CN108361982A - 梯级加热多模式耦合分层出水的低温热泵热水器 - Google Patents

梯级加热多模式耦合分层出水的低温热泵热水器 Download PDF

Info

Publication number
CN108361982A
CN108361982A CN201810320317.1A CN201810320317A CN108361982A CN 108361982 A CN108361982 A CN 108361982A CN 201810320317 A CN201810320317 A CN 201810320317A CN 108361982 A CN108361982 A CN 108361982A
Authority
CN
China
Prior art keywords
valve
shut
water
outlet
import
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
CN201810320317.1A
Other languages
English (en)
Inventor
徐英杰
李恩腾
蒋宁
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Zhejiang University of Technology ZJUT
Original Assignee
Zhejiang University of Technology ZJUT
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Zhejiang University of Technology ZJUT filed Critical Zhejiang University of Technology ZJUT
Priority to CN201810320317.1A priority Critical patent/CN108361982A/zh
Publication of CN108361982A publication Critical patent/CN108361982A/zh
Priority to CN201910278689.7A priority patent/CN109798661B/zh
Withdrawn legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24HFLUID HEATERS, e.g. WATER OR AIR HEATERS, HAVING HEAT-GENERATING MEANS, e.g. HEAT PUMPS, IN GENERAL
    • F24H4/00Fluid heaters characterised by the use of heat pumps
    • F24H4/02Water heaters
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24HFLUID HEATERS, e.g. WATER OR AIR HEATERS, HAVING HEAT-GENERATING MEANS, e.g. HEAT PUMPS, IN GENERAL
    • F24H9/00Details
    • F24H9/20Arrangement or mounting of control or safety devices
    • F24H9/2007Arrangement or mounting of control or safety devices for water heaters
    • F24H9/2014Arrangement or mounting of control or safety devices for water heaters using electrical energy supply
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B1/00Compression machines, plants or systems with non-reversible cycle
    • F25B1/10Compression machines, plants or systems with non-reversible cycle with multi-stage compression
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B41/00Fluid-circulation arrangements
    • F25B41/20Disposition of valves, e.g. of on-off valves or flow control valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B41/00Fluid-circulation arrangements
    • F25B41/30Expansion means; Dispositions thereof
    • F25B41/31Expansion valves

Abstract

一种梯级加热多模式耦合分层出水的低温热泵热水器,所述热水器包括蒸发器、第一压缩机、第一截止阀、第二截止阀、中间换热器、第一膨胀阀、第二压缩机、第一冷凝器、第二冷凝器、第二膨胀阀、水泵、第三截止阀、第四截止阀、第五截止阀、第六截止阀、第七截止阀、第八截止阀、第九截止阀、第十截止阀、流量调节阀、水箱、第一混水阀、第二混水阀、第三混水阀和第十一截止阀;采用两种耦合式的热泵循环通过多种模式切换对水箱中多个不同温度分层区进行独立加热,通过对不同截止阀的切换实现在不同耦合模式下对不同设定温度分层区单独加热的方式。本发明提供了一种运行稳定性较好、工作范围较广的梯级加热多模式耦合分层出水的低温热泵热水器。

Description

梯级加热多模式耦合分层出水的低温热泵热水器
技术领域
本发明热泵领域,涉及一种热泵热水器。
背景技术
随着市场的逐渐认可以及国家政策的支持,空气源热泵热水器得到了空前广泛的推广,用户对用水的舒适度及节能特别关注。现有的热泵热水器只能将水加热到很高温度存放在水箱中,当用户使用较低温度的热水时,只能从水箱中放出很高温度的热水与冷水进行混合后才能使用,这个过程会浪费热水中的有效能从而产生较大的熵产,减少能源的利用率,且具有热水温度单一无法快速满足用户对不同用水温度的需求;且当热泵系统检测水温降低时会自动启动对整个水箱的水进行循环加热,这会造成能源浪费以及不能快速补充用户所需温度的热水问题。然而用户普遍有快速用水以及节能的需求,提高热泵产热效率是一个重要课题。此外,在我国冬季普遍寒冷,尤其西北、东北地区气温可低于-20℃,此时普通的热泵热水器效率急剧下降甚至无法运行也严重制约了其节能效果。因此提高热泵运行稳定性与工作范围也是一个重要的课题。
发明内容
为了克服已有热水器的运行稳定性较差、工作范围受限的不足,本发明提供了一种运行稳定性较好、工作范围较广的梯级加热多模式耦合分层出水的低温热泵热水器。
本发明解决其技术问题所采用的技术方案是:
一种梯级加热多模式耦合分层出水的低温热泵热水器,所述热水器包括蒸发器、第一压缩机、第一截止阀、第二截止阀、中间换热器、第一膨胀阀、第二压缩机、第一冷凝器、第二冷凝器、第二膨胀阀、水泵、第三截止阀、第四截止阀、第五截止阀、第六截止阀、第七截止阀、第八截止阀、第九截止阀、第十截止阀、流量调节阀、水箱、第一混水阀、第二混水阀、第三混水阀和第十一截止阀;
所述第一压缩机的进口与蒸发器的出口相连,第一压缩机的出口分别与第一截止阀的进口和第二截止阀的进口分别相连;中间换热器的第一进口与第一截止阀的出口相连,中间换热器的第二进口与第二膨胀阀的出口相连,中间换热器的第一出口与第一膨胀阀的进口相连,中间换热器的第二出口与第二压缩机的进口相连;第一膨胀阀的出口与蒸发器的进口相连;第一冷凝器的第一进口与第二截止阀的出口相连,第一冷凝器的第二进口与水泵的出口相连,第一冷凝器的第一出口与第一膨胀阀的进口相连,第一冷凝器的第二出口与第二冷凝器的第二进口相连;第二冷凝器的第一进口与第二压缩机的出口相连,第二冷凝器的第二进口与第一冷凝器的第二出口相连,第二冷凝器的第一出口与第二膨胀阀的进口相连,第二冷凝器的第二出口分别与第五截止阀和第六截止阀的进口相连;水泵的进口分别与第三截止阀的出口和流量调节阀的出口相连;第三截止阀的进口分别与第十截止阀的进口、第四截止阀的出口和第九截止阀的出口相连;第四截止阀的进口分别与第八截止阀的进口、第五截止阀的出口和第七截止阀的出口相连;水箱的第一进口与第六截止阀的出口相连,水箱的第二进口与第八截止阀的出口相连,水箱的第三进口与第十截止阀的出口相连,水箱的第四进口与第十一截止阀的出口相连,水箱的第一出口与第七截止阀的进口相连,水箱的第二出口与第九截止阀的进口相连,水箱的第三出口与流量调节阀的进口相连,水箱的第四出口与第一混水阀的第一进口相连,水箱的第五出口与第二混水阀的第一进口相连,水箱的第六出口与第三混水阀的第一进口相连;第一混水阀的第二进口与冷水入口相连,第一混水阀的出口为第一热水出口;第二混水阀的第二进口与冷水入口相连,第二混水阀的出口为第二热水出口;第三混水阀的第二进口与冷水入口相连,第三混水阀的出口为第三热水出口。
进一步,所述第一混水阀、第二混水阀和第三混水阀均带有流量传感器。
再进一步,所述热水器还包括第一温度传感器、第二温度传感器和第三温度传感器,第一温度传感器位于水箱高温热水分层区的中部,第二温度传感器位于水箱中温热水分层区的中部,第三温度传感器位于水箱低温分层区的中部。
更进一步,所述热水器还包括控制系统,所述第一混水阀、第二混水阀和第三混水阀的流量传感器、第一温度传感器、第二温度传感器和第三温度传感器均与所述控制系统连接,所述控制系统分别与第一截止阀、第二截止阀、第一膨胀阀、第二膨胀阀、第三截止阀、第四截止阀、第五截止阀、第六截止阀、第七截止阀、第八截止阀、第九截止阀、第十截止阀、第十一截止阀、流量调节阀、水泵、第一压缩机和第二压缩机的受控端连接。
本发明的有益效果主要表现在:第一,本发明中热泵高低温级可分别与两个冷凝器耦合,两个冷凝器又能与三个不同温度分层区梯级耦合,由此可实现多种模式对热水精准的梯级加热,从而减少换热过程的损并减少压缩机的功率。与传统的热泵系统相比,不仅大大提高系统的能效,还提升加热水的能力和循环的效率。第二、本系统采用两台压缩机,可实现复叠运行,扩展了热泵的工作范围及运行的稳定性。第三,在用户使用中温、较低温度的热水时,相比与传统地对整个大水箱的水加热到高温,再通过缓慢的热传递方式变成较低温度的水所造成的热水有效能的减少,能源的浪费以及热水供应的滞后,本发明通过对不同截止阀的切换实现在不同耦合模式下对不同设定温度分层区单独加热的方式,可以有效地节约能源的浪费,且能快速补充热水到被用户使用所消耗掉的热水分层区。第四,为了减少用户在使用较低温度热水时通过将高温度的热水与冷水混合而带来的损失,本发明采用从不同温度分层区取水的方式;且本发明结合了直热式热泵热水器对用户使用热水需求的反应速度快和循环式热泵热水器能保持对温度分层区热水温度稳定的优点,设计了在用户使用和闲置状态下不同的加热模式,从而更好适应用户需求。
附图说明
图1是梯级加热多模式耦合分层出水的低温热泵热水器的示意图。
具体实施方式
下面结合附图对本发明作进一步描述。
参照图1,一种梯级加热多模式耦合分层出水的低温热泵热水器,包括蒸发器1、第一压缩机2、第一截止阀3、第二截止阀4、中间换热器5、第一膨胀阀6、第二压缩机7、第一冷凝器8、第二冷凝器9、第二膨胀阀10、水泵11、第三截止阀12、第四截止阀13、第五截止阀14、第六截止阀15、第七截止阀16、第八截止阀17、第九截止阀18、第十截止阀19、流量调节阀20、水箱21、第一混水阀22(带流量传感器)、第二混水阀23(带流量传感器)、第三混水阀24(带流量传感器)、第十一截止阀25、控制系统26、第一温度传感器27、第二温度传感器28和第三温度传感器29。
所述第一压缩机2的进口与蒸发器1的出口通过管线相连,第一压缩机2的出口分别与第一截止阀3的进口和第二截止阀4的进口通过管线相连;中间换热器5有四个进出口,第一进口与第一截止阀3的出口通过管线相连,第二进口与第二膨胀阀10的出口通过管线相连,第一出口与第一膨胀阀6的进口通过管线相连,第二出口与第二压缩机7的进口通过管线相连;第一膨胀阀6的出口与蒸发器1的进口通过管线相连;第一冷凝器8有四个进出口,第一进口与第二截止阀4的出口通过管线相连,第二进口与水泵11的出口通过管线相连,第一出口与第一膨胀阀6的进口通过管线相连,第二出口与第二冷凝器9的第二进口通过管线相连;第二冷凝器9有四个进出口,第一进口与第二压缩机7的出口通过管线相连,第二进口与第一冷凝器8的第二出口通过管线相连,第一出口与第二膨胀阀10的进口通过管线相连,第二出口与第五截止阀14和第六截止阀15的进口通过管线相连;水泵11的进口分别与第三截止阀12的出口和流量调节阀20的出口通过管线相连;第三截止阀12的进口分别与第十截止阀19的进口、第四截止阀13的出口和第九截止阀18的出口通过管线相连;第四截止阀13的进口分别与第八截止阀17的进口、第五截止阀14的出口和第七截止阀16的出口通过管线相连;水箱21有十个进出口,第一进口与第六截止阀15的出口通过管线相连,第二进口与第八截止阀17的出口通过管线相连,第三进口与第十截止阀19的出口通过管线相连,第四进口与第十一截止阀25的出口通过管线相连,第一出口与第七截止阀16的进口通过管线相连,第二出口与第九截止阀18的进口通过管线相连,第三出口与流量调节阀20的进口通过管线相连,第四出口与第一混水阀22的第一进口通过管线相连,第五出口与第二混水阀23的第一进口通过管线相连,第六出口与第三混水阀24的第一进口通过管线相连;第一混水阀22有三个进出口,第二进口与冷水入口通过管线相连,出口是供给用户所需热水;第二混水阀23有三个进出口,第二进口与冷水入口通过管线相连,出口是供给用户所需热水;第三混水阀24有三个进出口,第二进口与冷水入口通过管线相连,出口是供给用户所需热水。第一温度传感器27位于水箱21高温热水分层区的中部,第二温度传感器28位于水箱21中温热水分层区的中部,第三温度传感器29位于水箱21低温分层区的中部。
本实施例的工作过程为:
第一压缩机选用变频压缩机,第二压缩机选用。
双级耦合梯级加热高温热水出水模式:当所需热水温度较高或环境温度较低时采用该模式,用户通过第一混水阀22的出口取水,此时第一混水阀22处的流量传感器检测到热水流量信号,将信号传递到控制系统26,然后控制系统26输出控制信号到各部件,使第一截止阀3、第二截止阀4、第六截止阀15、第十一截止阀25均打开,第三截止阀12、第四截止阀13、第五截止阀14、第七截止阀16、第八截止阀17、第九截止阀18、第十截止阀19均关闭,第一压缩机2以高频率运行,第二压缩机7、水泵11均运行,控制系统26对流量调节阀20做出流量调节使得流量调节阀20处水流量等于第一混水阀22处热水流量。低压级高温高压的气态制冷剂从第一压缩机2的出口流出分成两路,第一路经第二截止阀4进入第一冷凝器8的第一进口,在第一冷凝器8内放热冷凝,低温高压的液态制冷剂从第一冷凝器8的第一出口流出,第二路经第一截止阀3进入中间换热器5的第一进口,在中间换热器5中放热冷凝,低温高压的液态制冷剂从中间换热器5的第一出口流出与来自第一冷凝器8第一出口的低温高压液态制冷剂混合后经过第一膨胀阀6后变成低温低压的制冷剂气液混合物进入蒸发器1中吸收环境热量,吸热蒸发后的低温低压气态制冷剂被吸入第一压缩机2的入口,经第一压缩机2压缩后变成高温高压的气态制冷剂。高压级高温高压的气态制冷剂从第二压缩机7的出口流出进入第二冷凝器9的第一进口,在第二冷凝器9内放热冷凝,低温高压的液态制冷剂从第二冷凝器9的第一出口流出后经过第二膨胀阀10变成低温低压的制冷剂气液混合物进入中间换热器5中吸收来自低压级的热量,吸热蒸发后的低温低压气态制冷剂被吸入第二压缩机7的入口,经第二压缩机7压缩后变成高温高压的气态制冷剂。冷水由公共供水管进入,经第十一截止阀25流进流进水箱21的第四进口,由水箱21的第三出口流出经过流量调节阀20后经水泵11进入第一冷凝器8的第二进口,在第一冷凝器中初级加热变为中温水,再从第一冷凝器8的第二出口流出进入第二冷凝器9的第二进口,在第二冷凝器9中被再次加热变成高温热水经第六截止阀15流进水箱21的第一进口,高温热水由水箱21第四出口流出进入第一混水阀22第一进口与来自第一混水阀22第二进口的冷水经过一定比例混合后由第一混水阀22出口流出供给用户。当用户关掉热水时,此时水箱21高温热水分层区的第一温度传感器27检测到水箱中高温分层区热水温度,将温度信号传递到控制系统26,若该温度小于水箱21高温热水分层区设定温度时,控制系统26输出控制信号使第三截止阀12、第四截止阀13、第七截止阀16打开,第十一截止阀25、流量调节阀20关闭。水箱21中的高温热水分层区的热水从第一出口流出经第七截止阀16、第四截止阀13、第三截止阀12、水泵11进入第一冷凝器8的第二进口,在第一冷凝器中初级加热变为中温水,再从第一冷凝器8的第二出口流出进入第二冷凝器9的第二进口,在第二冷凝器9中被再次加热变成高温热水经第六截止阀15返回到水箱21的第一进口。若水箱21中高温热水分层区热水温度达到水箱21高温热水分层区设定温度,控制系统26输出控制信号到各部件,使各部件均关闭。
双级耦合梯级加热中温热水出水模式:当所需热水温度正常或环境温度较低时采用该模式,用户通过第二混水阀23的出口取水,此时第二混水阀23处的流量传感器检测到热水流量信号,将信号传递到控制系统26,然后控制系统26输出控制信号到各部件,使第一截止阀3、第二截止阀4、第五截止阀14、第八截止阀17、第十一截止阀25均打开,第三截止阀12、第四截止阀13、第六截止阀15、第七截止阀16、第九截止阀18、第十截止阀19均关闭,第一压缩机2以正常频率运行,第二压缩机7、水泵11均运行,控制系统26对流量调节阀20做出流量调节使得流量调节阀20处水流量等于第二混水阀23处热水流量。低压级高温高压的气态制冷剂从第一压缩机2的出口流出分成两路,第一路经第二截止阀4进入第一冷凝器8的第一进口,在第一冷凝器8内放热冷凝,低温高压的液态制冷剂从第一冷凝器8的第一出口流出,第二路经第一截止阀3进入中间换热器5的第一进口,在中间换热器5中放热冷凝,低温高压的液态制冷剂从中间换热器5的第一出口流出与来自第一冷凝器8第一出口的低温高压液态制冷剂混合后经过第一膨胀阀6后变成低温低压的制冷剂气液混合物进入蒸发器1中吸收环境热量,吸热蒸发后的低温低压气态制冷剂被吸入第一压缩机2的入口,经第一压缩机2压缩后变成高温高压的气态制冷剂。高压级高温高压的气态制冷剂从第二压缩机7的出口流出进入第二冷凝器9的第一进口,在第二冷凝器9内放热冷凝,低温高压的液态制冷剂从第二冷凝器9的第一出口流出后经过第二膨胀阀10变成低温低压的制冷剂气液混合物进入中间换热器5中吸收来自低压级的热量,吸热蒸发后的低温低压气态制冷剂被吸入第二压缩机7的入口,经第二压缩机7压缩后变成高温高压的气态制冷剂。冷水由公共供水管进入,经十一截止阀25流进水箱21的第四进口,由水箱21的第三出口流出经过流量调节阀20后经水泵11进入第一冷凝器8的第二进口,在第一冷凝器中初级加热,再从第一冷凝器8的第二出口流出进入第二冷凝器9的第二进口,在第二冷凝器9中被再次加热变成中温热水经第五截止阀14和第八截止阀17流进水箱21的第二进口,中温热水由水箱21第五出口流出进入第二混水阀23第一进口与来自第二混水阀23第二进口的冷水经过一定比例混合后由第二混水阀23出口流出供给用户。当用户关掉热水时,此时水箱21中温热水分层区的第二温度传感器28检测到水箱中温热水分层区热水温度,将温度信号传递到控制系统26,若该温度小于水箱21中温热水分层区设定温度时,控制系统26输出控制信号使第三截止阀12、第九截止阀18打开,第十一截止阀25、流量调节阀20关闭。水箱21中温热水分层区的热水从第二出口流出经第九截止阀18、第三截止阀12、水泵11进入第一冷凝器8的第二进口,在第一冷凝器中初级加热,再从第一冷凝器8的第二出口流出进入第二冷凝器9的第二进口,在第二冷凝器9中被再次加热变成中温热水经第五截止阀14、第八截止阀17返回到水箱21的第二进口。若水箱21中温热水分层区热水温度达到水箱21中温热水分层区设定温度,控制系统26输出控制信号到各部件,使各部件均关闭。
单级耦合加热低温热水出水模式:当所需热水温度较低时采用该模式,用户通过第三混水阀24的出口取水,此时第三混水阀24处的流量传感器检测到热水流量信号,将信号传递到控制系统26,然后控制系统26输出控制信号到各部件,使第二截止阀4、第四截止阀13、第五截止阀14、第十截止阀19、第十一截止阀25均打开,第一截止阀3、第三截止阀12、第六截止阀15、第七截止阀16、第八截止阀17、第九截止阀18均关闭,第一压缩机2以正常频率运行,水泵11均运行,控制系统26对流量调节阀20做出流量调节使得流量调节阀20处水流量等于第三混水阀24处热水流量。高温高压的气态制冷剂从第一压缩机2的出口流出经第二截止阀4进入第一冷凝器8的第一进口,在第一冷凝器8内放热冷凝,低温高压的液态制冷剂从第一冷凝器8的第一出口流出经过第一膨胀阀6后变成低温低压的制冷剂气液混合物进入蒸发器1中吸收环境热量,吸热蒸发后的低温低压气态制冷剂被吸入第一压缩机2的入口,经第一压缩机2压缩后变成高温高压的气态制冷剂。冷水由公共供水管进入,经十一截止阀25流进水箱21的第四进口,由水箱21的第三出口流出经过流量调节阀20后经水泵11进入第一冷凝器8的第二进口,在第一冷凝器8中被加热后,再从第一冷凝器8的第二出口流出经第五截止阀14、第四截止阀13与第十截止阀19流入水箱21的第三进口,低温热水由水箱21第六出口流出进入第三混水阀24第一进口与来自第三混水阀24第二进口的冷水经过一定比例混合后由第三混水阀24出口流出供给用户。当用户不使用热水时,此时水箱21中低温热水分层区的第三温度传感器29检测到水箱中低温分层区热水温度,将温度信号传递到控制系统26,若该温度小于水箱21低温热水分层区设定温度时,控制系统26输出控制信号使流量调节阀20全开,第十一截止阀25关闭。水箱21中低温热水分层区的热水从第三出口流出经流量调节阀20、水泵11进入第一冷凝器8的第二进口,在第一冷凝器中被加热后,再从第一冷凝器8的第二出口流出经第五截止阀14、第四截止阀13与第十截止阀19返回到水箱21的第三进口。若水箱21中低温热水分层区热水温度达到水箱21低温热水分层区设定温度,控制系统26输出控制信号到各部件,使各部件均关闭。

Claims (5)

1.一种梯级加热多模式耦合分层出水的低温热泵热水器,其特征在于,所述热水器包括蒸发器、第一压缩机、第一截止阀、第二截止阀、中间换热器、第一膨胀阀、第二压缩机、第一冷凝器、第二冷凝器、第二膨胀阀、水泵、第三截止阀、第四截止阀、第五截止阀、第六截止阀、第七截止阀、第八截止阀、第九截止阀、第十截止阀、流量调节阀、水箱、第一混水阀、第二混水阀、第三混水阀和第十一截止阀;
所述第一压缩机的进口与蒸发器的出口相连,第一压缩机的出口分别与第一截止阀的进口和第二截止阀的进口分别相连;中间换热器的第一进口与第一截止阀的出口相连,中间换热器的第二进口与第二膨胀阀的出口相连,中间换热器的第一出口与第一膨胀阀的进口相连,中间换热器的第二出口与第二压缩机的进口相连;第一膨胀阀的出口与蒸发器的进口相连;第一冷凝器的第一进口与第二截止阀的出口相连,第一冷凝器的第二进口与水泵的出口相连,第一冷凝器的第一出口与第一膨胀阀的进口相连,第一冷凝器的第二出口与第二冷凝器的第二进口相连;第二冷凝器的第一进口与第二压缩机的出口相连,第二冷凝器的第二进口与第一冷凝器的第二出口相连,第二冷凝器的第一出口与第二膨胀阀的进口相连,第二冷凝器的第二出口分别与第五截止阀和第六截止阀的进口相连;水泵的进口分别与第三截止阀的出口和流量调节阀的出口相连;第三截止阀的进口分别与第十截止阀的进口、第四截止阀的出口和第九截止阀的出口相连;第四截止阀的进口分别与第八截止阀的进口、第五截止阀的出口和第七截止阀的出口相连;水箱的第一进口与第六截止阀的出口相连,水箱的第二进口与第八截止阀的出口相连,水箱的第三进口与第十截止阀的出口相连,水箱的第四进口与第十一截止阀的出口相连,水箱的第一出口与第七截止阀的进口相连,水箱的第二出口与第九截止阀的进口相连,水箱的第三出口与流量调节阀的进口相连,水箱的第四出口与第一混水阀的第一进口相连,水箱的第五出口与第二混水阀的第一进口相连,水箱的第六出口与第三混水阀的第一进口相连;第一混水阀的第二进口与冷水入口相连,第一混水阀的出口为第一热水出口;第二混水阀的第二进口与冷水入口相连,第二混水阀的出口为第二热水出口;第三混水阀的第二进口与冷水入口相连,第三混水阀的出口为第三热水出口。
2.如权利要求1所述的梯级加热多模式耦合分层出水的低温热泵热水器,其特征在于,所述第一混水阀、第二混水阀和第三混水阀均带有流量传感器。
3.如权利要求1所述的梯级加热多模式耦合分层出水的低温热泵热水器,其特征在于,所述热水器还包括第一温度传感器、第二温度传感器和第三温度传感器,第一温度传感器位于水箱高温热水分层区的中部,第二温度传感器位于水箱中温热水分层区的中部,第三温度传感器位于水箱低温分层区的中部。
4.如权利要求2所述的梯级加热多模式耦合分层出水的低温热泵热水器,其特征在于,所述热水器还包括第一温度传感器、第二温度传感器和第三温度传感器,第一温度传感器位于水箱高温热水分层区的中部,第二温度传感器位于水箱中温热水分层区的中部,第三温度传感器位于水箱低温分层区的中部。
5.如权利要求4所述的梯级加热多模式耦合分层出水的低温热泵热水器,其特征在于,所述热水器还包括控制系统,所述第一混水阀、第二混水阀和第三混水阀的流量传感器、第一温度传感器、第二温度传感器和第三温度传感器均与所述控制系统连接,所述控制系统分别与第一截止阀、第二截止阀、第一膨胀阀、第二膨胀阀、第三截止阀、第四截止阀、第五截止阀、第六截止阀、第七截止阀、第八截止阀、第九截止阀、第十截止阀、第十一截止阀、流量调节阀、水泵、第一压缩机和第二压缩机的受控端连接。
CN201810320317.1A 2018-04-11 2018-04-11 梯级加热多模式耦合分层出水的低温热泵热水器 Withdrawn CN108361982A (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201810320317.1A CN108361982A (zh) 2018-04-11 2018-04-11 梯级加热多模式耦合分层出水的低温热泵热水器
CN201910278689.7A CN109798661B (zh) 2018-04-11 2019-04-09 多模式加热的热泵热水器

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201810320317.1A CN108361982A (zh) 2018-04-11 2018-04-11 梯级加热多模式耦合分层出水的低温热泵热水器

Publications (1)

Publication Number Publication Date
CN108361982A true CN108361982A (zh) 2018-08-03

Family

ID=63007930

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201810320317.1A Withdrawn CN108361982A (zh) 2018-04-11 2018-04-11 梯级加热多模式耦合分层出水的低温热泵热水器

Country Status (1)

Country Link
CN (1) CN108361982A (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112082292A (zh) * 2020-08-28 2020-12-15 北京京仪自动化装备技术有限公司 制冷系统

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112082292A (zh) * 2020-08-28 2020-12-15 北京京仪自动化装备技术有限公司 制冷系统
CN112082292B (zh) * 2020-08-28 2022-03-22 北京京仪自动化装备技术有限公司 制冷系统

Similar Documents

Publication Publication Date Title
CN101240949B (zh) 梯级能量利用的可调容量的家庭能源系统
WO2018188269A1 (zh) 一种冷量回收式变容量空气源热泵系统
CN201569214U (zh) 多功能空气能热泵热水机
CN101871690A (zh) 单双级水源热泵热水机耦合装置及方法
CN109812974A (zh) 梯级加热多模式耦合的热泵热水器
CN202521848U (zh) 带有过冷铜管的空气源热泵热水机
CN206572818U (zh) 空调器
CN108344177A (zh) 梯级加热多模式耦合分层出水的双压缩热泵热水器
HK1044035A1 (zh) 蒸氣壓縮系統及其方法
CN108361982A (zh) 梯级加热多模式耦合分层出水的低温热泵热水器
CN105571151B (zh) 一种太阳能磁悬浮中央空调供热系统
CN209484880U (zh) 一种回温式热泵系统
CN209116477U (zh) 高节能的制冷/制热循环水路系统
CN106440512A (zh) 一种热泵热水系统及其控制方法
CN108375191A (zh) 梯级加热多模式耦合的多水箱分级节流热泵热水器
CN108375194A (zh) 多模式耦合加热的多水箱热泵热水器
CN206695432U (zh) 多功能蒸汽型第一类溴化锂吸收式热泵机组
CN108361980A (zh) 梯级加热多模式耦合的多水箱双压缩热泵热水器
CN108489093A (zh) 梯级加热多模式耦合的多水箱低温热泵热水器
CN109798661A (zh) 多模式加热的热泵热水器
CN208652140U (zh) 基于空气循环的开式热泵热水装置
CN110173924A (zh) 一种单效制热双效制冷的蒸汽型溴化锂吸收式热泵机组
CN103512271B (zh) 带烟气换热器的直燃三用型溴化锂吸收式冷热水机组
CN203501546U (zh) 带双节能装置的直燃三用型溴化锂吸收式冷热水机组
CN110173922A (zh) 一种能双效制冷的蒸汽型溴化锂吸收式热泵机组

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
WW01 Invention patent application withdrawn after publication

Application publication date: 20180803

WW01 Invention patent application withdrawn after publication