CN108345332A - 一种深海图像追踪采集系统、方法及装置 - Google Patents

一种深海图像追踪采集系统、方法及装置 Download PDF

Info

Publication number
CN108345332A
CN108345332A CN201810093339.9A CN201810093339A CN108345332A CN 108345332 A CN108345332 A CN 108345332A CN 201810093339 A CN201810093339 A CN 201810093339A CN 108345332 A CN108345332 A CN 108345332A
Authority
CN
China
Prior art keywords
image
holder
moving object
camera
acquisition
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201810093339.9A
Other languages
English (en)
Inventor
王金城
叶峥
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shanghai Rainbow Fish Deep-Sea Equipment Technology Co Ltd
Original Assignee
Shanghai Rainbow Fish Deep-Sea Equipment Technology Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shanghai Rainbow Fish Deep-Sea Equipment Technology Co Ltd filed Critical Shanghai Rainbow Fish Deep-Sea Equipment Technology Co Ltd
Priority to CN201810093339.9A priority Critical patent/CN108345332A/zh
Publication of CN108345332A publication Critical patent/CN108345332A/zh
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D27/00Simultaneous control of variables covered by two or more of main groups G05D1/00 - G05D25/00
    • G05D27/02Simultaneous control of variables covered by two or more of main groups G05D1/00 - G05D25/00 characterised by the use of electric means
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05FSYSTEMS FOR REGULATING ELECTRIC OR MAGNETIC VARIABLES
    • G05F1/00Automatic systems in which deviations of an electric quantity from one or more predetermined values are detected at the output of the system and fed back to a device within the system to restore the detected quantity to its predetermined value or values, i.e. retroactive systems
    • G05F1/66Regulating electric power
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • G06T7/70Determining position or orientation of objects or cameras
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/56Cameras or camera modules comprising electronic image sensors; Control thereof provided with illuminating means

Abstract

本申请提供了本申请实施例提出了一种深海图像追踪采集系统、方法及装置,用以更好地保障深海图像采集。该系统包括水下灯、透明密闭容器以及位于透明密闭容器内的图像采集装置、工控机以及固定图像采集装置的云台,其中工控机用于分析所述图像采集装置采集的图像得到目标拍摄区域,控制所述云台转动使得所述目标拍摄区域位于所述图像采集装置拍摄范围的中心区域。

Description

一种深海图像追踪采集系统、方法及装置
技术领域
本申请涉及深海图像技术领域,尤其涉及一种深海图像追踪采集系统、方法及装置。
背景技术
由于深海应用环境的特殊性,具有强大的压力,因此非耐压的器件,如深海图像采集装置,须被保护在高强度的耐压壳体之内,如玻璃浮球、耐压罐体。在现有技术中,由于耐压壳体本身不具备自主上浮、下潜能力,因此需要如着陆器、AUV等载体设备的配合以实现上浮、下潜。一般每个潜次的时间都较长,载体设备可以自主供电。
现有技术方案中,为实现深海图像采集,深潜载体,如着陆器,一般同时带有水下灯、摄像机以及照相机等水下拍摄装置,但各个设备基本处于单独工作的状态。为了节省电量以及存储设备空间,在下潜、上浮过程中一般采用间歇性工作或不工作的方式:通过设备内的定时装置(PC,单片机等),从入水开始直到返回水面,水下灯、摄像机、照相机根据预设周期循环开启、工作、关闭、等待。到达指定深度后,所有拍摄装置保持开启状态直到载体设备开始上浮。为了减小视频资料占用的存储空间,一般采用视频压缩技术进行存储。但是,这种根据预设周期循环开启、工作、关闭、等待的工作方式,极有可能错过珍贵的深海画面。此外,现有的摄像机以及照相机等水下拍摄装置均是固定在耐压壳体之内的,只能拍摄固定角度的图像,而水中的生物是会运动的,容易因为生物运动出图像采集的范围而错过珍贵的深海画面,因此,如何更好地保障图像采集,是深海图像采集场景亟待解决的问题。并且,各个拍摄设备分散于载体设备的各个位置,无法实现统一安装、自主管理,后续维护工作大。
发明内容
本申请实施例提出了一种深海图像追踪采集系统、方法及装置,用以更好地保障深海图像采集。
在一个方面,本申请实施例提供了一种深海图像追踪采集系统,包括水下灯、透明密闭容器以及位于所述透明密闭容器内的图像采集装置、工控机以及固定所述图像采集装置的云台,其中:
所述水下灯,用于照明;
所述透明密闭容器,是耐压元件;
所述图像采集装置,用于图像采集;
所述工控机,用于分析所述图像采集装置采集的图像得到目标拍摄区域,控制所述云台转动使得所述目标拍摄区域位于所述图像采集装置拍摄范围的中心区域。
在另一个方面,本申请实施例提供了应用于上述系统的工控机,所述方法包括:
分析图像采集装置采集的图像中的运动物体,确定所述运动物体的坐标与速度;
根据所述运动物体的坐标与速度确定云台的转动方向与速度,并分析当前拍摄到的图像中所述运动物体是否位于图像的中心区域,若是,则保持所述云台的转动方向与速度,否则,根据当前拍摄到的图像中所述运动物体位于图像的左右情况,为所述云台提供向左或向右的加速度。
在又一个方面,本申请实施例提供了一种工控机,包括USB接口、RS232接口、存储器、处理器及存储在所述存储器上并可在所述处理器上运行的计算机程序;所述处理器执行所述程序时实现上述的深海图像追踪采集方法。
在再一个方面,本申请实施例提供了一种计算机可读存储介质,其上存储有计算机程序,该程序被处理器执行时实现上述的深海图像追踪采集方法中的步骤。
有益效果如下:
在本申请实施例中,通过分析图像采集装置采集的第一清晰度的图像,在分析出满足预设条件时,控制图像采集装置以第二清晰度进行图像采集并存储,以及控制功率模块将第一级功率输出模式调整为第二级功率输出模式,第一清晰度低于第二清晰度,第一级功率输出模式的输出功率低于第二级功率输出模式。可以看出,由于本发明实施例中,通过分析图像采集装置采集的第一清晰度的图像是否满足预设条件来确定是否采用更高清晰度进行图像采集、存储以及是否采用更高功率的水下灯照明,可以更智能地达到在省电的同时保障深海图像采集的目的,使得在省电的基础上采集到更有价值的深海图像。
附图说明
下面将参照附图描述本申请的具体实施例,其中:
图1示出了本申请实施例中的深海图像追踪采集系统的结构示意图;
图2示出了本申请实施例一中的深海图像追踪采集系统的结构示意图;
图3示出了本申请实施例一中的深海图像追踪采集系统的连接关系示意图;
图4示出了本申请实施例二中工控机的控制流程的流程示意图。
具体实施方式
为了使本申请的技术方案及优点更加清楚明白,以下结合附图对本申请的示例性实施例进行进一步详细的说明,显然,所描述的实施例仅是本申请的一部分实施例,而不是所有实施例的穷举。并且在不冲突的情况下,本说明书中的实施例及实施例中的特征可以互相结合。
本申请提出了一种深海图像追踪采集系统、方法及装置。
图1示出了本申请实施例中的深海图像追踪采集系统,包括水下灯101、透明密闭容器102以及位于透明密闭容器102内的图像采集装置103、工控机105以及固定图像采集装置103的云台104,其中:
水下灯101,用于照明;
透明密闭容器102,是耐压元件;
图像采集装置103,用于图像采集;
工控机105,用于分析图像采集装置103采集的图像得到目标拍摄区域,控制云台104转动使得目标拍摄区域位于图像采集装置103拍摄范围的中心区域。
进一步地,目标拍摄区域可以为运动物体所在区域。
具体的目标拍摄区域可以根据实际需要进行设定,如在具体的科考项目中,可设置目标拍摄区域为识别出反光物体的区域、某种颜色的区域等,不做具体限制,设置目标拍摄区域为运动物体所在区域,是由于深海存在未被发现的运动生物,对运动生物进行拍摄,具有很大的图像采集价值。
进一步地,分析图像采集装置103采集的图像得到目标拍摄区域,控制云台104转动使得目标拍摄区域位于图像采集装置103拍摄范围的中心区域可以包括:
分析图像采集装置103采集的图像中的运动物体,确定运动物体的坐标与速度,根据运动物体的坐标与速度确定云台104的转动方向与速度,并分析当前拍摄到的图像中运动物体是否位于图像的中心区域,若是,则保持云台104的转动方向与速度,否则,根据当前拍摄到的图像中运动物体位于图像的左右情况,为云台104提供向左或向右的加速度。
通过上述操作,可以控制云台104带动图像采集装置103对运动物体进行追踪,从而更好地进行图像采集,记录更多珍贵的图像。
进一步地,工控机105,还可以用于当云台104存在速度方向的变化时,对云台104进行速度补偿。
这是由于在云台104存在速度方向的变化时,可能发生云台104的抖动,对云台104进行速度补偿,可以尽量避免云台104抖动,更好地保障能够采集到更加清晰的图像。
进一步地,本申请中的深海图像追踪采集系统还可以包括电源模块,电源模块用于为水下灯101、图像采集装置103、工控机105、云台104供电。
在实现时,可以通过载体为水下灯101、图像采集装置103、工控机105、云台104供电,载体设备自主供电且电量有限,故可以为图像采集系统单独提供电源模块,以更好地支持图像采集系统工作。
进一步地,,本申请中的深海图像追踪采集系统还可以包括无线模块,无线模块用于供深海图像追踪采集系统外的设备对深海图像追踪采集系统存储的图像进行处理;电源模块还为无线模块供电。
深海图像追踪采集系统外的设备对深海图像追踪采集系统存储的图像进行处理可以包括图像传输、删除等操作,在增加无线模块107之后,工作人员可以在透明密闭容器102之外对深海图像追踪采集系统存储的图像进行操作,这样使得每个潜次之后,不需要将透明密闭容器102打开以获得图像,进而减少了人工操作并进一步保障透明密闭容器102的密闭性以及使用寿命。
进一步地,图像采集装置103可以为照相机、摄像机、或者照相机与摄像机。
在具体实现时,图像采集装置103不限于一个或多个照相机、摄像机,目前的很多照相机同样具有摄像功能,可以利用其摄像功能进行图像分析,也可以通过算法对图片进行分析。
进一步地,当图像采集装置103为照相机与摄像机时,工控机105,可以用于分析摄像机采集的图像得到目标拍摄区域,控制云台104转动使得目标拍摄区域位于图像采集装置103拍摄范围的中心区域,并控制在目标拍摄区域位于图像采集装置103拍摄范围的中心区域时,控制照相机进行拍摄。
由于在深海环境进行图像采集,系统的点亮和图像采集装置103的图像存储空间都是有限的,因此,可以在目标拍摄区域位于图像采集装置103拍摄范围的中心区域时,才控制照相机进行拍摄,以节省电量与存储空间。摄像机因为要追踪目标拍摄区域,可以一直拍摄,但同样可以不存储图像以节省存储空间。
本申请实施例提供了一种深海图像追踪采集方法,应用于上述深海图像追踪采集系统的工控机105,该方法包括:
分析图像采集装置103采集的图像中的运动物体,确定运动物体的坐标与速度;
根据运动物体的坐标与速度确定云台104的转动方向与速度,并分析当前拍摄到的图像中运动物体是否位于图像的中心区域,若是,则保持云台104的转动方向与速度,否则,根据当前拍摄到的图像中运动物体位于图像的左右情况,为云台104提供向左或向右的加速度。
进一步地,当云台104存在速度方向的变化时,可以对云台104进行速度补偿。
进一步地,当图像采集装置103为照相机与摄像机时,可以分析摄像机采集的图像得到目标拍摄区域,控制云台104转动使得目标拍摄区域位于图像采集装置103拍摄范围的中心区域,并控制在目标拍摄区域位于图像采集装置103拍摄范围的中心区域时,控制照相机进行拍摄。
本申请实施例提供了一种工控机105,包括USB接口、RS232接口、存储器、处理器及存储在存储器上并可在处理器上运行的计算机程序;处理器执行程序时实现上述的深海图像追踪采集方法。
本申请实施例提供了一种计算机可读存储介质,其上存储有计算机程序,该程序被处理器执行时实现上述的深海图像追踪采集方法中的步骤。
为了便于本申请的实施,下面以实施例进行说明。
实施例一
实施例一中的深海图像追踪采集系统如图2所示,包括水下灯101、透明密闭容器102以及位于透明密闭容器102内的照相机1032、摄像机1031、云台104、工控机105、电源模块106、无线模块107,其中:
水下灯101,是耐压元件,用于照明;
透明密闭容器102,是耐压元件;
摄像机1031;
照相机1032;
云台104,用于固定摄像机1031、照相机1032;
工控机105,用于分析摄像机1031采集的图像得到目标拍摄区域,控制云台104转动使得目标拍摄区域位于摄像机1031和/或照相机1032拍摄范围的中心区域;
无线模块107,用于供深海图像追踪采集系统外的设备对深海图像追踪采集系统存储的图像进行处理。
电源模块106,用于为图像采集装置103、功率模块104、工控机105、云台104、无线模块107供电。
在实施例一中,透明密闭容器102为一个玻璃浮球,玻璃浮球以及水下灯101为耐压元件,其他设备为非耐压元件。玻璃浮球与水下灯101固定于载体设备上。通常认为,放置在透明密闭容器102内的元件为非耐压元件,这并非一个必要的要求,耐压元件同样可以放置在透明密闭容器102内,但是,只要与海水直接接触的元件均需要是耐压元件。此外,虽然在图1、2中,水下灯101均位于透明密闭容器102之外,但这只是为了追求更好的照明效果以及避免透明密闭容器102内部的反光影响拍摄效果而提出的优选方案,并非是对水下灯101位置的具体限定,当水下灯101位于透明密闭容器102之外时,水下灯101需为耐压元件,否则不需要为耐压元件。实施例一中的电源模块106能够接受无线充电,从而能够在不打开透明密闭容器102的情况下进行充电。
图3示出了深海图像追踪采集系统的连接关系,水下灯101与透明玻璃浮球间通过水密电缆及水密接头的形式连接。电源模块106采用24V电压,为水下灯101、照相机1032、摄像机1031、云台104、工控机105、无线模块107供电。摄像机1031、照相机1032的图像信号以及控制信号与工控机105相连。云台104控制信号与工控机105相连。功率控制模块与工控机105相连。具体地,工控机105具有3个USB接口,分别与摄像机1031、照相机1032、无线模块107连接,工控机105具有1个RS232接口,与云台104连接。本领域技术人员应当理解,当本申请实施例中模块相应减少时,可以根据图3相应减少接口以及连接关系。
实施例二
在实施例二中,对实施例一中提供的深海图像追踪采集系统的一种具体实现流程进行说明,该实现流程由工控机105进行控制,实施例二中工控机105的控制流程如图4所示,包括:
步骤401,控制云台104处于初始位置,速度为0,摄像机1031进行图像采集。
本步骤中的状态可以是系统初始化的状态,在具体实现时,工控机105不一定需要控制云台104处于初始位置,速度为0,这个初始状态可以是人为设置,也可以是之前的潜次遗留的初始状态。摄像机1031进行图像采集的目的是供工控机105进行分析,不一定需要存储图像,在不存储图像时,以节省存储空间。
步骤402,根据摄像机1031采集到的图像进行运动物体搜索,判断采集到的图像中是否存在运动物体,若是,进行步骤403,否则,返回步骤401。
本步骤中运动物体搜索可以基于Mean Shift算法,得到运动物体的位置,进而确定运动物体的具体坐标与速度。该算法为目前比较流行的算法思想,完全依靠特征空间中样本点的计算,无需预先输入任何经验知识,如各种鱼类的建模。
步骤403,分析图像采集装置103采集的图像中的运动物体,确定运动物体的坐标与速度,根据运动物体的坐标与速度确定云台104的转动方向与速度。
步骤404,分析当前拍摄到的图像中的运动物体是否位于图像的中心区域,若是,进行步骤405,否则,进行步骤406。
本步骤中,针对海底环境的特殊性,利用背景差法可以获得运动物体的外接矩形框。进而判断前拍摄到的图像中的运动物体是否位于图像的中心区域,若是,则工控机105不需输出处理,使得云台104保持当前的转动方向与速度,否则,进行后续步骤进行云台104的调整。
步骤405,控制照相机1032拍摄图像并保存,返回步骤404。
本步骤中,是在分析出当前拍摄到的图像中的运动物体位于图像的中心区域时,控制照相机1032拍摄图像并保存,但这并非是对照相机1032何时进行拍摄的限制,只是一种较优的实现方式。照相机的拍摄控制可以根据实际需求进行其他设置,例如,在分析出图像采集装置103采集的图像中存在运动物体后,即进行照相机1032的周期性拍摄和存储。
步骤406,根据当前拍摄到的图像中运动物体位于图像的左右情况,为云台104提供向左或向右的加速度。
可以理解,当运动物体位于图像的左边时,应当向云台104提供向左的加速度,若当前转动的方向是向右的,运动物体位于图像的左边,说明云台104转动的速度太快,提供向左的加速度,其结果是降低云台104的速度,尽量保障运动物体位于图像的中心区域,而若当前转动的方向是向左的,运动物体位于图像的左边,说明云台104转动的速度太慢,提供向左的加速度,可以提高云台104的速度,同样是尽量保障运动物体位于图像的中心区域。同理,当运动物体位于图像的右边时,应当向云台104提供向右的加速度。
步骤407,判断云台104是否发生速度方向的变化,若是,进行步骤408,否则,进行步骤409。
步骤408,对云台104进行速度补偿,返回步骤404。
步骤409,判断云台104是否在工作范围内,若是,返回步骤402,否则,返回步骤401。
采用实施例二提供的方案,可以控制云台104追踪感兴趣的运动物体。采用实施例二提供的方案,系统自带电源模块106,无需消耗载体设备电量;系统为一个统一的整体,安装、维护方便;系统通过云台104追踪的方式,极大的扩展了照相机、摄像机的视角。
本领域内的技术人员应明白,本申请的实施例可提供为方法、系统、或计算机程序产品。因此,本申请可采用完全硬件实施例、完全软件实施例、或结合软件和硬件方面的实施例的形式。而且,本申请可采用在一个或多个其中包含有计算机可用程序代码的计算机可用存储介质(包括但不限于磁盘存储器、CD-ROM、光学存储器等)上实施的计算机程序产品的形式。
本申请是参照根据本申请实施例的方法、设备(系统)、和计算机程序产品的流程图和/或方框图来描述的。应理解可由计算机程序指令实现流程图和/或方框图中的每一流程和/或方框、以及流程图和/或方框图中的流程和/或方框的结合。可提供这些计算机程序指令到通用计算机、专用计算机、嵌入式处理机或其他可编程数据处理设备的处理器以产生一个机器,使得通过计算机或其他可编程数据处理设备的处理器执行的指令产生用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的装置。
这些计算机程序指令也可存储在能引导计算机或其他可编程数据处理设备以特定方式工作的计算机可读存储器中,使得存储在该计算机可读存储器中的指令产生包括指令装置的制造品,该指令装置实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能。
这些计算机程序指令也可装载到计算机或其他可编程数据处理设备上,使得在计算机或其他可编程设备上执行一系列操作步骤以产生计算机实现的处理,从而在计算机或其他可编程设备上执行的指令提供用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的步骤。
尽管已描述了本申请的优选实施例,但本领域内的技术人员一旦得知了基本创造性概念,则可对这些实施例作出另外的变更和修改。所以,所附权利要求意欲解释为包括优选实施例以及落入本申请范围的所有变更和修改。

Claims (13)

1.一种深海图像追踪采集系统,其特征在于,包括水下灯、透明密闭容器以及位于所述透明密闭容器内的图像采集装置、工控机以及固定所述图像采集装置的云台,其中:
所述水下灯,用于照明;
所述透明密闭容器,是耐压元件;
所述图像采集装置,用于图像采集;
所述工控机,用于分析所述图像采集装置采集的图像得到目标拍摄区域,控制所述云台转动使得所述目标拍摄区域位于所述图像采集装置拍摄范围的中心区域。
2.如权利要求1所述的系统,其特征在于,所述目标拍摄区域为运动物体所在区域。
3.如权利要求2所述系统,其特征在于,所述分析所述图像采集装置采集的图像得到目标拍摄区域,控制所述云台转动使得所述目标拍摄区域位于所述图像采集装置拍摄范围的中心区域包括:
分析所述图像采集装置采集的图像中的所述运动物体,确定所述运动物体的坐标与速度,根据所述运动物体的坐标与速度确定所述云台的转动方向与速度,并分析当前拍摄到的图像中所述运动物体是否位于图像的中心区域,若是,则保持所述云台的转动方向与速度,否则,根据当前拍摄到的图像中所述运动物体位于图像的左右情况,为所述云台提供向左或向右的加速度。
4.如权利要求3所述的系统,其特征在于,所述工控机,还用于当所述云台存在速度方向的变化时,对所述云台进行速度补偿。
5.如权利要求1所述的系统,其特征在于,所述系统还包括电源模块,所述电源模块用于为所述水下灯、所述图像采集装置、所述工控机、所述云台供电。
6.如权利要求5所述的系统,其特征在于,所述系统还包括无线模块,所述无线模块用于供所述系统外的设备对所述系统存储的图像进行处理;
所述电源模块还为所述无线模块供电。
7.如权利要求1-6中任一权利要求所述的系统,其特征在于,所述图像采集装置为照相机、摄像机、或者照相机与摄像机。
8.如权利要求7所述的系统,其特征在于,当所述图像采集装置为照相机与摄像机时,所述工控机,用于分析所述摄像机采集的图像得到目标拍摄区域,控制所述云台转动使得所述目标拍摄区域位于所述图像采集装置拍摄范围的中心区域,并控制在所述目标拍摄区域位于所述图像采集装置拍摄范围的中心区域时,控制所述照相机进行拍摄。
9.一种深海图像追踪采集方法,其特征在于,应用于如权利要求1中的系统的工控机,所述方法包括:
分析图像采集装置采集的图像中的运动物体,确定所述运动物体的坐标与速度;
根据所述运动物体的坐标与速度确定云台的转动方向与速度,并分析当前拍摄到的图像中所述运动物体是否位于图像的中心区域,若是,则保持所述云台的转动方向与速度,否则,根据当前拍摄到的图像中所述运动物体位于图像的左右情况,为所述云台提供向左或向右的加速度。
10.如权利要求9所述的方法,其特征在于,当所述云台存在速度方向的变化时,对所述云台进行速度补偿。
11.如权利要求9所述的方法,其特征在于,当所述图像采集装置为照相机与摄像机时,分析所述摄像机采集的图像得到目标拍摄区域,控制所述云台转动使得所述目标拍摄区域位于所述图像采集装置拍摄范围的中心区域,并控制在所述目标拍摄区域位于所述图像采集装置拍摄范围的中心区域时,控制所述照相机进行拍摄。
12.一种工控机,其特征在于,包括USB接口、RS232接口、存储器、处理器及存储在所述存储器上并可在所述处理器上运行的计算机程序;其特征在于,所述处理器执行所述程序时实现如权利要求9-11任一权利要求所述的深海图像追踪采集方法。
13.一种计算机可读存储介质,其上存储有计算机程序,其特征在于,该程序被处理器执行时实现如权利要求9-11任一权利要求所述的深海图像追踪采集方法中的步骤。
CN201810093339.9A 2018-01-31 2018-01-31 一种深海图像追踪采集系统、方法及装置 Pending CN108345332A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201810093339.9A CN108345332A (zh) 2018-01-31 2018-01-31 一种深海图像追踪采集系统、方法及装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201810093339.9A CN108345332A (zh) 2018-01-31 2018-01-31 一种深海图像追踪采集系统、方法及装置

Publications (1)

Publication Number Publication Date
CN108345332A true CN108345332A (zh) 2018-07-31

Family

ID=62961715

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201810093339.9A Pending CN108345332A (zh) 2018-01-31 2018-01-31 一种深海图像追踪采集系统、方法及装置

Country Status (1)

Country Link
CN (1) CN108345332A (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111263044A (zh) * 2020-02-19 2020-06-09 南京信息工程大学 一种水下拍摄及图像处理装置及方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102126544A (zh) * 2010-12-31 2011-07-20 北京理工大学 一种水中自航式全方位侦测器
CN104002942A (zh) * 2014-06-09 2014-08-27 北京理工大学 一种微型自主潜水器
CN105407283A (zh) * 2015-11-20 2016-03-16 成都因纳伟盛科技股份有限公司 一种多目标主动识别跟踪监控方法
CN106291737A (zh) * 2016-08-30 2017-01-04 广州市固润光电科技有限公司 一种水下光谱复合成像探测系统及方法
CN107499476A (zh) * 2017-08-21 2017-12-22 江苏科技大学 水下机器人控制系统及运动控制方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102126544A (zh) * 2010-12-31 2011-07-20 北京理工大学 一种水中自航式全方位侦测器
CN104002942A (zh) * 2014-06-09 2014-08-27 北京理工大学 一种微型自主潜水器
CN105407283A (zh) * 2015-11-20 2016-03-16 成都因纳伟盛科技股份有限公司 一种多目标主动识别跟踪监控方法
CN106291737A (zh) * 2016-08-30 2017-01-04 广州市固润光电科技有限公司 一种水下光谱复合成像探测系统及方法
CN107499476A (zh) * 2017-08-21 2017-12-22 江苏科技大学 水下机器人控制系统及运动控制方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111263044A (zh) * 2020-02-19 2020-06-09 南京信息工程大学 一种水下拍摄及图像处理装置及方法

Similar Documents

Publication Publication Date Title
US10095942B2 (en) Vision based real-time object tracking system for robotic gimbal control
CN107340777B (zh) 一种水下无人船控制系统及方法
US10055850B2 (en) Salient features tracking apparatus and methods using visual initialization
Bonin-Font et al. Visual sensing for autonomous underwater exploration and intervention tasks
WO2019232247A1 (en) Biomass estimation in an aquaculture environment
Livanos et al. Intelligent navigation and control of a prototype autonomous underwater vehicle for automated inspection of aquaculture net pen cages
CN207773410U (zh) 一种浅水观察级水下机器人
CN108345228A (zh) 一种自供电的深海图像采集系统、方法及装置
KR20200067743A (ko) 수중드론을 이용하는 어망감시장치, 및 그 장치의 제어방법
EP3015147A1 (en) Method for generating a target trajectory of a camera embarked on a drone and corresponding system
CN112949452B (zh) 一种基于多任务共享网络的机器人弱光环境抓取检测方法
Zacchini et al. Deep learning for on-board AUV automatic target recognition for optical and acoustic imagery
Fabio et al. Performance evaluation of a low-cost stereo vision system for underwater object detection
Yasukawa et al. Vision system for an autonomous underwater vehicle with a benthos sampling function
Srikanth et al. Computational rim illumination with aerial robots
CN112809703A (zh) 基于esrgan增强超分辨率和cnn图像识别的底播海参捕捞机器人
Sun et al. Visual measurement and control for underwater robots: A survey
CN108345332A (zh) 一种深海图像追踪采集系统、方法及装置
CN112188088A (zh) 水下自拍系统
CN112946074A (zh) 一种引水隧洞衬砌结构损伤探测系统以及方法
ITMI20131701A1 (it) Sistema di acquisizione ed elaborazione di immagini subacquee
CN112055150A (zh) 一种基于矢量推进的水下实时图像增强拍摄无人机
US20230290061A1 (en) Efficient texture mapping of a 3-d mesh
Liu et al. A generative model of underwater images for active landmark detection and docking
Yamada et al. Docking experiment in dark environments using active/lighting marker and HSV correlation

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication
RJ01 Rejection of invention patent application after publication

Application publication date: 20180731