CN108358154A - 一种具备减阻特性的梭形仿生微结构 - Google Patents

一种具备减阻特性的梭形仿生微结构 Download PDF

Info

Publication number
CN108358154A
CN108358154A CN201711482242.9A CN201711482242A CN108358154A CN 108358154 A CN108358154 A CN 108358154A CN 201711482242 A CN201711482242 A CN 201711482242A CN 108358154 A CN108358154 A CN 108358154A
Authority
CN
China
Prior art keywords
fusiformis
micro
microns
property
drag
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201711482242.9A
Other languages
English (en)
Inventor
苑伟政
何洋
吕湘连
卢宇超
刘谦
王圣坤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Northwestern Polytechnical University
Original Assignee
Northwestern Polytechnical University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Northwestern Polytechnical University filed Critical Northwestern Polytechnical University
Priority to CN201711482242.9A priority Critical patent/CN108358154A/zh
Publication of CN108358154A publication Critical patent/CN108358154A/zh
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B81MICROSTRUCTURAL TECHNOLOGY
    • B81BMICROSTRUCTURAL DEVICES OR SYSTEMS, e.g. MICROMECHANICAL DEVICES
    • B81B1/00Devices without movable or flexible elements, e.g. microcapillary devices

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Laminated Bodies (AREA)

Abstract

本发明公开了一种具备减阻特性的梭形仿生微结构,属于微结构功能材料领域。该结构包括:(a)梭形结构层,(b)基底材料层,若干梭形结构体以一定的排布规则布置于基底材料上,形成所述的梭形结构层。所述梭形结构体的一端为尖角,另一端为圆弧曲面,每个尖角与圆弧曲面以平滑曲面连接,各梭形结构体的尖角端冲朝向同一方向。本发明提出的基于高山箭竹叶表层微观结构的梭形微结构可显著减小表面摩擦阻力,有效改善固流接触层的气动性能,可广泛应用于现代工程领域。

Description

一种具备减阻特性的梭形仿生微结构
技术领域
本发明涉及微结构功能材料领域,具体而言,就是提供了一种具备减阻特性的仿高山箭竹叶梭形微结构。
背景技术
快速、高性能成为现代科技发展的必然要求,同时,随着现代社会的发展和生态文明建设的推进,绿色、节能、可持续的发展理念日渐成为人类社会发展的主旋律。资料显示,对于船舶、飞机等交通工具而言,最大的能耗是克服其与流体介质摩擦所带来的阻力;流体传输中有相当一部分的能量损耗于克服流体与传输设备之间的摩擦阻力。据统计,船舶行驶时表面摩擦阻力约占总阻力的70%-80%;民用飞机飞行时表面摩擦阻力占总阻力的50%左右。表面摩擦阻力成为限制设备性能的最主要的因素之一,同时也成为能源损耗的罪魁祸首。设法减小物体表面与流体之间的摩擦阻力对于提高设备性能、实现节能减排、提高资源利用率具有重要的工程应用价值,对推进生态文明建设以及人类社会的可持续发展具有重要意义。
物体与流体之间发生相对运动时,会形成兴波阻力、压差阻力和摩擦阻力等三种阻力。前两者由物体外形引起,可通过优化外形结构来改善,且此方面的研究已日臻完善;而摩擦阻力源于物体表面与周围流体之间的相互作用,可通过物体表面层的结构和性能改良以及表面微结构调控来改善,不过由于其过程的复杂性,相关研究还不是很成熟。摩擦阻力的影响因素有三个方面,一是物体表面层结构和性能,以及物体表面的化学和物理特性;二是流体的密度、粘度等属性;三是物体表面和流体的相对运动状态,包括相对运动速度和边界层状态。减小表面摩擦阻力的主要解决方式包括减阻剂减阻、微气泡减阻、低表面能涂层减阻、非光滑表面减阻以及柔性壁减阻等。近些年,受到鲨鱼皮肤表面微观结构的启示,很多科学家对此展开了大量的研究,基于鲨鱼皮肤表层微观结构制备的非光滑表面减阻材料也已经获得了广泛的工程应用。将基于仿生的物体表面微观结构设计应用于表面减阻研究将为减阻研究研究提供新的研究思路和方法。基于鲨鱼皮肤表层微观结构制备并成功应用的启示,高山箭竹叶梭形结构体流线排布的肋结构表面作为一种减阻效果更为优秀的微结构表面受到了我们关注。高山箭竹是一种分布在海拔2200到3000米之间的常绿竹类植物,生长环境恶劣,高海拔、气温低、多强风,我们观察到高山箭竹叶表面具有特殊的复合微观结构,该复合微观结构中的梭形结构对于箭竹防风减阻具有重要作用。通过深入的研究,我们发现该微结构表面具有与鲨鱼皮肤表层微结构不同的减阻机理,同时具备较鲨鱼皮肤而言更加显著的减阻特性。
基于以上的讨论,我们提出了一种基于高山箭竹叶表层微观结构的梭形微结构表面层材料,该材料具备优秀的减阻特性,可广泛应用于现代工程领域。
发明内容
本发明针对工程应用中的减阻需求提供了一种仿高山箭竹叶梭形微结构。
本发明提供的具备减阻特性的梭形仿生微结构,包括:(a)梭形结构层,(b)基底材料层,若干梭形结构体以一定的排布规则布置于基底材料上,形成所述的梭形结构层。
所述梭形结构体的一端为尖角,另一端为圆弧曲面,每个尖角与圆弧曲面以平滑曲面连接,其内部为实体或空腔结构;梭形结构体长度范围在20到60微米,宽度范围在10到30微米,高度范围在10到30微米。
所述的排布规则为:梭形结构体以一定的间隔按照流线形沿基底材料表面排布,同一流线上梭形结构体间距范围为40到80微米,相邻流线间距范围在百微米尺寸,相邻流线上梭形结构体相对排列或交错排列;各梭形结构体的尖角端冲朝向同一方向;
基底材料层上表面可以是光滑平面,可以是粗糙度在Ra3.2—Ra6.3的非光滑平面,可以是波峰和波谷分布的波形曲面,也可以是其他不规则曲面。
本发明中,上述两个结构层均可采用金属、无机非金属材料、聚合物材料来制备,金属材料如铝、铜、钢等,以及其合金材料,无机非金属材料如玻璃、陶瓷等,聚合物材料如PDMS(聚二甲基硅氧烷)、光刻胶等。
本发明中,沿着与梭形结构体排布方向成一定夹角流动的流体,在边界层发生转捩之后,由于流向旋涡的诱导作用,在遭遇仿竹叶梭形微结构所组成的肋状结构时,会有部分旋涡与肋结构的上端发生碰撞,从而在上端处产生分离旋涡,其涡量方向与原流向旋涡的方向相反,因此削弱了原有的流向旋涡(如图6所示)。考虑到旋涡理论中,大的旋涡都是由各种尺度的旋涡叠加而成,结合实际情况下湍流边界层中旋涡的尺寸,仿竹叶梭形微结构所组成的肋状结构可与之对应从而分级破碎旋涡,从而最大程度的减少壁面附近的内外动量交换,并延迟湍流猝发,降低摩擦阻力和压差阻力。同时,梭形结构体沿流线型排布为肋状结构,同一流线上梭形结构体之间有一定的间隔,强旋涡可通过该间隔缓冲以减小旋涡对梭形结构体的冲击作用。沿梭形结构体排布方向流动的流体旋涡遇梭形结构体前端而被打破,破碎的旋涡贴附梭形结构体壁面流动。在梭形结构体的后端,流体流动状态因梭形结构体形状的变化而发生改变,延缓湍流产生,流体流速加快进入下一梭形结构体部分并与下一梭形结构体前端发生碰撞。此流动转换过程可减小材料表面与流体接触相对运动时的剪切应力、减缓湍流层的形成、阻碍流向涡的发展、防止流体分离。由以上分析可知,梭形结构体的存在和适当排布可显著减小表面摩擦阻力,有效改善固流接触层的气动性能。
附图说明
图1表示的是梭形仿生微结构的轴测图;
图2表示的是梭形仿生微结构的俯视图;
图3表示的是具体实施方式2梭形微结构轴测图;
图4表示的是具体实施方式3梭形微结构轴测图;
图5表示的是具体实施方式4梭形微结构轴测图;
图6是梭形微结构破碎旋涡减阻原理图。
具体实施方式
下列实施例进一步描述和证明了本发明范围内的优选实施方案。所给的这些实施例仅仅是说明性的,不可理解为是对本发明的限制。
具体实施方式1
梭形结构层和基底材料层均以PDMS(聚二甲基硅氧烷)制成。梭形结构体整体长为48微米,宽为24微米,高为24微米,圆弧端曲率半径为12微米,尖角端夹角为75°。梭形结构体沿水平面上曲线排布在表面为光滑平面的基底材料上,同一曲线上相邻梭形结构体间前后距为88微米,相邻曲线之间的距离为100微米,相邻曲线上梭形结构体排布方式和位置相同。
具体实施方式2
梭形结构层和基底材料层均以铝合金材料制成。梭形结构体整体长为52微米,宽为28微米,高为24微米,圆弧端曲率半径为16微米,尖角端夹角为78°。梭形结构体沿水平面上曲线排布在基底材料上,基底材料表面为具有一定粗糙度平面的,同一曲线上相邻梭形结构间距为90微米,相邻曲线之间的距离为98微米,相邻曲线上梭形结构体排布方式相同,但相邻曲线上对应梭形结构体交错排布,错位距离为12微米。
具体实施方式3
梭形结构层和基底材料层均以光刻胶材料制成。梭形结构体整体长为52微米,宽为28微米,圆弧端曲率半径为16微米,尖角端夹角为78°。梭形结构体沿光滑曲线排布,曲线分布在水平面上。基底材料表面为波峰到波谷距离为20微米、波形周期为200微米的波形面,梭形结构体上表面到某一等高面的距离相同。同一曲线上相邻梭形结构体间距为90微米,相邻曲线之间的距离为98微米,相邻曲线上梭形结构体排布方式和位置相同。
具体实施方式4
梭形结构层和基底材料层均以光刻胶材料制成。梭形结构体整体长为56微米,宽为28微米,高为24微米,圆弧端曲率半径为16微米,尖角端夹角为72°。梭形结构体沿光滑曲线排布,曲线分布在基底材料波形表面上。基底材料表面为波峰到波谷距离为20微米、波形周期为200微米的波形面。同一曲线上相邻梭形结构间距为90微米,相邻曲线之间的距离为104微米,相邻曲线上梭形结构体排布方式和位置相同。

Claims (3)

1.一种具备减阻特性的梭形仿生微结构,其特征在于,包括:(a)梭形结构层,(b)基底材料层,若干梭形结构体以一定的排布规则布置于基底材料上,形成所述的梭形结构层;
所述梭形结构体的一端为尖角,另一端为圆弧曲面,每个尖角与圆弧曲面以平滑曲面连接;梭形结构体长度范围在20到60微米,宽度范围在10到30微米,高度范围在10到30微米;
所述的排布规则为:梭形结构体以一定的间隔按照流线形沿基底材料表面排布,同一流线上梭形结构体间距范围为40到80微米,相邻流线间距范围在百微米尺寸,相邻流线上梭形结构体相对排列或交错排列;各梭形结构体的尖角端冲朝向同一方向。
2.一种如权利要求1所述的具备减阻特性的梭形仿生微结构,其特征在于,所述基底材料层上表面是光滑平面、或者是粗糙度在Ra3.2—Ra6.3的非光滑平面、或者是波峰和波谷分布的波形曲面、或者是其他不规则曲面。
3.一种如权利要求1所述的具备减阻特性的梭形仿生微结构,其特征在于,所述两个结构层为金属、或无机非金属材料、或聚合物材料。
CN201711482242.9A 2017-12-29 2017-12-29 一种具备减阻特性的梭形仿生微结构 Pending CN108358154A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201711482242.9A CN108358154A (zh) 2017-12-29 2017-12-29 一种具备减阻特性的梭形仿生微结构

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201711482242.9A CN108358154A (zh) 2017-12-29 2017-12-29 一种具备减阻特性的梭形仿生微结构

Publications (1)

Publication Number Publication Date
CN108358154A true CN108358154A (zh) 2018-08-03

Family

ID=63010634

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201711482242.9A Pending CN108358154A (zh) 2017-12-29 2017-12-29 一种具备减阻特性的梭形仿生微结构

Country Status (1)

Country Link
CN (1) CN108358154A (zh)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109406093A (zh) * 2018-10-24 2019-03-01 西南石油大学 一种模拟管输减阻剂在近壁区微观减阻性能的实验方法
CN109681496A (zh) * 2018-12-28 2019-04-26 吉林大学 一种适用于流体介质的仿生减阻表面结构及其制造方法
CN109737095A (zh) * 2019-02-28 2019-05-10 江苏大学 一种仿生离心泵叶片
CN109748237A (zh) * 2019-01-18 2019-05-14 南京航空航天大学 一种具有防冰和减阻一体化功能的微结构及其构建方法
CN111747371A (zh) * 2019-03-26 2020-10-09 深圳清力技术有限公司 一种结构超滑器件及其制备方法
CN114801358A (zh) * 2022-04-29 2022-07-29 吉林大学 一种具有智能自适应减阻的水下航行器仿生动态变构蒙皮

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090200416A1 (en) * 2008-02-08 2009-08-13 Yee-Chun Lee Boundary layer propulsion airship with related system and method
CN202243943U (zh) * 2011-09-06 2012-05-30 山东理工大学 一种缓释减阻有鳞蒙皮结构
CN202635051U (zh) * 2012-07-13 2013-01-02 吉林大学 农业机械耕作部件减阻耐磨耦合仿生表面
US20130227972A1 (en) * 2010-01-28 2013-09-05 Wisconsin Alumni Research Foundation Patterned superhydrophobic surfaces to reduce ice formation, adhesion, and accretion
CN104636541A (zh) * 2014-12-30 2015-05-20 浙江大学 一种变异卵圆形仿生减阻降噪柔性结构
CN107116338A (zh) * 2017-04-26 2017-09-01 南通大学 一种密封面的激光复合处理方法
CN206648801U (zh) * 2017-03-28 2017-11-17 吉林大学 一种仿生减阻降噪的平板装置
CN206754365U (zh) * 2017-03-30 2017-12-15 浙江工业大学 一种仿鲨鱼皮表面三维形貌的端面机械密封结构

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090200416A1 (en) * 2008-02-08 2009-08-13 Yee-Chun Lee Boundary layer propulsion airship with related system and method
US20130227972A1 (en) * 2010-01-28 2013-09-05 Wisconsin Alumni Research Foundation Patterned superhydrophobic surfaces to reduce ice formation, adhesion, and accretion
CN202243943U (zh) * 2011-09-06 2012-05-30 山东理工大学 一种缓释减阻有鳞蒙皮结构
CN202635051U (zh) * 2012-07-13 2013-01-02 吉林大学 农业机械耕作部件减阻耐磨耦合仿生表面
CN104636541A (zh) * 2014-12-30 2015-05-20 浙江大学 一种变异卵圆形仿生减阻降噪柔性结构
CN206648801U (zh) * 2017-03-28 2017-11-17 吉林大学 一种仿生减阻降噪的平板装置
CN206754365U (zh) * 2017-03-30 2017-12-15 浙江工业大学 一种仿鲨鱼皮表面三维形貌的端面机械密封结构
CN107116338A (zh) * 2017-04-26 2017-09-01 南通大学 一种密封面的激光复合处理方法

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109406093A (zh) * 2018-10-24 2019-03-01 西南石油大学 一种模拟管输减阻剂在近壁区微观减阻性能的实验方法
CN109681496A (zh) * 2018-12-28 2019-04-26 吉林大学 一种适用于流体介质的仿生减阻表面结构及其制造方法
CN109681496B (zh) * 2018-12-28 2021-02-09 吉林大学 一种适用于流体介质的仿生减阻表面结构及其制造方法
CN109748237A (zh) * 2019-01-18 2019-05-14 南京航空航天大学 一种具有防冰和减阻一体化功能的微结构及其构建方法
CN109748237B (zh) * 2019-01-18 2021-01-19 南京航空航天大学 一种具有防冰和减阻一体化功能的微结构及其构建方法
CN109737095A (zh) * 2019-02-28 2019-05-10 江苏大学 一种仿生离心泵叶片
CN111747371A (zh) * 2019-03-26 2020-10-09 深圳清力技术有限公司 一种结构超滑器件及其制备方法
CN111747371B (zh) * 2019-03-26 2024-03-08 深圳清力技术有限公司 一种结构超滑器件及其制备方法
CN114801358A (zh) * 2022-04-29 2022-07-29 吉林大学 一种具有智能自适应减阻的水下航行器仿生动态变构蒙皮
CN114801358B (zh) * 2022-04-29 2023-02-28 吉林大学 一种具有智能自适应减阻的水下航行器仿生动态变构蒙皮

Similar Documents

Publication Publication Date Title
CN108358154A (zh) 一种具备减阻特性的梭形仿生微结构
Fu et al. Marine drag reduction of shark skin inspired riblet surfaces
Kim et al. Low-Reynolds-number effect on aerodynamic characteristics of a NACA 0012 airfoil
CN103821801B (zh) 一种减阻肋条
James et al. Comparative study of boundary layer control around an ordinary airfoil and a high lift airfoil with secondary blowing
CN110606189A (zh) 一种被动式条件启动涡发生器及其工作方法
Lee et al. Modification of static-wing tip vortex via a slender half-delta wing
Hansen et al. The effect of leading edge tubercle geometry on the performance of different airfoils
CN107878728A (zh) 机翼结构及飞行器
Mishra et al. Numerical investigation of a finite wing section with a bleed hole allowing boundary layer suction
CN203743140U (zh) 一种减阻肋条
CN108327894B (zh) 一种仿沙垄气动减阻舌形微结构
CN205592513U (zh) 一种应用于管道上的微沟槽及具有该结构的管道
CN108999846B (zh) 一种超疏水减阻肋条结构
Park et al. Effect of endplate shape on performance and stability of wings-in ground (WIG) craft
CN116142443A (zh) 一种仿沙垄分级减阻双层微肋条结构
CN104494842A (zh) 一种增升翼尖设计方法
Huda et al. Study of NACA 0010 symmetric airfoil with leading edge rotating cylinder in a subsonic wind tunnel
Hanfeng et al. Bistable phenomenon of the flow around a finite-length square prism
CN108357665A (zh) 一种仿沙垄气动减阻分形微纳结构
RU2757938C1 (ru) Аэродинамический профиль крыла для околозвуковых скоростей
CN107985557B (zh) 一种利用涡脱落原理的流动转捩控制装置
Jamei et al. Static Stability and Ground Viscous Effect of a Compound Wing Configuration with Respect to Reynolds Number.
CN106477015A (zh) 一种舰用低噪音舵叶表面结构
Kumar Flow Past Submerged Bodies

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication

Application publication date: 20180803

RJ01 Rejection of invention patent application after publication