CN108351432A - The focusing inverting of data-driven - Google Patents
The focusing inverting of data-driven Download PDFInfo
- Publication number
- CN108351432A CN108351432A CN201580084177.7A CN201580084177A CN108351432A CN 108351432 A CN108351432 A CN 108351432A CN 201580084177 A CN201580084177 A CN 201580084177A CN 108351432 A CN108351432 A CN 108351432A
- Authority
- CN
- China
- Prior art keywords
- data
- model
- inversion
- focusing
- data points
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000000034 method Methods 0.000 claims abstract description 33
- 239000011159 matrix material Substances 0.000 claims description 22
- 230000000704 physical effect Effects 0.000 claims description 11
- 230000035945 sensitivity Effects 0.000 claims description 7
- 238000004590 computer program Methods 0.000 claims description 4
- 230000005484 gravity Effects 0.000 claims 2
- 230000005540 biological transmission Effects 0.000 claims 1
- 230000002159 abnormal effect Effects 0.000 abstract 1
- 230000006870 function Effects 0.000 description 6
- 238000005259 measurement Methods 0.000 description 6
- 238000005457 optimization Methods 0.000 description 4
- 239000000654 additive Substances 0.000 description 3
- 230000005684 electric field Effects 0.000 description 3
- 230000004044 response Effects 0.000 description 3
- 230000000996 additive effect Effects 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 230000005672 electromagnetic field Effects 0.000 description 2
- 238000003384 imaging method Methods 0.000 description 2
- 238000004088 simulation Methods 0.000 description 2
- 230000002547 anomalous effect Effects 0.000 description 1
- 239000000284 extract Substances 0.000 description 1
- 150000003839 salts Chemical class 0.000 description 1
- 238000013076 uncertainty analysis Methods 0.000 description 1
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01V—GEOPHYSICS; GRAVITATIONAL MEASUREMENTS; DETECTING MASSES OR OBJECTS; TAGS
- G01V20/00—Geomodelling in general
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01V—GEOPHYSICS; GRAVITATIONAL MEASUREMENTS; DETECTING MASSES OR OBJECTS; TAGS
- G01V3/00—Electric or magnetic prospecting or detecting; Measuring magnetic field characteristics of the earth, e.g. declination, deviation
- G01V3/38—Processing data, e.g. for analysis, for interpretation, for correction
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01V—GEOPHYSICS; GRAVITATIONAL MEASUREMENTS; DETECTING MASSES OR OBJECTS; TAGS
- G01V2210/00—Details of seismic processing or analysis
- G01V2210/60—Analysis
- G01V2210/66—Subsurface modeling
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01V—GEOPHYSICS; GRAVITATIONAL MEASUREMENTS; DETECTING MASSES OR OBJECTS; TAGS
- G01V2210/00—Details of seismic processing or analysis
- G01V2210/60—Analysis
- G01V2210/66—Subsurface modeling
- G01V2210/667—Determining confidence or uncertainty in parameters
Landscapes
- Life Sciences & Earth Sciences (AREA)
- Physics & Mathematics (AREA)
- General Life Sciences & Earth Sciences (AREA)
- General Physics & Mathematics (AREA)
- Geophysics (AREA)
- Engineering & Computer Science (AREA)
- Environmental & Geological Engineering (AREA)
- Geology (AREA)
- Remote Sensing (AREA)
- Geophysics And Detection Of Objects (AREA)
Abstract
Description
技术领域technical field
本发明涉及地球物理勘探和数据处理,并且更具体地涉及用于基于根据地球物理勘探方法(例如,受控源电磁或地震勘测)所采集的数据来优化物理属性分布模型的方法。The present invention relates to geophysical surveying and data processing, and more particularly to methods for optimizing physical property distribution models based on data acquired from geophysical surveying methods such as controlled source electromagnetic or seismic surveying.
背景技术Background technique
只要在采集的数据与想要研究的物理属性之间存在数学关系,则经由传统采集方法(例如,地震或CSEM等勘测)从地下区域采集的地球物理数据可以用于获得关于地下区域中物理属性分布的信息。使用采集的数据和关于地下区域的先验知识,可以生成表征物理属性分布的模型。在该术语中,“模型”指的是估计的量。反演涉及对生成的模型的优化,以便确定解释观察到的数据的属性分布。Geophysical data collected from subsurface regions via conventional acquisition methods (e.g., surveys such as seismic or CSEM) can be used to obtain information about the physical properties distribution information. Using the acquired data and prior knowledge about the subsurface region, a model characterizing the distribution of physical properties can be generated. In this term, "model" refers to an estimated quantity. Inversion involves the optimization of the resulting model in order to determine the distribution of properties that explain the observed data.
反演问题(即,根据测量的数据集来反演模型参数)几乎总是一个未确定的、非唯一的和非线性的问题(Tarantola,A.Inverse Problem Theory,Elsevier,New York 1987;Tarantola,A.Inverse Problem Theory and Methods for Model ParameterEstimation,Society for Industrial and Applied Mathematics 2005,以及Zhdanov,M.S.Geophysical Inverse Theory and Regularization Problems,Elsevier 2002)。测量数据不能提供足够的信息来确保在期望的分辨率下有唯一的解决方案。此外,测量数据还总是受噪声、不精确性和误差的影响。最后,反演引擎所需的正演模拟算子的实施方式常常具有有限的精度,这是因为它们是基于对实际和计算原因的假设的。为了获得解决方案,通常引入对模型参数的人为约束和正则化来稳定反演问题(Tarantola,2005和Zhdanov2002)。这些约束和正则化背后的假设通常是不精确的。The inversion problem (ie, inversion of model parameters from a measured data set) is almost always an undetermined, non-unique and nonlinear problem (Tarantola, A. Inverse Problem Theory, Elsevier, New York 1987; Tarantola, A. Inverse Problem Theory and Methods for Model Parameter Estimation, Society for Industrial and Applied Mathematics 2005, and Zhdanov, M.S. Geophysical Inverse Theory and Regularization Problems, Elsevier 2002). The measured data does not provide enough information to ensure a unique solution at the desired resolution. In addition, measurement data is always subject to noise, inaccuracies and errors. Finally, the implementation of the forward modeling operators required by the inversion engine often has limited accuracy because they are based on assumptions for practical and computational reasons. To obtain a solution, artificial constraints on the model parameters and regularization are usually introduced to stabilize the inversion problem (Tarantola, 2005 and Zhdanov, 2002). The assumptions behind these constraints and regularization are often imprecise.
因此,结果产生的最终反演模型是所有这些限制、不精确性和误差之间的折衷。实际上,反演过程总是在具有相对应的局部最小值的吸引域中结束,该吸引域偏向于反演模型的某些部分和方面而牺牲模型的其它部分和方面。反演运行实际以哪个吸引域和相对应的局部最小值结束取决于初始模型、正则化参数、包括的数据点、各个数据点的权重以及所使用的优化算法。在不添加非常强有力的假设/约束的情况下,不同的反演驱动力之间的这种斗争的结果是难以控制的,如果假设不精确则有可能导致反演结果中的严重伪影。Therefore, the resulting final inversion model is a compromise between all these limitations, imprecision and errors. In practice, the inversion process always ends up in a region of attraction with corresponding local minima that favors certain parts and aspects of the inversion model at the expense of others. Which field of attraction and corresponding local minima the inversion run actually ends up with depends on the initial model, the regularization parameters, the data points included, the weights of the individual data points, and the optimization algorithm used. The outcome of this struggle between the different inversion drivers is unmanageable without adding very strong assumptions/constraints, potentially leading to severe artifacts in the inversion results if the assumptions are imprecise.
常常希望尽可能精确地重建模型的某些部分和方面。然后可以接受对模型的其它较不重要的部分/方面进行较不精确的重建的代价。通常,调查目标的大小与要被反演的整个模型相比是非常小的。相对应地,主要对大模型背景敏感的数据点的数量与实际对目标敏感的若干数据点相比完全占优。因此,目标响应往往太弱而无法与其它强得多的反演驱动力竞争,这导致目标成像不良而背景成像相当好。It is often desirable to reconstruct certain parts and aspects of a model as accurately as possible. The cost of less accurate reconstruction of other less important parts/aspects of the model can then be accepted. Typically, the size of the survey target is very small compared to the entire model to be inverted. Correspondingly, the number of data points that are mainly sensitive to the large model background is completely dominated by the number of data points that are actually sensitive to the target. Consequently, the target response is often too weak to compete with other, much stronger inversion drivers, resulting in poor imaging of the target and reasonably good imaging of the background.
如上提到的,常规地使用约束和正则化来使反演搜索空间和结果聚焦(Tarantola和Zhdanov 2002),例如,鼓励反演引擎促进反演模型的某些方面,例如,平滑度、密度异常、模型的某些部分的低/高值(Tarantola和Zhdanov 2002)。后文,我们使用术语正则化来表示约束和正则化两者。这种常规方法为模型驱动的聚焦反演(MDFI):其直接应用于模型的属性。这种模型驱动的正则化的问题在于,反演模型被强制包含正则化所要求的属性,无论那些属性是否存在于真实模型中。As mentioned above, constraints and regularization are routinely used to focus the inversion search space and results (Tarantola and Zhdanov 2002), e.g., encouraging the inversion engine to facilitate certain aspects of the inversion model, e.g., smoothness, density anomalies , low/high values for some parts of the model (Tarantola and Zhdanov 2002). In the following, we use the term regularization to refer to both constraints and regularization. This conventional approach is model-driven focused inversion (MDFI): it is applied directly to the properties of the model. The problem with this type of model-driven regularization is that the inversion model is forced to contain the properties required for regularization, whether or not those properties are present in the real model.
模型驱动的聚焦反演(MDFI)方法可以如下示出。让反演/优化问题找到使以下失配函数最小化的M维模型向量 A model-driven focused inversion (MDFI) method can be shown as follows. Let the inversion/optimization problem find the M-dimensional model vector that minimizes the following mismatch function
这里,数据残差其中,是表示测量数据的实数或复数N维向量,而是用于模型的正演模拟数据。反向向量符号表示共轭转置。数据协方差矩阵描述数据误差及其相关性。常规地,通过包含数据方差的对角矩阵来对进行近似。对角线表示所有的数据点都是不相关的。地球物理反演中使用的常规的的示例例如可以在(Morten,J.P.,A.K.,T.(2009)CSEM data uncertainty analysis for3D inversion,SEG Expanded Abstracts 28,724)中找到。Here, the data residual in, is a real or complex N-dimensional vector representing the measurement data, while is for the model forward simulation data. reverse vector notation Represents the conjugate transpose. Data covariance matrix Describe data errors and their correlations. Conventionally, by a diagonal matrix containing the variance of the data to Make an approximation. diagonal Indicates that all data points are irrelevant. The routine used in geophysical inversion Examples can be found e.g. in (Morten, JP, AK, T. (2009) CSEM data uncertainty analysis for 3D inversion, SEG Expanded Abstracts 28, 724).
正则化失配函数的仅取决于模型参数。λ是用于控制模型正则化项的强度的实数标量。典型地,技术人员使用来稳定反演问题并且控制反演流,即,强制/鼓励反演模型具有某些属性,例如,平滑度、锐度、保持在边界内的参数、与某个优先级模型的接近度等等(Tarantola,2005和Zhdanov,2002)。Regularized mismatch function of Depends only on model parameters. λ is a real scalar used to control the strength of the model regularization term. Typically, technicians use to stabilize the inversion problem and control the inversion flow, i.e. enforce/encourage the inversion model to have certain properties such as smoothness, sharpness, parameters kept within bounds, proximity to a certain priority model, etc. (Tarantola, 2005 and Zhdanov, 2002).
发明内容Contents of the invention
提出了一种数据驱动的聚焦反演(DDFI)方法,该方法鼓励反演优化器更加聚焦于反演模型的某些特定的属性、参数、区域而牺牲其它属性、参数和区域。不同于MDFI,如果聚焦的属性不存在于数据中,则DDFI不会强制使反演模型包含所聚焦的属性。A Data-Driven Focused Inversion (DDFI) method is proposed, which encourages the inversion optimizer to focus more on some specific attributes, parameters, and regions of the inversion model while sacrificing other attributes, parameters, and regions. Unlike MDFI, DDFI does not force the inversion model to include the focused attribute if it does not exist in the data.
附图说明Description of drawings
图1显示了第一和第二正演模型的垂直(RV)和水平(RH)电阻率异常。Figure 1 shows the vertical (R V ) and horizontal (R H ) resistivity anomalies for the first and second forward models.
图2显示了方位角接收机的电场振幅(Ex,实线)、相位(点)以及噪声估计。Figure 2 shows the electric field amplitude (E x , solid line), phase (dots), and noise estimates for the azimuth receiver.
图3显示了一个拖链的轴向分量Ex的指数n=1/2且f=1Hz的聚焦矩阵的对角线。Figure 3 shows the focusing matrix of the axial component Ex of a drag chain with index n=1/2 and f=1Hz of the diagonal.
图4显示了真实模型T、初始模型C、α=0反演的垂直电阻率模型以及α=20反演的垂直电阻率模型。Fig. 4 shows the real model T, the initial model C, the vertical resistivity model inverted by α=0, and the vertical resistivity model inverted by α=20.
图5显示了真实模型T、初始模型C、α=0反演的水平电阻率模型以及α=20反演的水平电阻率模型。Fig. 5 shows the real model T, the initial model C, the horizontal resistivity model inverted by α=0, and the horizontal resistivity model inverted by α=20.
图6示出了针对真实模型B、初始模型C、利用α=0和α=20反演的反演垂直电阻率模型。Fig. 6 shows the inverted vertical resistivity model with α=0 and α=20 inversion for the real model B, the initial model C.
图7显示了针对初始模型C、利用α=0、α=5和α=20反演的反演垂直电阻率模型。Figure 7 shows the inverted vertical resistivity model for the initial model C, inverted with α=0, α=5 and α=20.
图8显示了针对真实模型T、初始模型D、利用α=0和α=5反演的垂直电阻率模型。Figure 8 shows the vertical resistivity model inverted with α=0 and α=5 for the true model T, the initial model D.
图9显示了针对真实模型T、初始模型E、利用α=0和α=20反演的垂直电阻率模型。Figure 9 shows the vertical resistivity model inverted with α=0 and α=20 for the true model T, the initial model E.
图10显示了示例性方法的流程图。Figure 10 shows a flowchart of an exemplary method.
图11以框图形式示意性地示出了示例性计算机设备。Fig. 11 schematically shows an exemplary computer device in block diagram form.
图12是用于实现本发明的一个或多个实施例的计算机系统的示意图。Figure 12 is a schematic diagram of a computer system for implementing one or more embodiments of the invention.
具体实施方式Detailed ways
根据本发明的方法实现地球物理数据处理技术以生成地下区域的物理属性分布模型。使用从地球物理勘测采集的地球物理数据和关于地下区域的先验知识来生成表征产生所获数据的物理属性分布的模型。The method according to the present invention implements geophysical data processing techniques to generate a physical property distribution model of a subsurface region. Geophysical data acquired from a geophysical survey and prior knowledge about the subsurface region are used to generate a model characterizing the distribution of physical properties that produced the acquired data.
一些数据点对模型的某些参数、属性区域/部分高度敏感。通过在反演过程期间增加这些数据点的权重,可以实现更精确的物理属性分布模型,例如,数据中不存在的属性不会成为反演模型的部分。Some data points are highly sensitive to certain parameters, attribute regions/parts of the model. By increasing the weight of these data points during the inversion process, a more accurate model of the distribution of physical properties can be achieved, e.g. properties not present in the data will not be part of the inversion model.
反演包含向协方差矩阵中添加新项,以鼓励反演引擎将其努力聚焦在使对模型的某些参数、属性、区域/部分高度敏感的选定数据残差的失配最小化。后文,我们将使用术语目标来表示我们希望研究的想要的模型的参数、属性或区域/部分。我们引入经修改的协方差矩阵,其被定义为:Inversion involves adding new terms to the covariance matrix to encourage the inversion engine to focus its efforts on minimizing mismatches in selected data residuals that are highly sensitive to certain parameters, properties, regions/parts of the model. Hereinafter, we will use the term target to denote a parameter, property or region/part of the desired model that we wish to study. We introduce a modified covariance matrix, which is defined as:
这里,是经修改的协方差矩阵,是单位矩阵,是聚焦矩阵,而α是用于控制聚焦强度的常数。为了实现对目标的聚焦,应该被定义为对于对目标不敏感的数据点为小/零,并且对于对目标敏感的数据点为大。为了实现对目标的聚焦,假定(given)在矩阵中,最敏感的数据点与对目标不敏感的数据点相比应该具有较高的权重(较高的聚焦)。here, is the modified covariance matrix, is the identity matrix, is the focusing matrix, and α is a constant used to control the focusing strength. In order to achieve focus on the goal, should be defined as small/zero for data points that are not sensitive to the target, and large for data points that are sensitive to the target. In order to achieve focus on the target, it is assumed (given) in the matrix In , the most sensitive data points should have a higher weight (higher focus) compared to the data points that are not sensitive to the target.
在本发明的另一实施例中,还可以在反向意义上使用聚焦矩阵,即,将定义为对于对反演模型的某些参数、属性、区域敏感的数据点而言为小,而在剩余数据点处为大。这鼓励反演引擎用将其最少的努力聚焦在非目标部分上。可以使用这种反向方法减少反演中模型的无关部分的影响。取决于反演研究的目的,模型的“无关”部分例如可以为盐、玄武岩、管线等。In another embodiment of the invention, the focusing matrix can also be used in the reverse sense, i.e., the Defined as being small for data points sensitive to certain parameters, properties, regions of the inversion model and large at the remaining data points. This encourages the inversion engine to focus its least effort on non-target parts. This inverse approach can be used to reduce the influence of extraneous parts of the model in the inversion. Depending on the purpose of the inversion study, "irrelevant" parts of the model could be, for example, salt, basalt, pipelines, etc.
一种用于构建的方法是通过散射场。这里执行两次正演模拟:一次用于背景模型其具有模拟数据一次用于模型其包含具有添加目标的相同背景模型。然后散射场被定义为:one for building The method is through the scattered field. Here two forward simulations are performed: one for the background model which has simulated data once for model It contains the same background model with added targets. Then the scattered field is defined as:
因此,为仅来自目标的数据响应。然后,可以例如被定义为:therefore, Respond for data only from the target. Then, can for example be defined as:
是用户提供的矩阵函数,例如, is a user-supplied matrix function, e.g.,
其中,n为用户提供的指数。为用户提供的散射场的矩阵函数,例如:where n is the exponent provided by the user. Matrix functions for user-supplied scattered fields, for example:
其中,表示的外积,并且矩阵函数diag()提取出对角矩阵。in, express The outer product, and the matrix function diag() extracts the diagonal matrix.
要注意的是,形式确保了对噪声数据点的散焦。To be careful of, The form ensures defocusing of noisy data points.
对于对角线和公式7的作用与对散射场最强处的数据点的权重进行增加非常类似。for diagonal and Equation 7 acts much like adding weight to the data points where the scattered field is strongest.
通过示例,合成数据集可以用于示出本发明的有效性,并且显示数据驱动的聚焦反演方法改进了围绕目标的反演结果;该方法适用于合成海底测井受控源电磁(CSEM)数据集的反演。By way of example, a synthetic data set can be used to illustrate the effectiveness of the present invention and show that a data-driven focused inversion approach improves inversion results around targets; this approach is applicable to synthetic seafloor logging controlled source electromagnetic (CSEM) Inversion of the dataset.
电磁数据由电场和磁场组成:分别为[Ex,Ey,Ez]和[Hx,Hy,Hz]。电磁场向量中的分量在频域中为复数并且取决于源(s)、接收机(r)以及频率(f),例如,Ex→Ex(s,r,f)。Electromagnetic data consists of electric and magnetic fields: [E x ,E y ,E z ] and [H x ,H y ,H z ], respectively. The components in the electromagnetic field vector are complex in the frequency domain and depend on the source (s), receiver (r) and frequency (f), eg, Ex → Ex (s,r,f).
常规地,CSEM反演中使用的数据协方差矩阵假定为利用由数据不确定因数给出的元素呈对角线,示例可以在(Morten,2009年;F.A.和Nguyen,A.K.Enhancedsubsurface response for marine CSEM surveying,Geophysics,75第3号,第7-10页,2010年)中找到。这里我们针对不同电磁场将方差定义为:Conventionally, the data covariance matrix used in CSEM inversion is assumed to be diagonal with elements given by the data uncertainty factor, examples can be found in (Morten, 2009; FA and Nguyen, AKE Enhanced subsurface response for marine CSEM surveying, Geophysics, 75 No. 3, pp. 7-10, 2010). Here we define the variance for different electromagnetic fields as:
其中,β1是场分量之间的自相关乘法不确定度,而β2和β3是场分量之间的互相关乘法不确定度。此外,η是单独的场加性噪声。Maao和Nguyen(2010)提供了乘法不确定度和加性噪声背后的原因和解释。因此,单个i-(源、接收机、频率)测量为数据向量提供多达6个额外分量,并且然后针对电场部分的相对应的对角协方差矩阵为:where β1 is the autocorrelation multiplicative uncertainty between the field components, and β2 and β3 are the cross-correlation multiplicative uncertainties between the field components. Furthermore, η is the field-additive noise alone. Maao and Nguyen (2010) provide the reasons and explanations behind multiplicative uncertainty and additive noise. Thus, a single i-(source, receiver, frequency) measurement is a data vector Up to 6 additional components are provided, and then the corresponding diagonal covariance matrix for the electric field part is:
类似地,针对磁场的为:Similarly for the magnetic field is:
合成数据示例Synthetic Data Example
在本节中我们将示出数据驱动的聚焦反演方法良好地适用于合成海床测井受控源电磁数据集上的3D各向异性反演。In this section we show that the data-driven focused inversion method is well suited for 3D anisotropic inversion on synthetic seabed log controlled source electromagnetic datasets.
合成模型和合成数据集很大程度上由来自真实勘测的测量数据产生。使用勘测位置的真实地震层位来创建合成模型。从真实数据集的地震驱动的CSEM反演(Nguyen,A.K.,Hansen J.O.(2013)CSEM exploration in the Barents Sea,Part II—Highresolution CSEM inversion,75th Annual Conference and Exhibition,EAGE,ExtendedAbstracts,We0403)结果中提取电阻率值。错误!(参考源未找到)显示了真实模型(T)和背景模型(B)的切片。模型T在其中具有垂直电阻率RV异常;而模型B中不存在异常。真实模型中的该RV异常是反演研究的目标。水平电阻率模型RH对于模型T和模型B两者而言都是相同的。RH中缺乏异常的背后原因是源于薄水平电阻异常事实上对CSEM数据没有影响的事实,所以在地震驱动的CSEM反演中没有构建RH异常。我们认为没有必要人为地将RH异常添加到真实模型中。网格dx=dy=100m且dz=40m的3D正演模拟基于时域有限差分方法(F.A.(2007)Fast finite-difference time-domain modeling for marine-subsurfaceelectromagnetic problems,Geophysics,72,A19-23)。针对频率f=0.25Hz、0.5Hz、1Hz对数据进行收集。在建模中考虑了水深测量。Synthetic models and synthetic datasets are largely generated from measurement data from real surveys. The synthetic model is created using the real seismic horizons at the surveyed location. Seismic-driven CSEM inversion from real datasets (Nguyen, AK, Hansen JO (2013) CSEM exploration in the Barents Sea, Part II—High resolution CSEM inversion, 75th Annual Conference and Exhibition, EAGE, Extended Abstracts, We0403) to extract the resistivity value. mistake! (Reference source not found) Slices of the ground truth model (T) and the background model (B) are shown. Model T has vertical resistivity R V anomaly in it; while there is no anomaly in Model B. This RV anomaly in the real model is the target of an inversion study. The horizontal resistivity model R H is the same for both Model T and Model B. The reason behind the lack of anomalies in R H stems from the fact that the thin horizontal resistance anomalies have practically no effect on the CSEM data, so no R H anomalies were constructed in the earthquake-driven CSEM inversion. We do not think it is necessary to artificially add R H anomalies to the real model. The 3D forward modeling of the grid dx=dy=100m and dz=40m is based on the finite difference time domain method ( FA (2007) Fast finite-difference time-domain modeling for marine-subsurface electromagnetic problems, Geophysics, 72, A19-23). Data were collected for frequencies f = 0.25 Hz, 0.5 Hz, 1 Hz. Bathymetry was considered in the modeling.
发射和接收机的导航和定向取自于勘测数据。对于每个合成数据点,我们向其添加复数,该复数具有随机相位以及由针对相对应的真实数据点的噪声估计给出的振幅。此外,我们通过-3到3度之间均匀分布的随机数使接收机定向值失真。因此,噪声等级、接收机旋转误差、导航缺陷全都接近于真实采集的不确定度和条件。方位角线的受噪声影响的电场在错误!(参考源未找到)中示出。我们看到,加性噪声在振幅和相位两个方面都会显著地影响数据,特别是在出现大地电磁脉冲串的偏移处。Transmit and receiver navigation and orientation are derived from survey data. For each synthetic data point, we add to it a complex number with random phase and amplitude given by the noise estimate for the corresponding real data point. Furthermore, we distort the receiver orientation values by uniformly distributed random numbers between -3 and 3 degrees. Therefore, noise levels, receiver rotation errors, and navigation imperfections are all close to real acquisition uncertainties and conditions. The noise-influenced electric field of the azimuth line is wrong! (Reference source not found). We see that additive noise can significantly affect the data in both amplitude and phase, especially at offsets where the magnetotelluric burst occurs.
为了构建目标聚焦的协方差矩阵,需要对各个数据点对目标的敏感度进行估计。这可以通过比较来自模型T和模型B的干净合成数据来实现。In order to construct the target-focused covariance matrix, the sensitivity of each data point to the target needs to be estimated. This can be achieved by comparing clean synthetic data from model T and model B.
错误!(参考源未找到)中示出了一个拖链的轴向分量Ex的指数n=1/2且f=1Hz的聚焦矩阵的对角线。我们看到,目标清楚地将其存在和信息投影到有限的一组数据点中。mistake! (Reference source not found) shows the focusing matrix of index n=1/2 and f=1Hz of the axial component E x of a drag chain of the diagonal. We see that targets clearly project their presence and information into a limited set of data points.
反演inversion
L-BFGS-B方案(Zach,J.J.,A.K.,T.,和F.3D inversionof marine CSEM data using a fast finite-difference time-domain forward codeand approximate hessian-based optimization.SEG Expanded Abstracts 27,614,2008年)用于对来自模型T和模型B的合成数据集进行反演。在该基于像素的聚焦反演中没有应用正则化。初始模型C是dx=dy=150m且dz=40m的模型B的平滑和放大版本。针对反演,我们采用场Ex和和Ey以及频率f=0.25Hz、0.5Hz、1Hz,相对应的最大绝对偏移为10000m、9000m、8000m。对于所有频率,最小偏移为1500m。除非明确提到,否则最终反演结果由迭代100而得到。L-BFGS-B scheme (Zach, JJ, AK, T., and F. 3D inversion of marine CSEM data using a fast finite-difference time-domain forward code and approximate hessian-based optimization. SEG Expanded Abstracts 27, 614, 2008) for inversion on synthetic datasets from Model T and Model B. No regularization was applied in this pixel-based focus inversion. The initial model C is a smoothed and enlarged version of model B with dx = dy = 150m and dz = 40m. For the inversion, we use fields E x and E y and frequencies f = 0.25 Hz, 0.5 Hz, 1 Hz, and the corresponding maximum absolute offsets are 10000 m, 9000 m, 8000 m. For all frequencies, the minimum offset is 1500m. Unless explicitly mentioned otherwise, the final inversion results are obtained by iteration 100.
错误!(参考源未找到)示出了真实、初始模型C、α=0反演的垂直电阻率模型以及α=20反演的垂直电阻率模型。我们看到,α=0反演的模型在正确的位置处包含异常。然而,重建的异常在电阻率过低的情况下而相当弱。此外,我们看到,与常规反演相比,α=20反演的模型对异常的重建要好得多。真实模型与反演模型之间分辨率的差异源于如下事实:真实模型是基于地震指导的反演的,而这里的反演模型是与地震指导情况相比分辨率低得多的纯CSEM数据驱动的基于像素的反演。mistake! (Reference source not found) shows the real, initial model C, vertical resistivity model inverted with α=0, and vertical resistivity model inverted with α=20. We see that the model inverted by α=0 contains anomalies at the correct locations. However, the reconstructed anomalies are rather weak at very low resistivities. Furthermore, we see that the model for α = 20 inversion reconstructs the anomaly much better than the conventional inversion. The difference in resolution between the real model and the inversion model stems from the fact that the real model is based on seismic-guided inversion, whereas the inversion model here is pure CSEM data at a much lower resolution than in the seismic-guided case Driven pixel-based inversion.
错误!(参考源未找到)示出了真实、初始模型C、α=0反演的水平电阻率模型以及α=20反演的水平电阻率模型。我们看到,反演模型或多或少是相同的,并且与初始模型非常类似。甚至接收机印记也或多或少是相同的。最有可能的是,这些接收机印记是接收机方向上的引入的误差的印记。再次要注意的是,真实水平模型中对薄的高电阻异常的引入不会影响数据并且由此影响反演结果。mistake! (Reference source not found) shows the real, initial model C, the horizontal resistivity model inverted by α=0, and the horizontal resistivity model inverted by α=20. We see that the inversion model is more or less the same and very similar to the initial model. Even the receiver imprint is more or less the same. Most likely, these receiver signatures are the signature of introduced errors in the direction of the receiver. Note again that the introduction of thin, high-resistance anomalies in the true level model does not affect the data and thus the inversion results.
自然要问的问题是,即使当输入数据中没有这样的异常时,聚焦异常的权重是否可能在反演结果中引入人为异常。图6显示了来自数据集B的针对α=0和α=20的反演模型。这里,真实模型没有电阻率异常。我们看到,所有反演都能正确地预测出模型中没有电阻率异常。因此,可以得出结论:聚焦异常的权重不会人为地引入输入数据中不存在的电阻率异常。The natural question to ask is whether focusing on anomalous weights might introduce artifactual anomalies in the inversion results, even when there are no such anomalies in the input data. Figure 6 shows the inversion model for α=0 and α=20 from dataset B. Here, the real model has no resistivity anomaly. We see that all inversions correctly predict no resistivity anomalies in the model. Therefore, it can be concluded that weighting of focused anomalies does not artificially introduce resistivity anomalies that are not present in the input data.
图7显示了针对α=0、α=5和α=20的反演垂直电阻率模型。可以看出,提高聚焦也提高了反演模型中的电阻率异常的清晰度。Figure 7 shows the inverted vertical resistivity model for α=0, α=5 and α=20. It can be seen that increasing the focus also improves the clarity of the resistivity anomalies in the inversion model.
另一自然的问题是,当应用聚焦异常的权重时,显著错误的初始模型会如何影响反演结果?我们通过利用初始模型D和E执行反演来研究这个问题,初始模型D和E是“正确”初始模型C的失真版本。初始模型D是RV→RV×0.8且RH→RH×0.8的模型C的修改版本。Another natural question is how does a significantly wrong initial model affect the inversion results when applying weights that focus on anomalies? We investigate this problem by performing an inversion using initial models D and E, which are distorted versions of the "correct" initial model C. The initial model D is a modified version of model C with R V → R V × 0.8 and R H → R H × 0.8.
错误!(参考源未找到)显示了针对如下情况的垂直电阻率模型:真实、初始模型D、利用α=0反演的以及利用α=5反演的。我们看到,当在反演中使用聚焦的权重时,与常规未聚焦的权重相比,电阻率异常再次恢复得好得多。与图8中所示模型相对应的反演的水平电阻率模型或多或少是相同的。mistake! (Reference source not found) Vertical resistivity models are shown for: real, original model D, inverted with α=0, and inverted with α=5. We see that when focused weights are used in the inversion, the resistivity anomaly is again recovered much better compared to conventional unfocused weights. The inverted horizontal resistivity model corresponding to the model shown in Fig. 8 is more or less the same.
错误!(参考源未找到)9显示了针对如下情况的垂直电阻率模型:真实、初始模型E、利用α=0反演的以及利用α=5反演的。初始模型E是Rv→Rv×1.2且RH→RH×1.2的模型C的修改版本。我们看到,当在反演中使用聚焦的权重时,与常规未聚焦的权重相比,电阻率异常再次恢复得好得多。与图8中所示模型相对应的反演的水平电阻率模型或多或少是相同的。mistake! (Reference source not found) 9 shows the vertical resistivity models for: real, original model E, inverted with α=0, and inverted with α=5. The initial model E is a modified version of model C with R v → R v × 1.2 and R H → R H × 1.2. We see that when focused weights are used in the inversion, the resistivity anomaly is again recovered much better compared to conventional unfocused weights. The inverted horizontal resistivity model corresponding to the model shown in Fig. 8 is more or less the same.
因此,可以得出结论:显著错误的初始模型不会降低聚焦异常的权重的效果。Therefore, it can be concluded that a significantly wrong initial model does not reduce the effect of focusing on the weight of anomalies.
以上我们已示出了数据驱动的聚焦反演(DDFI)方法良好地适用于CSEM反演。Above we have shown that the Data Driven Focused Inversion (DDFI) method works well for CSEM inversion.
与常规的模型驱动的聚焦反演(MDFI)方法不同,如果这些属性的存在不存在于数据中,则DDFI不会将某些属性强加到反演模型中。Unlike conventional model-driven focused inversion (MDFI) methods, DDFI does not impose certain properties into the inversion model if their presence is not present in the data.
测量数据的反演经常提供具有比解释所需的分辨率更低的分辨率的结果,或者估计的参数具有比所要求的更高的不确定性,特别是针对小的目标区域或一小组重要参数。数据驱动的聚焦反演在减少对用户定义的目标敏感的选定数据点的数据残差上投入更多努力。回想一下,这里的术语目标是指模型的选定的属性、参数和区域。因此,反演结果将提供目标的较好的清晰度,而以通常从用户角度来看是可以接受的较差的背景为代价。Inversion of measured data often provides results with lower resolution than required for interpretation, or estimates parameters with higher uncertainty than required, especially for small target areas or small groups of important parameter. Data-driven focused inversion puts more effort into reducing data residuals at selected data points that are sensitive to user-defined objectives. Recall that the term target here refers to selected properties, parameters, and regions of the model. Thus, the inversion result will provide better sharpness of the target at the expense of a poorer background which is usually acceptable from the user's point of view.
反演几乎总是以局部最小值结束。其以哪个最小值结束取决于初始模型、正则化、优化器算法。模型驱动的聚焦反演将正则化项所指示的属性强加到反演模型中,例如,平滑正则化项强制反演模型为平滑的,无论测量数据如何。相比于此,数据驱动的聚焦反演仅在减少选定数据点的数据残差上投入更多努力。因此,如果在测量数据中没有找到目标响应,则针对目标的聚焦函数不强制反演模型包含目标。相反,因为加权数据失配会过高,所以DDFI在这种情况下将确保反演模型不包含目标。因此,DDFI增加了反演以局部最小值结束的概率,这确保目标的属性精确地被描述。Inversion almost always ends with a local minimum. Which minimum it ends up with depends on the initial model, regularization, optimizer algorithm. Model-driven focused inversion imposes on the inversion model the properties indicated by the regularization term, e.g. the smoothness regularization term forces the inversion model to be smooth regardless of the measurement data. In contrast, data-driven focused inversion only puts more effort into reducing data residuals at selected data points. Therefore, the focusing function for the target does not force the inversion model to include the target if no target response is found in the measurement data. Instead, DDFI in this case will ensure that the target is not included in the inversion model because the weighted data mismatch would be too high. Therefore, DDFI increases the probability that the inversion ends with a local minimum, which ensures that the properties of the target are accurately described.
数据驱动的聚焦反演DDFI试图找到如下模型,该模型使对目标敏感的选定数据点的数据拟合最小化而牺牲仅对背景敏感而不对目标敏感的其它数据点。这使得目标的定义能够更精确。Data-driven focused inversion DDFI attempts to find a model that minimizes the data fit for selected data points that are sensitive to the target at the expense of other data points that are only sensitive to the background and not to the target. This enables more precise definition of the target.
图10是显示了根据第一实施例的示例性步骤的流程图。以下编号对应于图10的编号:Fig. 10 is a flowchart showing exemplary steps according to the first embodiment. The following numbering corresponds to that of Figure 10:
S1.接收从地下区域采集的地球物理数据。S1. Receiving geophysical data collected from a subterranean region.
S2.确定对异常敏感度高的数据点。S2. Identify data points with high sensitivity to anomalies.
S3.基于所述数据点执行反演,其中,在反演期间,通过增加所述数据点的权重来实现对异常的聚焦。S3. Performing an inversion based on the data points, wherein focusing on anomalies is achieved by increasing the weight of the data points during inversion.
S4.确定地下区域中物理属性分布的至少一个模型。S4. Determining at least one model of distribution of physical properties in the subterranean region.
图11是显示了根据第二实施例的示例性步骤的流程图;以下编号对应于图11的编号:Figure 11 is a flowchart showing exemplary steps according to the second embodiment; the following numbering corresponds to that of Figure 11:
S5.接收从地下区域采集的地球物理数据。S5. Receiving geophysical data collected from the subterranean region.
S6.确定对异常敏感度低的数据点。S6. Identify data points with low sensitivity to anomalies.
S7.基于所述数据点执行反演,其中,在反演期间,通过减小所述数据点的权重来实现对异常的聚焦。S7. Performing an inversion based on the data points, wherein during inversion focusing on anomalies is achieved by reducing the weight of the data points.
S8.确定地下区域中物理属性分布的至少一个模型。S8. Determining at least one model of distribution of physical properties in the subterranean region.
参考图12,提供了示例性计算机设备1,其能够执行处理从地下区域采集的地球物理数据的方法,如本发明的实施例所述。计算机设备可以包含计算机程序2或由其编程,计算机程序2包括用于处理从地下区域采集的地球物理数据的计算机可读指令,如本发明的实施例所述。计算机程序2可以存储在以存储器3的形式的非暂时性计算机可读介质上。计算机程序2可以从外部源4提供。计算机设备1可以包括显示器5,其允许用户对确定的地下区域中物理属性分布的模型进行可视化。Referring to Figure 12, there is provided an exemplary computer device 1 capable of performing a method of processing geophysical data collected from a subterranean region, as described in embodiments of the present invention. The computer device may contain or be programmed by a computer program 2 comprising computer readable instructions for processing geophysical data collected from subterranean regions, as described in embodiments of the present invention. The computer program 2 may be stored on a non-transitory computer readable medium in the form of a memory 3 . The computer program 2 can be provided from an external source 4 . The computer device 1 may comprise a display 5 which allows a user to visualize a model of the distribution of physical properties in the determined subterranean region.
Claims (14)
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/NO2015/050147 WO2017034410A1 (en) | 2015-08-27 | 2015-08-27 | Data-driven focused inversions |
Publications (2)
Publication Number | Publication Date |
---|---|
CN108351432A true CN108351432A (en) | 2018-07-31 |
CN108351432B CN108351432B (en) | 2022-01-18 |
Family
ID=58101121
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201580084177.7A Active CN108351432B (en) | 2015-08-27 | 2015-08-27 | Data-driven focus inversion |
Country Status (6)
Country | Link |
---|---|
EP (1) | EP3341767B1 (en) |
CN (1) | CN108351432B (en) |
AU (1) | AU2015406809B2 (en) |
CA (1) | CA2996840A1 (en) |
MX (1) | MX2018002495A (en) |
WO (1) | WO2017034410A1 (en) |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN108646307B (en) * | 2018-06-15 | 2019-02-26 | 山东大学 | A 4D Resistivity Inversion Method Based on Dynamically Adjusting Data Weight Values |
CN109001826B (en) * | 2018-06-15 | 2019-04-26 | 山东大学 | A four-dimensional resistivity inversion method based on data dynamic control time smoothness constraints |
US11953636B2 (en) | 2022-03-04 | 2024-04-09 | Fleet Space Technologies Pty Ltd | Satellite-enabled node for ambient noise tomography |
Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20100198519A1 (en) * | 2009-02-05 | 2010-08-05 | Schlumberger Technology Corporation | Deep-reading electromagnetic data acquisition method |
US20120130641A1 (en) * | 2009-04-10 | 2012-05-24 | Morrison H Frank | Marine Source To Borehole Electromagnetic Mapping Of Sub-Bottom Electrical Resistivity |
US20120209525A1 (en) * | 2009-10-06 | 2012-08-16 | Georgiy Mikhaylovich Trigubovich | Method for geo-electrical prospection |
CN103264668A (en) * | 2013-05-29 | 2013-08-28 | 扬州泰博汽车电子智能科技有限公司 | Vehicle body controller, burning system utilizing vehicle body controller and burning method |
US20130258810A1 (en) * | 2012-03-30 | 2013-10-03 | Wenyi Hu | Method and System for Tomographic Inversion |
CN103713323A (en) * | 2013-12-31 | 2014-04-09 | 孙赞东 | Omnibearing aeolotropy amplitude-preservation imaging and gather extracting method |
CN104471442A (en) * | 2012-07-26 | 2015-03-25 | 雪佛龙美国公司 | System and method for migration velocity modeling |
CN104603642A (en) * | 2012-06-25 | 2015-05-06 | 挪威国家石油公司 | Saturation Estimation Using mCSEM Data and Stochastic Petrophysical Modeling |
-
2015
- 2015-08-27 EP EP15902373.8A patent/EP3341767B1/en active Active
- 2015-08-27 WO PCT/NO2015/050147 patent/WO2017034410A1/en active Application Filing
- 2015-08-27 CA CA2996840A patent/CA2996840A1/en active Pending
- 2015-08-27 CN CN201580084177.7A patent/CN108351432B/en active Active
- 2015-08-27 AU AU2015406809A patent/AU2015406809B2/en active Active
- 2015-08-27 MX MX2018002495A patent/MX2018002495A/en unknown
Patent Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20100198519A1 (en) * | 2009-02-05 | 2010-08-05 | Schlumberger Technology Corporation | Deep-reading electromagnetic data acquisition method |
US20120130641A1 (en) * | 2009-04-10 | 2012-05-24 | Morrison H Frank | Marine Source To Borehole Electromagnetic Mapping Of Sub-Bottom Electrical Resistivity |
US20120209525A1 (en) * | 2009-10-06 | 2012-08-16 | Georgiy Mikhaylovich Trigubovich | Method for geo-electrical prospection |
US20130258810A1 (en) * | 2012-03-30 | 2013-10-03 | Wenyi Hu | Method and System for Tomographic Inversion |
CN104603642A (en) * | 2012-06-25 | 2015-05-06 | 挪威国家石油公司 | Saturation Estimation Using mCSEM Data and Stochastic Petrophysical Modeling |
CN104471442A (en) * | 2012-07-26 | 2015-03-25 | 雪佛龙美国公司 | System and method for migration velocity modeling |
CN103264668A (en) * | 2013-05-29 | 2013-08-28 | 扬州泰博汽车电子智能科技有限公司 | Vehicle body controller, burning system utilizing vehicle body controller and burning method |
CN103713323A (en) * | 2013-12-31 | 2014-04-09 | 孙赞东 | Omnibearing aeolotropy amplitude-preservation imaging and gather extracting method |
Non-Patent Citations (2)
Title |
---|
NEWMAN, GREGORY A. ET AL.: "Solution accelerators for large scale 3D electromagnetic inverse problems", 《HTTP://ESCHOLARSHIP.ORG/UC/ITEM/9RD5729N》 * |
R-´EPLESSIX ET AL.: "Resistivity imaging with controlled-source electromagnetic data: depth and data weighting", 《INVERSE PROBLEMS》 * |
Also Published As
Publication number | Publication date |
---|---|
CA2996840A1 (en) | 2017-03-02 |
AU2015406809B2 (en) | 2021-10-07 |
AU2015406809A1 (en) | 2018-03-22 |
MX2018002495A (en) | 2018-06-15 |
WO2017034410A1 (en) | 2017-03-02 |
EP3341767A4 (en) | 2019-04-24 |
BR112018003716A2 (en) | 2018-09-25 |
EP3341767A1 (en) | 2018-07-04 |
EP3341767B1 (en) | 2021-04-07 |
CN108351432B (en) | 2022-01-18 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
AU2010210953B2 (en) | Stochastic inversion of geophysical data for estimating earth model parameters | |
Galetti et al. | Transdimensional electrical resistivity tomography | |
Hansen et al. | Accounting for imperfect forward modeling in geophysical inverse problems—Exemplified for crosshole tomography | |
Hawkins et al. | Trans-dimensional Bayesian inversion of airborne electromagnetic data for 2D conductivity profiles | |
Lang et al. | Geostatistical inversion of prestack seismic data for the joint estimation of facies and impedances using stochastic sampling from Gaussian mixture posterior distributions | |
Zhdanov et al. | Large-scale 3D inversion of marine magnetotelluric data: Case study from the Gemini prospect, Gulf of Mexico | |
Oh et al. | Geostatistical approach to Bayesian inversion of geophysical data: Markov chain Monte Carlo method | |
Yang et al. | Mini-batch optimized full waveform inversion with geological constrained gradient filtering | |
Song et al. | Adaptive phase k-means algorithm for waveform classification | |
CN108351432B (en) | Data-driven focus inversion | |
Colombo et al. | Machine-learning inversion via adaptive learning and statistical sampling: Application to airborne micro-TEM for seismic sand corrections | |
US9020205B2 (en) | Methods of multinary inversion for imaging objects with discrete physical properties | |
Hoffmann et al. | Local uncertainty quantification for 3-D time-domain full-waveform inversion with ensemble Kalman filters: application to a North Sea OBC data set | |
Wang et al. | Divergence correction schemes in finite difference method for 3D tensor CSAMT in axial anisotropic media | |
Key et al. | Anisotropic 2.5 D inversion of Towed Streamer EM data from three North Sea fields using parallel adaptive finite elements | |
Aragao et al. | Elastic full waveform inversion with probabilistic petrophysical clustering | |
Hamann et al. | Global inversion of GPR traveltimes to assess uncertainties in CMP velocity models | |
Noh et al. | 3D sequential inversion of frequency-domain airborne electromagnetic data to determine conductive and magnetic heterogeneities | |
Qu et al. | Simultaneous joint migration inversion for high‐resolution imaging/inversion of time‐lapse seismic datasets | |
Tveit et al. | Discriminating time-lapse saturation and pressure changes in CO2 monitoring from seismic waveform and CSEM data using ensemble-based Bayesian inversion | |
Hidalgo-Gato et al. | Fast 3D magnetic inversion of a surface relief in the space domain | |
Stoffa et al. | Time evolution of the electric field using the rapid expansion method with pseudospectral evaluation of spatial derivatives—Part 1 | |
Fonte-Boa et al. | Interpolation artifacts as a result of spatial aliasing: A case study of the airborne magnetic data set of southeastern Minas Gerais, Brazil | |
GB2573152A (en) | Providing for uncertainty in non-linear inversions of geophysical data | |
Liang et al. | Improved estimation of permeability from joint inversion of time-lapse crosswell electromagnetic and production data using gradient-based method |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |