CN108341886A - 一种从原淀粉获取淀粉纳米晶的湿热处理工艺 - Google Patents

一种从原淀粉获取淀粉纳米晶的湿热处理工艺 Download PDF

Info

Publication number
CN108341886A
CN108341886A CN201810171395.XA CN201810171395A CN108341886A CN 108341886 A CN108341886 A CN 108341886A CN 201810171395 A CN201810171395 A CN 201810171395A CN 108341886 A CN108341886 A CN 108341886A
Authority
CN
China
Prior art keywords
starch
heat treatment
humid heat
crystal
nanometer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201810171395.XA
Other languages
English (en)
Other versions
CN108341886B (zh
Inventor
成芳
戴理民
李长伟
张俊
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Zhejiang University ZJU
Original Assignee
Zhejiang University ZJU
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Zhejiang University ZJU filed Critical Zhejiang University ZJU
Priority to CN201810171395.XA priority Critical patent/CN108341886B/zh
Publication of CN108341886A publication Critical patent/CN108341886A/zh
Application granted granted Critical
Publication of CN108341886B publication Critical patent/CN108341886B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08BPOLYSACCHARIDES; DERIVATIVES THEREOF
    • C08B30/00Preparation of starch, degraded or non-chemically modified starch, amylose, or amylopectin
    • C08B30/12Degraded, destructured or non-chemically modified starch, e.g. mechanically, enzymatically or by irradiation; Bleaching of starch
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08BPOLYSACCHARIDES; DERIVATIVES THEREOF
    • C08B30/00Preparation of starch, degraded or non-chemically modified starch, amylose, or amylopectin
    • C08B30/02Preparatory treatment, e.g. crushing of raw materials or steeping process

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Biochemistry (AREA)
  • Materials Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Polysaccharides And Polysaccharide Derivatives (AREA)

Abstract

本发明公开了一种从原淀粉获取淀粉纳米晶的湿热处理工艺。对原淀粉进行一定条件下的湿热处理,再对经湿热处理后的淀粉进行酸水解。通过测定酸水解后所得物质的结晶度,微观形貌等参数,与常规酸水解方法相比,该湿热处理工艺的方法所制备得到的淀粉纳米晶,产率大大提高,处理时间也得到缩短,有望进一步解决淀粉纳米晶无法量产的难题。

Description

一种从原淀粉获取淀粉纳米晶的湿热处理工艺
技术领域
本发明涉及淀粉加工、湿热处理及纳米材料领域的方法,尤其涉及一种从原淀粉获取淀粉纳米晶的湿热处理工艺。
背景技术
淀粉颗粒内部存在结晶区和非结晶区交替排列的结构,其中非结晶区排列疏松无规则,且对酸无耐性。目前关于结晶区和非结晶区的组成,很多学者认为结晶区主要由支链淀粉构成,而非结晶区主要由直链淀粉构成。利用酸可使淀粉颗粒非结晶区发生水解,而结晶区以淀粉纳米晶的形式得以保存下来。淀粉纳米晶的尺寸一般在100nm以下,具有纳米材料的优良性质,另外由于淀粉来源广泛,价格低廉,使得淀粉纳米晶具有广泛的应用前景,例如可用于Pickering乳液中作为颗粒乳化剂,医学领域里的药物载体等。
然而常规的淀粉纳米晶制备方法存在产率低、耗时长等缺点,难以大规模工业量产。这是由于淀粉颗粒表面结构比较致密,酸水解时氢离子较难直接向淀粉颗粒内部渗透。因此如何在维持淀粉结晶度的基础上,尽量破坏淀粉颗粒表面的致密结构,成为提高淀粉纳米晶产率、缩短制备时间的关键。湿热处理是指在低水分条件下,处理温度高于淀粉糊化温度,低于淀粉玻璃态转化温度的一种热处理技术。虽然温度较高,但由于湿热处理时水分含量低,使得淀粉不会发生糊化。目前,关于湿热处理对淀粉颗粒形态及结晶度影响的研究,使得尚未得到统一的结论。根据已有研究,湿热处理对淀粉颗粒表面可产生不同程度的破坏,但由于不同学者常采用不同的湿热处理条件,湿热处理对淀粉结晶度影响的研究,尚未得到统一的结论。
发明内容
为了解决上述背景技术中存在的问题,本发明提出了一种从原淀粉获取淀粉纳米晶的湿热处理工艺。本发明方法通过控制特定的湿热处理温度、湿度、时间,在淀粉颗粒内部结构发生重新排列的同时,一定程度上破坏淀粉颗粒的表面结构。
本发明采用的技术方案具体包括以下步骤:
1)对淀粉在一定条件下进行湿热处理,使淀粉颗粒内部结构发生重新排列,在一定程度上破坏淀粉较完整的颗粒结构;
2)对湿热处理后的淀粉进行酸水解处理以获得淀粉纳米晶。
所述步骤1)中,对淀粉在一定条件下进行湿热处理,具体为:湿热处理前调节淀粉的含水率为21%,然后在温度96.3℃下湿热处理2.43h。
所述步骤2)具体是酸水解时间为4天。
所述步骤2.1)中湿热处理后,淀粉颗粒表面受到一定程度的破坏,出现更多孔洞和裂缝。
酸水解后得到的淀粉纳米晶为尺寸在纳米级的淀粉纳米晶,颗粒尺寸范围是28~75nm。
所述淀粉为市售蜡质玉米淀粉。
本发明的有益效果是:
本发明主要目的是提高淀粉纳米晶的产率,与传统酸水解方法相比,该法制备淀粉纳米晶的产率从15.7%提升至26.7%。
同时由于湿热处理使得淀粉颗粒表面发生一定程度的破坏,淀粉纳米晶制备时间从5天缩短为4天,可进一步用于解决淀粉纳米晶无法量产的难题。
本发明一系列的表征实验证明该方法制备的淀粉纳米晶与传统采用的方法制备的淀粉纳米晶性质一致,有望促使淀粉纳米晶的制备方法进一步工业化。
附图说明
图1为采用该湿热处理工艺制备得到的淀粉纳米晶原子力显微镜图。
图2为该原子力显微图中各粒子大小的频数分布图。
具体实施方式
下面结合说明书附图及从原淀粉获取淀粉纳米晶的湿热处理工艺的实施例对本发明作进一步详细描述。
本发明的实施例、对比例及其实施过程如下,主要包括蜡质玉米淀粉的湿热处理和硫酸水解过程:
实施例
首先,取20g绝干的市售蜡质玉米淀粉于500ml带螺口的小瓶,加入5.3ml蒸馏水,4℃下过夜存放,通过100目孔筛,进行湿热处理,湿热处理的条件是:温度未96.3℃,时间为2.43h。经测定,湿热处理后,淀粉结晶度为42.4%。
将湿热后的淀粉放在鼓风干燥箱中40℃充分干燥,获得湿热处理后的蜡质玉米淀粉。
将湿热处理后所得的淀粉进行硫酸水解,水解4天后,离心所得溶液,沉淀洗涤至中性,冷冻干燥得淀粉纳米晶产率达到26.7%。利用原子力显微镜进行表征,如图1所示。并进行图像处理、统计分析,得未聚集在一起的淀粉纳米晶共81个,平均尺寸为46nm,各粒子大小频数分布如图2所示。
对制备得到的淀粉纳米晶进行结晶度表征,从原淀粉获取淀粉纳米晶的湿热处理工艺的方法,水解4天时制备的淀粉纳米晶的相对结晶度为(47.3±0.26)%,与传统酸水解5天制备的淀粉纳米晶相对结晶度相近,为(46.8±0.24)%。
对比例1
取100g绝干的市售蜡质玉米淀粉置于含1000ml 3.16mol/L的硫酸溶液中,40℃条件下以200rpm的速率搅拌5天,得到尺度为几十个纳米的淀粉纳米晶。淀粉纳米晶得率为15.7%。
对比例2
取20g绝干的市售蜡质玉米淀粉于500ml带螺口的小瓶,加入5ml蒸馏水,4℃下过夜存放,通过100目孔筛,进行湿热处理。当湿热处理的条件是温度为120℃,时间为2h时,湿热处理后的结晶度为30.2%。取该湿热处理后的淀粉10g,置于含100ml 3.16mol/L的硫酸溶液中,40℃条件下以200rpm的速率搅拌3天,可得与对比例1尺度相似的淀粉纳米晶,淀粉纳米晶得率为17.2%。
对比例3
取20g绝干的市售蜡质玉米淀粉于500ml带螺口的小瓶,加入6.7ml蒸馏水,4℃下过夜存放,通过100目孔筛,进行湿热处理。当湿热处理的条件是温度为100℃,时间为1h时,湿热处理后的结晶度为38.8%。取该湿热处理后的淀粉10g,置于含100ml 3.16mol/L的硫酸溶液中,40℃条件下以200rpm的速率搅拌4天,可得与对比例1尺度相似的淀粉纳米晶,淀粉纳米晶得率为22.8%。
上述具体实施方式用来解释说明本发明,而不是对本发明进行限制,在本发明的精神和权利要求的保护范围内,对本发明作出的任何修改和改变,都落入本发明的保护范围。

Claims (6)

1.一种从原淀粉获取淀粉纳米晶的湿热处理工艺,其特征在于:包括以下步骤:
1)对淀粉在一定条件下进行湿热处理,使淀粉颗粒内部结构发生重新排列,破坏淀粉较完整的颗粒结构;
2)对湿热处理后的淀粉进行酸水解处理以获得淀粉纳米晶。
2.根据权利要求1所述的一种从原淀粉获取淀粉纳米晶的湿热处理工艺,其特征在于:所述步骤1)中,对淀粉在一定条件下进行湿热处理,具体为:湿热处理前调节淀粉的含水率为21%,然后在温度96.3℃下湿热处理2.43h。
3.根据权利要求1所述的一种湿热处理结合酸水解制备淀粉纳米晶的新方法,其特征在于:所述步骤2)具体是酸水解时间为4天。
4.根据权利要求1或2所述的一种从原淀粉获取淀粉纳米晶的湿热处理工艺,其特征在于:所述步骤2.1)中湿热处理后,淀粉颗粒表面受到破坏,出现更多孔洞和裂缝。
5.根据权利要求1或3所述的一种从原淀粉获取淀粉纳米晶的湿热处理工艺,其特征在于:酸水解后得到的淀粉纳米晶为尺寸在纳米级的淀粉纳米晶,颗粒尺寸范围是28~75nm。
6.根据权利要求1所述的一种从原淀粉获取淀粉纳米晶的湿热处理工艺,其特征在于:所述淀粉为市售蜡质玉米淀粉。
CN201810171395.XA 2018-03-01 2018-03-01 一种从原淀粉获取淀粉纳米晶的湿热处理工艺 Active CN108341886B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201810171395.XA CN108341886B (zh) 2018-03-01 2018-03-01 一种从原淀粉获取淀粉纳米晶的湿热处理工艺

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201810171395.XA CN108341886B (zh) 2018-03-01 2018-03-01 一种从原淀粉获取淀粉纳米晶的湿热处理工艺

Publications (2)

Publication Number Publication Date
CN108341886A true CN108341886A (zh) 2018-07-31
CN108341886B CN108341886B (zh) 2020-12-08

Family

ID=62959579

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201810171395.XA Active CN108341886B (zh) 2018-03-01 2018-03-01 一种从原淀粉获取淀粉纳米晶的湿热处理工艺

Country Status (1)

Country Link
CN (1) CN108341886B (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103224566A (zh) * 2013-05-06 2013-07-31 青岛农业大学 一种采用湿热处理提高淀粉纳米颗粒结晶度的新技术
CN103435705A (zh) * 2013-08-14 2013-12-11 江南大学 一种淀粉纳米晶的制备方法
WO2014071528A1 (en) * 2012-11-09 2014-05-15 Bioastra Technologies Inc. Nanostructured phase change materials for solid state thermal management
KR20140107792A (ko) * 2013-02-28 2014-09-05 고려대학교 산학협력단 가수분해와 초음파 처리에 의해 제조된 고결정 전분 나노 입자 및 그 제조방법
CN107254005A (zh) * 2017-05-24 2017-10-17 浙江大学 一种球磨预处理结合酸水解制备淀粉纳米晶的方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014071528A1 (en) * 2012-11-09 2014-05-15 Bioastra Technologies Inc. Nanostructured phase change materials for solid state thermal management
KR20140107792A (ko) * 2013-02-28 2014-09-05 고려대학교 산학협력단 가수분해와 초음파 처리에 의해 제조된 고결정 전분 나노 입자 및 그 제조방법
CN103224566A (zh) * 2013-05-06 2013-07-31 青岛农业大学 一种采用湿热处理提高淀粉纳米颗粒结晶度的新技术
CN103435705A (zh) * 2013-08-14 2013-12-11 江南大学 一种淀粉纳米晶的制备方法
CN107254005A (zh) * 2017-05-24 2017-10-17 浙江大学 一种球磨预处理结合酸水解制备淀粉纳米晶的方法

Non-Patent Citations (7)

* Cited by examiner, † Cited by third party
Title
DIGESTIBILITYJONG-YEA KIM,KERRY C.HUBER: "《Heat–moisture treatment under mildly acidic conditions alters potato starch physicochemical properties and digestibility》", 《CARBOHYDRATE POLYMERS》 *
HELENE ANGELLIER ET AL: "《Optimization of the Preparation of Aqueous Suspensions of Waxy Maize Starch Nanocrystals Using a Response Surface Methodology》", 《BIOMACROMOLECULES》 *
JONG HUN KIM ET AL: "《Effect of heat-moisture treatment under mildly acidic condition on fragmentation of waxy maize starch granules into nanoparticles》", 《FOOD HYDROCOLLOIDS》 *
JUN-JIE XING ET AL: "《Heat-moisture treatment and acid hydrolysis of corn starch in different sequences》", 《LWT - FOOD SCIENCE AND TECHNOLOGY》 *
QINGJIE SUN ET AL: "《Effect of acid hydrolysis combined with heat moisture treatment on structure and physicochemical properties of corn starch》", 《FOOD SCIENCE TECHNOLOGY》 *
杨波等: "《湿热处理玉米淀粉对酸敏感性的研究》", 《食品科学》 *
黄继红: "《抗性淀粉生产技术及其应用》", 31 January 2017 *

Also Published As

Publication number Publication date
CN108341886B (zh) 2020-12-08

Similar Documents

Publication Publication Date Title
Kassab et al. Tomato plant residue as new renewable source for cellulose production: extraction of cellulose nanocrystals with different surface functionalities
Kassab et al. Characteristics of sulfated and carboxylated cellulose nanocrystals extracted from Juncus plant stems
Liu et al. Extraction, isolation and characterization of nanocrystalline cellulose from industrial kelp (Laminaria japonica) waste
Sun et al. Green preparation and characterisation of waxy maize starch nanoparticles through enzymolysis and recrystallisation
Lamaming et al. Isolation and characterization of cellulose nanocrystals from parenchyma and vascular bundle of oil palm trunk (Elaeis guineensis)
Revin et al. A study of the physical and mechanical properties of aerogels obtained from bacterial cellulose
Astruc et al. Isolation of cellulose-II nanospheres from flax stems and their physical and morphological properties
Kargarzadeh et al. Effects of hydrolysis conditions on the morphology, crystallinity, and thermal stability of cellulose nanocrystals extracted from kenaf bast fibers
Haafiz et al. Isolation and characterization of microcrystalline cellulose from oil palm biomass residue
Lu et al. An investigation on the characteristics of cellulose nanocrystals from Pennisetum sinese
CN105001343B (zh) 一种利用压热处理协同酶法脱支制备高抗性淀粉(rs3)含量的产品及其制备方法
Tsalagkas et al. Fabrication of bacterial cellulose thin films self-assembled from sonochemically prepared nanofibrils and its characterization
Fardioui et al. Extraction and characterization of nanocrystalline cellulose from doum (Chamaerops humilis) leaves: a potential reinforcing biomaterial
Zhang et al. Osteoblast cell response to surface-modified carbon nanotubes
Dehkhoda et al. Extraction of carboxylated nanocellulose from oat husk: Characterization, surface modification and in vitro evaluation of indomethacin drug release
Banza et al. Extraction of cellulose nanocrystals from millet (Eleusine coracana) husk waste: optimization using Box Behnken design in response surface methodology (RSM)
CN107254005B (zh) 一种球磨预处理结合酸水解制备淀粉纳米晶的方法
Akgün et al. Optimization and characterization of cellulose nanocrystal production from aseptic tetra pak food packaging waste
Gao et al. Dynamic interaction between the growing Ca–P minerals and bacterial cellulose nanofibers during early biomineralization process
CN108341886A (zh) 一种从原淀粉获取淀粉纳米晶的湿热处理工艺
CN110078943B (zh) 层状矿化的纳米几丁质复合水凝胶、制备方法及复合材料
EP2895545A2 (en) Polymer nanocomposite having switchable mechanical properties
CN106589602B (zh) 一种聚丙烯/纤维素插层纳米晶体母粒、制备方法及其应用
Saridewi et al. Synthesis and characterization of ZnO nanoparticles using pumpkin seed extract (Cucurbita moschata) by the sol-gel method
Cao et al. Alginate-CaCO3 hybrid colloidal hydrogel with tunable physicochemical properties for cell growth

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant