施加不同的压力,实现压力测试;需要说明的是,所述施压模块112是代表任何能够提供压力的物体。
需要说明的是,所述载玻片113是为了辅助施加压力给所述有源相移光纤布拉格光栅103的。因为如果没有载玻片113,施加压力直接作用在有源相移光纤布拉格光栅103上,一方面,受力面很小(有源相移光纤布拉格光栅直径大约为125um),不好控制;另一方面,有源相移光纤布拉格光栅103是圆柱形的,施力过程会移动。另外,事实上所述载玻片113可用类似载玻片这样的平板替代。
进一步地,所述光纤激光压力传感器还包括:光纤支架和光纤夹具,图中未示出,所述光纤夹具为旋转夹具,置于所述光纤支架上;所述光纤支架为方座支架或者三角支架的一种,用于调整所述有源相移光纤布拉格光栅103的高度,所述光纤夹具用于夹持所述有源相移光纤布拉格光栅103。具体地,由于在利用所述光纤激光压力传感器进行测量之前,需要调整所述有源相移光纤布拉格光栅103的角度,不同角度横向压力的受力方向不同,灵敏度也不同,本发明实施例是利用所述光纤支架和光纤夹具配合进行调整。
下面具体介绍本发明实施例提供的一种上述光纤激光压力传感器的压力测量方法,如图3所示,包括:
步骤S1,调整所述有源相移光纤布拉格光栅至预置灵敏角度;
下面先具体说明根据拍频信号计算得到压力值的理论推导过程:
根据频谱分析仪监测拍频信号的变化,进而可以判定激射激光的偏振态,其中拍频信号满足公式:
,(1)
其中,f x ,f y分别为两个相互垂直偏振态所对应的频率;n x ,n y分别为两个相互垂直偏振态所对应的折射率,分别定义为慢轴和快轴(n x>n y),如图4所示;n 0为平均折射率,c为光速,为激光中心波长,B称为双折射度。因此,可以通过频谱分析仪观测拍频信号的变化(强度,位置),进而就可以判定B的大小,随着施加不同的压力F,双折射度B不断发生变化,其中满足:
,(2)
其中,n0为光栅的平均有效折射率,p 11 , p 12为光栅的弹光系数,v p为泊松比,F为横向压力,r为光栅的直径,E为杨氏模场;θ为施加压力F方向与n x的夹角,如图4所示,这里取θ=0°,即施加压力F方向是沿着n x轴(慢轴)方向的;δB的变化会引起拍频信号的变化,满足:
,(3)
其中,为拍频信号的变化值,L为光栅的长度,Leff为相移区的有效长度;通过公式(1)、(2)、(3)可以得出拍频信号的变化δB与施加压力F之间的关系,具体来说,如果双折射度δB发生变化,会引起拍频信号的变化,如公式(3),而根据δB与施加压力F之间的关系可以得出施加压力F的值,如公式(2)。
下面再具体介绍在实际进行压力测试前所做的准备工作:
由于在所述有源相移光纤布拉格光栅的侧面方向上施加压力时,不同侧面方向压力的灵敏度不同,我们在进行压力测量之前,需要测出所述有源相移光纤布拉格光栅在某一方向的灵敏度。具体做法:通过带有刻度的压力计在某一横向方向上对所述有源相移光纤布拉格光栅施加压力,得出压力值和频率信号之间的关系,并得出在该压力施加方向的灵敏度,进而就可以用这个光纤激光压力传感器去进行压力测试;在进行压力测试前,需要将所述有源相移光纤布拉格光栅调整至测试过的该压力施压方向。
本发明实施例列举了沿nx轴(慢轴)方向灵敏度的测试过程,如图5a-b所示为光纤激光压力传感器在不同压力下拍频信号变化及线性拟合结果,可以看出压力F从0N到2.91N变化时,拍频信号向高频方向移动,从182.07MHz飘移到364.37MHz。对实验数据进行线性拟合处理后,得出横向压力灵敏度达到61.4MHz/(N/mm),其中,y=182.07+61.4*x,为拟合的在该方向下拍频信息和横向压力值之间的对应关系,x代表横向压力值,y代表对应的拍频信号的频率信息。需要说明的是:这里只给出了沿着nx轴(慢轴)方向灵敏度的值,事实上,改变施力方向即θ取不同的值,采用相同的测试方法,可以得到不同施力方向下的横向压力灵敏度。
所述步骤S1具体为:
步骤S11,调整所述光纤支架的高度,使所述有源相移光纤布拉格光栅脱离所述载物台的水平面,然后旋转所述光纤夹具来旋转所述有源相移光纤布拉格光栅,直至调整到预置灵敏角度;
步骤S12,再次调整所述光纤支架的高度,使所述有源相移光纤布拉格光栅位于所述载物台的水平面高度,松开所述光纤夹具使所述有源相移光纤布拉格光栅放置于所述载物台上。
步骤S2,通过在所述有源相移光纤布拉格光栅上施加横向压力,并在所述频谱分析仪上读取拍频信息,根据预先获取的在所述预置灵敏角度下所述拍频信息和横向压力值之间的对应关系,得到所述有源相移光纤布拉格光栅上所受的横向压力的大小。
本发明在以下领域有潜在的应用:(1)高精度低压传感器:本发明提出的一种光纤激光压力传感器通过频率解调的方法对压力进行测试,其灵敏度高,尤其是低压传感方面;并且这种光纤激光压力传感器易于大批量制造。(2)光纤水听器:本发明提出的一种光纤激光压力传感可以对水下声音进行测试,光纤水听器由于其特有的抗电磁干扰、体积小等特点,使其有望在水下反侦探作战中有广泛的应用。
以上所述仅为本发明的较佳实施例而已,并不用以限制本发明,凡在本发明的精神和原则之内所作的任何修改、等同替换和改进等,均应包含在本发明的保护范围之内。

Claims (6)

1.一种压力测量方法,其特征在于,用于光纤激光压力传感器,所述光纤激光压力传感器包括:泵浦激光器、波分复用器和有源相移光纤布拉格光栅,还包括依次连接的隔离器、光电探测器和频谱分析仪;
所述波分复用器包括:输入端、第一输出端和第二输出端,其中,所述输入端、第二输出端位于所述波分复用器的一侧,所述第一输出端位于所述波分复用器的另一侧;所述输入端与所述泵浦激光器的输出端连接,所述第一输出端与所述有源相移光纤布拉格光栅的输入端连接,所述第二输出端与所述隔离器的一端连接;
所述泵浦激光器用于发出激光光源,所述波分复用器用于将所述激光光源泵浦到所述有源相移光纤布拉格光栅;所述有源相移光纤布拉格光栅用于在接收到所述激光光源后,激射激光,并将激射的所述激光逆向传输到所述波分复用器,并从所述波分复用器的第二输出端输入到所述隔离器;所述隔离器用于将所述激光单向传输到所述光电探测器,所述光电探测器用于将所述激光转换为电信号;所述频谱分析仪用于在接收到所述电信号时,实时记录和显示所述激光的拍频信息;并根据预先获取的所述拍频信息和横向压力值的对应关系,得到所述有源相移光纤布拉格光栅上所受的横向压力的大小;
所述光纤激光压力传感器还包括:载物台、辅助光纤和载玻片;
所述辅助光纤与所述有源相移光纤布拉格光栅直径相同,所述有源相移光纤布拉格光栅和所述辅助光纤平行置于所述载物台上,所述载玻片置于所述有源相移光纤布拉格光栅和所述辅助光纤上面,通过施压模块给所述载玻片施加压力;
所述载玻片为石英玻璃片;
所述光纤激光压力传感器还包括:光纤支架和光纤夹具,所述光纤夹具为旋转夹具,置于所述光纤支架上;
所述光纤支架用于调整所述有源相移光纤布拉格光栅的高度;
所述光纤夹具用于夹持所述有源相移光纤布拉格光栅;
所述压力测量方法包括:
步骤S1,调整所述有源相移光纤布拉格光栅至预置灵敏角度;
步骤S2,通过在所述有源相移光纤布拉格光栅上施加横向压力,并在所述频谱分析仪上读取拍频信息,根据预先获取的在所述预置灵敏角度下所述拍频信息和横向压力值之间的对应关系,得到所述有源相移光纤布拉格光栅上所受的横向压力的大小;
所述步骤S1具体为:
步骤S11,调整所述光纤支架的高度,使所述有源相移光纤布拉格光栅脱离所述载物台的水平面,然后旋转所述光纤夹具来旋转所述有源相移光纤布拉格光栅,直至调整到预置灵敏角度;
步骤S12,再次调整所述光纤支架的高度,使所述有源相移光纤布拉格光栅位于所述载物台的水平面高度,松开所述光纤夹具使所述有源相移光纤布拉格光栅放置于所述载物台上。
2.如权利要求1所述的压力测量方法,其特征在于,所述有源相移光纤布拉格光栅为掺铒有源相移光纤布拉格光栅,所述掺铒有源相移光纤布拉格光栅激射激光的波长为1550nm。
3.如权利要求1所述的压力测量方法,其特征在于,所述泵浦激光器为980nm激光器。
4.如权利要求3所述的压力测量方法,其特征在于,所述泵浦激光器的输出端和所述波分复用器的输入端通过第一跳线连接,所述波分复用器的第一输出端与所述有源相移光纤布拉格光栅的输入端通过第二跳线连接,所述波分复用器的第二输出端与所述隔离器的一端通过第三跳线连接,所述隔离器的另一端与所述光电探测器的输入端通过第四跳线连接,所述光电探测器的输出端与所述频谱分析仪通过射频线缆连接;
所述第一跳线允许传输的激光波长为980nm,所述第二跳线允许传输的激光波长为980nm和1550nm,所述第三跳线允许传输的激光波长为1550nm,所述第四跳线允许传输的激光波长为1550nm。
5.如权利要求1所述的压力测量方法,其特征在于,所述隔离器为偏振相关光隔离器。
6.如权利要求1所述的压力测量方法,其特征在于,所述频谱分析仪为即时频谱分析仪或扫瞄调谐频谱分析仪。
CN201810379565.3A 2018-04-25 2018-04-25 一种光纤激光压力传感器及其压力测量方法 Active CN108362412B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201810379565.3A CN108362412B (zh) 2018-04-25 2018-04-25 一种光纤激光压力传感器及其压力测量方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201810379565.3A CN108362412B (zh) 2018-04-25 2018-04-25 一种光纤激光压力传感器及其压力测量方法

Publications (2)

Publication Number Publication Date
CN108362412A CN108362412A (zh) 2018-08-03
CN108362412B true CN108362412B (zh) 2024-05-07

Family

ID=63009124

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201810379565.3A Active CN108362412B (zh) 2018-04-25 2018-04-25 一种光纤激光压力传感器及其压力测量方法

Country Status (1)

Country Link
CN (1) CN108362412B (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019205028A1 (zh) * 2018-04-25 2019-10-31 深圳大学 一种光纤激光压力传感器及其压力测量方法
RU204013U1 (ru) * 2020-12-15 2021-05-04 Федеральное государственное бюджетное образовательное учреждение высшего образования "Казанский национальный исследовательский технический университет им. А.Н. Туполева - КАИ" Волоконно-оптическое устройство измерения давления
RU204010U1 (ru) * 2020-12-15 2021-05-04 Федеральное государственное бюджетное образовательное учреждение высшего образования "Казанский национальный исследовательский технический университет им. А.Н. Туполева - КАИ" Волоконно-оптическое устройство измерения давления

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1844856A (zh) * 2006-05-26 2006-10-11 北京交通大学 写有光栅的光子晶体光纤的横向应力传感系统及实现方法
CN101793570A (zh) * 2009-10-21 2010-08-04 南京大学 光纤布拉格光栅激光器的传感方法
CN202083512U (zh) * 2011-03-29 2011-12-21 浙江大学 一种微压力传感器
CN102778324A (zh) * 2012-07-12 2012-11-14 暨南大学 基于正交双偏振光纤激光器的液压传感器
CN103591970A (zh) * 2013-11-21 2014-02-19 黑龙江大学 双光栅光纤多纵模直腔激光传感器频分复用装置
CN103616649A (zh) * 2013-12-02 2014-03-05 暨南大学 基于光纤光栅激光器的磁场传感器灵敏度调谐方法
CN208171487U (zh) * 2018-04-25 2018-11-30 深圳大学 一种光纤激光压力传感器

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1844856A (zh) * 2006-05-26 2006-10-11 北京交通大学 写有光栅的光子晶体光纤的横向应力传感系统及实现方法
CN101793570A (zh) * 2009-10-21 2010-08-04 南京大学 光纤布拉格光栅激光器的传感方法
CN202083512U (zh) * 2011-03-29 2011-12-21 浙江大学 一种微压力传感器
CN102778324A (zh) * 2012-07-12 2012-11-14 暨南大学 基于正交双偏振光纤激光器的液压传感器
CN103591970A (zh) * 2013-11-21 2014-02-19 黑龙江大学 双光栅光纤多纵模直腔激光传感器频分复用装置
CN103616649A (zh) * 2013-12-02 2014-03-05 暨南大学 基于光纤光栅激光器的磁场传感器灵敏度调谐方法
CN208171487U (zh) * 2018-04-25 2018-11-30 深圳大学 一种光纤激光压力传感器

Also Published As

Publication number Publication date
CN108362412A (zh) 2018-08-03

Similar Documents

Publication Publication Date Title
JP3335205B2 (ja) 光学システムの較正方法
CN108362412B (zh) 一种光纤激光压力传感器及其压力测量方法
CN103196584B (zh) 测量光纤中温度和应力的方法、以及布里渊光时域反射仪
CN109238355A (zh) 光纤分布式动静态参量同时传感测量的装置及方法
CN106949850B (zh) 一种高灵敏度高精度的光纤形状传感测量方法及系统
CN103278185B (zh) 基于校准光纤光栅的腔衰荡光纤光栅传感解调装置
CN103900798B (zh) 一种带有光程扫描在线校正的光学相干域偏振测量装置
Calvani et al. Polarization measurements on single-mode fibers
CN102027346B (zh) 用于空间分辨温度测量的设备
CN104776871B (zh) 光纤布里渊分布式测量光路、装置和方法
CN113503901B (zh) 消除白光干涉仪测量信号抖动的装置及方法
CN108801305B (zh) 基于阶梯脉冲自放大的布里渊光时域反射仪的方法及装置
CN102472785A (zh) 电/磁场探头
CN105241482A (zh) 一种有源光纤光栅传感器波长解调系统及方法
CN104062569A (zh) 一种复眼式光纤efpi的局部放电方向检测方法
CN104613889A (zh) 一种基于光纤环形激光器的弯曲传感测量系统
EP2861947B1 (en) A method and device for pressure sensing
CN208171487U (zh) 一种光纤激光压力传感器
CN109001155A (zh) 一种基于低增益低噪声光纤腔衰荡技术的湿度测量方法
WO2019205028A1 (zh) 一种光纤激光压力传感器及其压力测量方法
CN206725120U (zh) 一种基于前向布里渊散射的光纤温度传感器
CN104062568A (zh) 一种复眼式光纤efpi局部放电方向检测系统
CN203224310U (zh) 布里渊光时域反射仪
CN109506788A (zh) 基于傅里叶锁模激光器的光波长测量系统
CN101093161A (zh) 光纤位移传感器

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant