CN108336639A - 一种自拉曼自倍频固体激光器 - Google Patents

一种自拉曼自倍频固体激光器 Download PDF

Info

Publication number
CN108336639A
CN108336639A CN201710043793.9A CN201710043793A CN108336639A CN 108336639 A CN108336639 A CN 108336639A CN 201710043793 A CN201710043793 A CN 201710043793A CN 108336639 A CN108336639 A CN 108336639A
Authority
CN
China
Prior art keywords
laser
frequency
raman
crystal
gain media
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201710043793.9A
Other languages
English (en)
Inventor
黄建华
陈雨金
黄艺东
龚兴红
林炎富
罗遵度
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujian Institute of Research on the Structure of Matter of CAS
Original Assignee
Fujian Institute of Research on the Structure of Matter of CAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujian Institute of Research on the Structure of Matter of CAS filed Critical Fujian Institute of Research on the Structure of Matter of CAS
Priority to CN201710043793.9A priority Critical patent/CN108336639A/zh
Publication of CN108336639A publication Critical patent/CN108336639A/zh
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/30Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range using scattering effects, e.g. stimulated Brillouin or Raman effects
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/10Controlling the intensity, frequency, phase, polarisation or direction of the emitted radiation, e.g. switching, gating, modulating or demodulating
    • H01S3/106Controlling the intensity, frequency, phase, polarisation or direction of the emitted radiation, e.g. switching, gating, modulating or demodulating by controlling devices placed within the cavity
    • H01S3/108Controlling the intensity, frequency, phase, polarisation or direction of the emitted radiation, e.g. switching, gating, modulating or demodulating by controlling devices placed within the cavity using non-linear optical devices, e.g. exhibiting Brillouin or Raman scattering
    • H01S3/109Frequency multiplication, e.g. harmonic generation
    • H01S3/1095Frequency multiplication, e.g. harmonic generation self doubling, e.g. lasing and frequency doubling by the same active medium
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/10Controlling the intensity, frequency, phase, polarisation or direction of the emitted radiation, e.g. switching, gating, modulating or demodulating
    • H01S3/11Mode locking; Q-switching; Other giant-pulse techniques, e.g. cavity dumping
    • H01S3/1106Mode locking
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/14Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range characterised by the material used as the active medium
    • H01S3/16Solid materials
    • H01S3/1601Solid materials characterised by an active (lasing) ion
    • H01S3/1603Solid materials characterised by an active (lasing) ion rare earth
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/14Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range characterised by the material used as the active medium
    • H01S3/16Solid materials
    • H01S3/1691Solid materials characterised by additives / sensitisers / promoters as further dopants
    • H01S3/1695Solid materials characterised by additives / sensitisers / promoters as further dopants germanium

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Engineering & Computer Science (AREA)
  • Plasma & Fusion (AREA)
  • Optics & Photonics (AREA)
  • Nonlinear Science (AREA)
  • Lasers (AREA)

Abstract

一种自拉曼自倍频固体激光器,涉及激光晶体和器件领域。本发明以一块稀土离子掺杂的同时具有拉曼散射和二阶非线性光学特性的晶体作为增益介质,采用能被该增益介质有效吸收的发射光泵浦,便可直接实现自拉曼自倍频固体激光输出,使得固体拉曼倍频激光器更为简单紧凑。

Description

一种自拉曼自倍频固体激光器
技术领域
本发明涉及激光晶体和器件领域。
背景技术
拉曼和倍频技术均是利用晶体的非线性光学效应获得不同的激光发射波长,而固体拉曼倍频激光器则是利用上述两种非线性光学技术的结合,以拓展得到更多不同波长的激光输出,满足不同领域的应用需求。一般采用以下两种方案以实现固体激光拉曼频移后的倍频激光输出:(1)首先采用半导体激光器(LD)泵浦一块稀土离子掺杂的基质晶体产生基频激光,然后利用一块拉曼晶体通过受激拉曼效应对基频激光进行频移,再利用一块非线性光学晶体倍频产生拉曼频移激光的倍频光;(2)首先采用LD泵浦一块稀土离子掺杂的具有拉曼散射特性的基质晶体直接产生自拉曼频移激光输出,再利用一块非线性光学晶体倍频产生拉曼频移激光的倍频光。然而,上述方案的缺点是至少需要用到两块晶体,激光腔结构相对复杂,调整难度较大,器件成本相对较高。
针对上述方案所存在的问题,Gao.Z.L(Opt.Express,21(2013)7821)等人仅利用一块同时具有拉曼散射和二阶非线性光学特性的BaTeMo2O9晶体,就实现了对1064nm波长激光的拉曼和倍频转换,产生了589nm的黄色激光,简化了激光腔结构并降低了器件成本。然而,BaTeMo2O9晶体无法实现稀土离子的掺杂,所需的基频激光仍需由一块Nd:YAG激光晶体产生,激光系统相对复杂。研究内容
本发明的目的在于提供一种自拉曼自倍频固体激光器,该激光器以一块稀土离子掺杂的同时具有拉曼散射和二阶非线性光学特性的晶体作为增益介质,采用能被该增益介质有效吸收的光源作为泵浦源,便可直接实现自拉曼自倍频固体激光输出。
本发明包括如下技术方案:
1.一种自拉曼自倍频固体激光器,由增益介质,激光谐振腔和泵浦系统组成,其特征在于:该激光器以一块稀土离子掺杂的同时具有拉曼散射和二阶非线性光学特性的晶体作为增益介质;激光谐振腔由输入和输出镜组成,输入镜设计为在泵浦光波长处透过率T≥80%,在基频激光、拉曼频移激光和倍频激光波长处透过率T≤0.5%,输出镜设计为在基频激光和拉曼频移激光波长处透过率T≤0.5%,倍频激光波长处透过率T≥70%;泵浦系统包括能被该增益介质有效吸收的光源以及放置在该光源和增益介质之间的光学耦合器件。
2.如项1所述激光器的晶体,其特征在于:晶体为β1-Gd2(MoO4)3,属于正交晶系,空间群为单胞参数为 α=β=γ=90°。
3.如项1所述激光器增益介质中的稀土离子,其特征在于:稀土离子及掺杂浓度分别为Er3+(5at.%~50at.%),Yb3+(0.5at.%~10at.%),Nd3+(0.5at.%~10at.%),Ho3+(0.5at.%~5at.%),Tm3+(0.5at.%~10at.%),Dy3+(0.5at.%~5at.%),Tb3+(0.5at.%~5at.%),Sm3+(0.5at.%~5at.%)。
4.一种自拉曼自倍频固体脉冲激光器,其特征在于:在项1所述激光器的增益介质和输出镜之间插入基频激光的调Q或锁模元件,实现自拉曼自倍频的脉冲激光运转。
实施本发明技术方案具有的有益效果是:以一块稀土离子掺杂的同时具有拉曼散射和二阶非线性光学特性的晶体作为增益介质,采用能被该增益介质有效吸收的发射光泵浦,便可直接实现自拉曼自倍频固体激光输出,使得固体拉曼倍频激光器更为简单紧凑。
具体实施方式
实例1:807nm半导体激光端面泵浦Nd3+1-Gd2(MoO4)3晶体实现590nm固体激光输出。
利用提拉法生长3.0at.%Nd3+1-Gd2(MoO4)3激光晶体。按照一类相位匹配,沿匹配角(θ=55°,)切割出横截面为5×5mm2,通光长度为6mm的晶体样品作为激光增益介质,端面抛光后置于激光腔中。激光腔输入镜设计为在807nm波长处透过率T=90%,在560-600nm、1030-1080nm和1120-1200nm处透过率T=0.3%;输出镜在1030-1080nm和1120-1200nm处的透过率T=0.3%,在560-600nm处透过率T=80%。采用10W的807nm半导体激光端面泵浦该增益介质,可获得连续功率高于200mW的590nm波长固体激光输出。另外,使用但不限于使用如下表格中的掺杂不同Nd3+离子浓度的β1-Gd2(MoO4)3晶体作为560-600nm波段固体激光器的增益介质,采用以上的技术方案也能实现自拉曼自倍频激光输出。
增益介质 Nd3+浓度
Nd3+1-Gd2(MoO4)3晶体 0.5at.%
Nd3+1-Gd2(MoO4)3晶体 5.0at.%
Nd3+1-Gd2(MoO4)3晶体 8.0at.%
Nd3+1-Gd2(MoO4)3晶体 10.0at.%
实例2:807nm半导体激光端面泵浦Nd3+1-Gd2(MoO4)3晶体实现590nm固体脉冲激光输出。
直接将1030-1080nm波段的被动调Q片(如Cr4+:YAG)或声光调Q模块插入实例1中的激光增益介质和输出镜之间,采用807nm半导体激光端面泵浦该增益介质,可实现590nm波长的调Q脉冲激光运转。
实例3:795nm半导体激光端面泵浦Tm3+1-Gd2(MoO4)3晶体实现1162nm固体激光输出。
利用提拉法生长3.3at.%Tm3+1-Gd2(MoO4)3激光晶体。按照一类相位匹配,沿匹配角(θ=24.5°,)切割出横截面为5×5mm2,通光长度为7mm的晶体样品作为激光增益介质,端面抛光后置于激光腔中。激光腔输入镜设计为在795nm波长处透过率T=90%,在1125-1250nm、1850-2000nm和2250-2500nm处透过率T=0.3%;输出镜在1850-2000nm和2250-2500nm处的透过率T=0.3%,在1125-1250nm处透过率T=85%。采用10W的795nm半导体激光端面泵浦该增益介质,可获得连续功率高于300mW的1162nm波长固体激光输出。另外,使用但不限于使用如下表格中的掺杂不同Tm3+离子浓度的β1-Gd2(MoO4)3晶体作为固体拉曼倍频激光器的增益介质,采用以上的技术方案也能实现自拉曼自倍频激光输出。
增益介质 Tm3+浓度
Tm3+1-Gd2(MoO4)3晶体 0.5at.%
Tm3+1-Gd2(MoO4)3晶体 5.0at.%
Tm3+1-Gd2(MoO4)3晶体 8.0at.%
Tm3+1-Gd2(MoO4)3晶体 10.0at.%
实例4:795nm半导体激光端面泵浦Tm3+1-Gd2(MoO4)3晶体实现1162nm固体脉冲激光输出。
直接将1850-2000nm波段的被动调Q片(如Cr2+:ZnS)或声光调Q模块插入实例3中的激光增益介质和输出镜之间,采用795nm半导体激光端面泵浦该增益介质,可实现1162nm波长的调Q脉冲激光运转。
实例5:977nm半导体激光端面泵浦Yb3+1-Gd2(MoO4)3晶体实现574nm固体激光输出。
利用提拉法生长1.0at.%Yb3+1-Gd2(MoO4)3激光晶体。按照一类相位匹配,沿匹配角(θ=57.5°,)切割出横截面为5×5mm2,通光长度为8mm的晶体样品作为激光增益介质,端面抛光后置于激光腔中。激光腔输入镜设计为在977nm波长处透过率T=90%,在550-600nm、1000-1080nm和1100-1200nm处透过率T=0.3%;输出镜在1000-1080nm和1100-1200nm处的透过率T=0.3%,在550-600nm处透过率T=80%。采用10W的977nm半导体激光端面泵浦该增益介质,可获得连续功率高于100mW的574nm波长的固体激光输出。另外,使用但不限于使用如下表格中的掺杂不同Yb3+离子浓度的β1-Gd2(MoO4)3晶体作为550-600nm波段固体激光器的增益介质,采用以上的技术方案也能实现自拉曼自倍频激光输出。
增益介质 Yb3+浓度
Yb3+1-Gd2(MoO4)3晶体 0.5at.%
Yb3+1-Gd2(MoO4)3晶体 5.0at.%
Yb3+1-Gd2(MoO4)3晶体 8.0at.%
Yb3+1-Gd2(MoO4)3晶体 10.0at.%
实例6:977nm半导体激光端面泵浦Yb3+1-Gd2(MoO4)3晶体实现574nm固体脉冲激光输出。
直接将1000-1080nm波段的被动调Q片(如Cr4+:YAG)或声光调Q模块插入实例5中的激光增益介质和输出镜之间,采用977nm半导体激光端面泵浦该增益介质,可实现574nm波长的调Q脉冲激光运转。

Claims (4)

1.一种自拉曼自倍频固体激光器,由增益介质,激光谐振腔和泵浦系统组成,其特征在于:该激光器以一块稀土离子掺杂的同时具有拉曼散射和二阶非线性光学特性的晶体作为增益介质;激光谐振腔由输入和输出镜组成,输入镜设计为在泵浦光波长处透过率T≥80%,在基频激光、拉曼频移激光和倍频激光波长处透过率T≤0.5%,输出镜设计为在基频激光和拉曼频移激光波长处透过率T≤0.5%,倍频激光波长处透过率T≥70%;泵浦系统包括能被该增益介质有效吸收的光源以及放置在该光源和增益介质之间的光学耦合器件。
2.如权利要求1所述激光器的晶体,其特征在于:晶体为β′-Gd2(MoO4)3,属于正交晶系,空间群为单胞参数为 α=β=γ=90°。
3.如权利要求1所述激光器增益介质中的稀土离子,其特征在于:稀土离子及掺杂浓度分别为Er3+(5at.%~50at.%),Yb3+(0.5at.%~10at.%),Nd3+(0.5at.%~10at.%),Ho3+(0.5at.%~5at.%),Tm3+(0.5at.%~10at.%),Dy3+(0.5at.%~5at.%),Tb3+(0.5at.%~5at.%),Sm3+(0.5at.%~5at.%)。
4.一种自拉曼自倍频固体脉冲激光器,其特征在于:在权利要求1所述激光器的增益介质和输出镜之间插入基频激光的调Q或锁模元件,实现自拉曼自倍频的脉冲激光运转。
CN201710043793.9A 2017-01-19 2017-01-19 一种自拉曼自倍频固体激光器 Pending CN108336639A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201710043793.9A CN108336639A (zh) 2017-01-19 2017-01-19 一种自拉曼自倍频固体激光器

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201710043793.9A CN108336639A (zh) 2017-01-19 2017-01-19 一种自拉曼自倍频固体激光器

Publications (1)

Publication Number Publication Date
CN108336639A true CN108336639A (zh) 2018-07-27

Family

ID=62922734

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201710043793.9A Pending CN108336639A (zh) 2017-01-19 2017-01-19 一种自拉曼自倍频固体激光器

Country Status (1)

Country Link
CN (1) CN108336639A (zh)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1047765A (zh) * 1989-06-01 1990-12-12 中国科学院福建物质结构研究所 用四硼酸铝钇钕单晶体制造的激光器件
CN101562311A (zh) * 2009-05-27 2009-10-21 山东大学 砷酸钛氧钾晶体全固态拉曼自倍频黄光激光器
CN104009375A (zh) * 2014-04-03 2014-08-27 青岛镭视光电科技有限公司 一种黄光自拉曼激光器

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1047765A (zh) * 1989-06-01 1990-12-12 中国科学院福建物质结构研究所 用四硼酸铝钇钕单晶体制造的激光器件
CN101562311A (zh) * 2009-05-27 2009-10-21 山东大学 砷酸钛氧钾晶体全固态拉曼自倍频黄光激光器
CN104009375A (zh) * 2014-04-03 2014-08-27 青岛镭视光电科技有限公司 一种黄光自拉曼激光器

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
A A KAMINSKII 等: "Frequency self-doubling of the cw 1-lm lasing of a ferroelectric and ferroelastic Nd3+ : β′-Gd2(MoO4)3 crystal with laser-diode pumping", 《QUANTUM ELECTRONICS》 *
A.A. KAMINSKII 等: "Orthorhombic ferroelectric and ferroelastic Gd2(MoO4)3 crystal –a new many-purposed nonlinear and optical material: efficient multiple stimulated Raman scattering and CW and tunable second harmonic generation", 《OPTICAL MATERIALS》 *
克希耐尔 著: "《固体激光工程》", 31 May 2002 *

Similar Documents

Publication Publication Date Title
CN106229806B (zh) 拉曼黄光泵浦的可调谐金绿宝石激光器
CN106019765B (zh) 一种太赫兹参量源耦合结构及其工作方法
Lan et al. Passively Q-switched Tm: CaGdAlO 4 laser using a Cr 2+: ZnSe saturable absorber
CN102074887A (zh) 一种基于掺钕硼酸钙氧钆晶体的自变频固体激光器
CN105305205B (zh) 一种基于不同拉曼频移的1230nm自拉曼激光器
CN103337779B (zh) 光纤泵浦的中红外气体激光器
CN103594914B (zh) 一种基于自倍频激光晶体的黄橙光激光器
CN105063755B (zh) 铒离子激活的焦硅酸盐晶体及其1.55微米波段固体激光器件
CN105633786A (zh) 一种多波长全固态黄光激光器
CN105356209A (zh) 用于产生1.5μm激光的光纤气体激光发生装置
CN103490275A (zh) 基于键合晶体的1.5至1.6微米波段及其变频激光器
Xue et al. Spectral properties and laser performance of Ho: CNGG crystals grown by the micro-pulling-down method
CN101299512A (zh) 自拉曼倍频全固体黄光激光器
CN105244760A (zh) 铒、镱和铈离子掺杂的正硅酸盐晶体及其激光器件
CN209389443U (zh) 全固态578nm黄光脉冲激光器
CN105140775A (zh) 一种1.2μm波长全固态拉曼激光器
CN108336639A (zh) 一种自拉曼自倍频固体激光器
CN105048274B (zh) 一种被动调q的脉冲式自倍频绿光激光器
CN101499612B (zh) 一种自倍频近红外固体激光器
CN106785878A (zh) Cr4+被动调Q掺钕钨酸钾钆内腔式1570nmOPO激光器
CN101304152A (zh) 耦合腔自拉曼倍频全固体黄光激光器
CN101159364A (zh) LD端泵Nd:YAG/SrWO4/KTP黄光激光器
CN101378172A (zh) 一种760纳米波段固体激光器
CN101562311B (zh) 砷酸钛氧钾晶体全固态拉曼自倍频黄光激光器
CN101588009B (zh) 一类掺杂铒、镱和铈离子的钨酸盐激光晶体及其用途

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication

Application publication date: 20180727

RJ01 Rejection of invention patent application after publication