CN108333583B - A Resource Allocation Method Based on Phased Array Radar Search and Tracking Dual Target Optimization - Google Patents
A Resource Allocation Method Based on Phased Array Radar Search and Tracking Dual Target Optimization Download PDFInfo
- Publication number
- CN108333583B CN108333583B CN201810057487.5A CN201810057487A CN108333583B CN 108333583 B CN108333583 B CN 108333583B CN 201810057487 A CN201810057487 A CN 201810057487A CN 108333583 B CN108333583 B CN 108333583B
- Authority
- CN
- China
- Prior art keywords
- search
- allocation
- sub
- during
- array radar
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
Images
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01S—RADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
- G01S13/00—Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
- G01S13/66—Radar-tracking systems; Analogous systems
- G01S13/72—Radar-tracking systems; Analogous systems for two-dimensional tracking, e.g. combination of angle and range tracking, track-while-scan radar
- G01S13/723—Radar-tracking systems; Analogous systems for two-dimensional tracking, e.g. combination of angle and range tracking, track-while-scan radar by using numerical data
- G01S13/726—Multiple target tracking
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01S—RADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
- G01S7/00—Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
- G01S7/02—Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S13/00
Landscapes
- Engineering & Computer Science (AREA)
- Radar, Positioning & Navigation (AREA)
- Remote Sensing (AREA)
- Computer Networks & Wireless Communication (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Radar Systems Or Details Thereof (AREA)
Abstract
本发明公开了一种基于相控阵雷达搜索和跟踪双目标优化的资源分配方法,属于雷达技术领域,其主要思路为:设定第k次分配时相控阵雷达的搜索区域存在Qk个目标,并且第k次分配时相控阵雷达的搜索区域被分割为Nk个不重叠的搜索扇区;令k为第k次分配,1≤k≤K,k的初始值为1,K为大于0的偶数;分别得到第1次分配期间相控阵雷达分配给N1个不重叠搜索扇区的最优搜索时间资源
至第K次分配期间相控阵雷达分配给NK个不重叠搜索扇区的最优搜索时间资源以及第1次分配期间相控阵雷达分配给Q1个目标的跟踪时间资源列向量最优解至第K次分配期间相控阵雷达分配给QK个目标的跟踪时间资源列向量最优解并记为基于相控阵雷达搜索和跟踪双目标优化的资源分配结果。The invention discloses a resource allocation method based on phased array radar search and tracking dual target optimization, which belongs to the technical field of radar . target, and the search area of the phased array radar is divided into N k non-overlapping search sectors during the kth assignment; let k be the kth assignment, 1≤k≤K, the initial value of k is 1, K is an even number greater than 0; the optimal search time resources allocated by the phased array radar to N 1 non-overlapping search sectors during the first allocation period are obtained respectively
Optimal search time resources allocated by phased array radar to N K non-overlapping search sectors during the period up to the K-th allocation and the optimal solution of the column vector of tracking time resources allocated by the phased array radar to Q 1 targets during the first allocation Optimal solution of column vector of tracking time resources allocated by phased array radar to Q K targets during the period of Kth allocation And denoted as the resource allocation result based on phased array radar search and tracking dual target optimization.Description
技术领域technical field
本发明属于雷达技术领域,尤其涉及一种基于相控阵雷达搜索和跟踪双目标优化的资源分配方法,适用于有限时间资源预算条件下的资源分配,最大限度地提高相控阵雷达的搜索能力和目标的跟踪精度。The invention belongs to the technical field of radar, in particular to a resource allocation method based on phased array radar search and tracking dual target optimization, which is suitable for resource allocation under the condition of limited time resource budget and maximizes the search capability of phased array radar and target tracking accuracy.
背景技术Background technique
近来,技术的进步使敏捷、多任务相控阵雷达系统的开发得以实现;通常,相控阵雷达利用电子操纵阵列天线,因此具有极高的波束灵活性,这种特性使相控阵雷达能够执行多个任务;实际上,不同的雷达功能可能对系统资源有相互竞争的需求,因此需要根据雷达的能力和它们的目标采用自动化技术来分配资源;对于雷达搜索和跟踪(SAT)应用,如果一个相控阵雷达利用不充足的时间资源探测目标,那么多个低可探测目标可能仍然不会被发现;与此同时,如果一个相控阵雷达没有足够的时间资源来照亮之前的跟踪目标,可能产生不连续的轨迹。Recent advances in technology have enabled the development of agile, multi-mission phased array radar systems; typically, phased array radars utilize electronically steered array antennas and therefore have extremely high beam flexibility, a feature that enables phased array radars to Perform multiple missions; in fact, different radar functions may have competing demands on system resources, thus requiring the use of automated techniques to allocate resources based on the capabilities of the radars and their targets; for radar search and track (SAT) applications, if A phased array radar uses insufficient time resources to detect targets, then multiple low detectable targets may still go undetected; at the same time, if a phased array radar does not have sufficient time resources to illuminate previously tracked targets , which may produce discontinuous trajectories.
在此之前,许多方法已经应用于资源分配的问题,无论是搜索函数或是跟踪函数还是两个函数共同作用;对于雷达搜索应用来说,其挑战是扩大雷达监视区域和提高目标探测概率,同时尽可能少地使用资源;对于目标跟踪,可寻求通过优化跟踪-重新访问间隔、目标信号强度和检测阈值来使跟踪目标所需的总雷达资源最小化,现有的工作,即为SAT应用设计的资源分配方案,大致可分为两类:基于规则和基于优化;在基于规则的方案中,根据一些操作需要或雷达特征,制定了一系列规则,这些方法尽管非常有效,但在贝叶斯理论中并不是最优的,而且可能出现不可预测的行为;另一种方法是通过使用单一的成本函数来计算SAT任务;雷达资源分配问题可以作为一种数学优化方案来制定,通常,成本函数是与搜索能力和跟踪精度相对应的度量指标的加权和,例如,检测目标的概率、跟踪贝叶斯克拉美罗下界(BCRLB)和预期测量信号与噪声的比(SNR);但是,这些方法的缺点是对权重的选择和非相应度量的无意义聚合。Prior to this, many methods have been applied to the problem of resource allocation, whether it is a search function or a tracking function or a combination of the two functions; for radar search applications, the challenge is to expand the radar surveillance area and improve the target detection probability, while at the same time Use as few resources as possible; for target tracking, one seeks to minimize the total radar resources required to track a target by optimizing the track-revisit interval, target signal strength, and detection thresholds, existing work, designed for SAT applications The resource allocation schemes can be roughly divided into two categories: rule-based and optimization-based; in the rule-based scheme, a series of rules are formulated according to some operational needs or radar characteristics. Although these methods are very effective, they are not effective in Bayesian is not optimal in theory and may exhibit unpredictable behavior; another approach is to compute SAT tasks by using a single cost function; the radar resource allocation problem can be formulated as a mathematical optimization scheme, usually, the cost function is a weighted sum of metrics corresponding to search capability and tracking accuracy, such as probability of detecting a target, tracking Bayesian Cramero lower bound (BCRLB), and expected measured signal-to-noise ratio (SNR); however, these methods The downside is the choice of weights and meaningless aggregation of non-corresponding metrics.
发明内容SUMMARY OF THE INVENTION
针对上述现有技术存在的问题,本发明的目的在于提出一种基于相控阵雷达搜索和跟踪双目标优化的资源分配方法,该种基于相控阵雷达搜索和跟踪双目标优化的资源分配方法能够解决在有限的照明时间预算内,同时最大限度地提高相控阵雷达的搜索能力和目标的跟踪精度的资源分配。In view of the problems existing in the above-mentioned prior art, the purpose of the present invention is to propose a resource allocation method based on phased array radar search and tracking dual target optimization, and this kind of resource allocation method based on phased array radar search and tracking dual target optimization Ability to address resource allocation within a limited lighting time budget while maximizing the phased array radar's search capability and target tracking accuracy.
针对上述现有技术存在的问题,本发明的目的在于本发明将SAT任务的资源分配方案设计成一个双目标约束优化问题,并利用帕累托理论来确定其著名的帕累托子集(BK-PS)。资源分配方案采用两个成本函数:(i)就多搜索扇区搜索最小信噪比(最坏情况下搜索信噪比(WCS-SNR))而言,强调目标搜索能力最大化;(ii)就最坏情况下的跟踪贝叶斯克拉美罗下界(WCT-BCRLB)而言,强调多目标跟踪均方差最小化;为了探讨这两个目标之间的多重权衡,需要找出双目标问题的帕累托最优解集;然而,对于许多双目标问题,因为解集中解的个数很多,故确定整个帕累托最优集实际上是不可能的;因此,对双目标优化的一种实用方法是计算BK-PS,并尽可能地用BK-PS表示帕累托最优集,有了这个BK-PS,就能够在SAT任务之间找到一个适当的折中,并相应地选择一个资源分配方案,以满足特定的应用需求。In view of the problems existing in the above-mentioned prior art, the purpose of the present invention is that the present invention designs the resource allocation scheme of the SAT task as a dual-objective constrained optimization problem, and uses Pareto theory to determine its famous Pareto subset (BK -PS). The resource allocation scheme employs two cost functions: (i) in terms of multiple search sectors searching for the minimum signal-to-noise ratio (Worst-case Search Signal-to-Noise Ratio (WCS-SNR)), the emphasis is on maximizing the target search capability; (ii) As far as the worst-case tracking Bayesian Cramero lower bound (WCT-BCRLB) is concerned, the multi-target tracking mean square error minimization is emphasized; in order to explore the multiple trade-offs between these two targets, it is necessary to find out the two-target problem. Pareto optimal solution set; however, for many dual-objective problems, because of the large number of solutions in the solution set, it is practically impossible to determine the entire Pareto-optimal set; therefore, a method for dual-objective optimization is A practical approach is to compute BK-PS and use BK-PS to represent the Pareto optimal set as much as possible, with this BK-PS one can find an appropriate compromise between SAT tasks and choose one accordingly Resource allocation schemes to meet specific application needs.
为达到上述技术目的,本发明采用如下技术方案予以实现。In order to achieve the above technical purpose, the present invention adopts the following technical solutions to achieve.
一种基于相控阵雷达搜索和跟踪双目标优化的资源分配方法,包括以下步骤:A resource allocation method based on phased array radar search and tracking dual target optimization, comprising the following steps:
步骤1,初始化:令为第次分配,的初始值为1,为大于0的偶数;设定第次分配时相控阵雷达的搜索区域存在个目标,并且第次分配时相控阵雷达的搜索区域被分割为个不重叠的搜索扇区;
步骤2,确定第次分配时相控阵雷达在第个搜索扇区的搜索模型和第次分配期间第个目标的跟踪模型;其中,表示第次分配时相控阵雷达的搜索区域存在的目标个数;表示第次分配时相控阵雷达搜索扇区总个数;
步骤3,根据第次分配时相控阵雷达在第个搜索扇区的搜索模型,得到第次分配期间搜索资源分配方案的目标函数和第次分配期间搜索资源分配方案的转换目标函数;
步骤4,根据第次分配期间第个目标的跟踪模型,确定第次分配期间跟踪资源分配方案的目标标准函数;
步骤5,根据第次分配期间搜索资源分配方案的转换目标函数和第次分配期间跟踪资源分配方案的目标标准函数,得到第次分配期间双目标资源分配方案的数学优化模型;
步骤6,求解第次分配期间双目标资源分配方案的数学优化模型,分别得到第次分配期间相控阵雷达分配给个不重叠搜索扇区的最优搜索时间资源和第次分配期间相控阵雷达分配给个目标的跟踪时间资源列向量最优解
步骤7,令的值加1,返回步骤2,直到得到第1次分配期间相控阵雷达分配给个不重叠搜索扇区的最优搜索时间资源至第次分配期间相控阵雷达分配给个不重叠搜索扇区的最优搜索时间资源以及第1次分配期间相控阵雷达分配给个目标的跟踪时间资源列向量最优解至第次分配期间相控阵雷达分配给个目标的跟踪时间资源列向量最优解记为基于相控阵雷达搜索和跟踪双目标优化的资源分配结果。Step 7, let
本发明的有益效果:Beneficial effects of the present invention:
第一,本发明方法利用双目标约束优化问题的独特结构,能够通过并行求解凸极小极大优化(CMO)问题来获得帕累托子集BK-PS;在以往的研究中,为获得帕累托子集BK-PS,研究人员开发了许多方法,如加权和法、蚁群优化算法和遗传算法;本发明方法通过利用双目标优化问题的独特结构,开发了一种并行最小化方案来研究帕累托子集BK-PS,使得本发明方法作为获得BK-PS的一种替代方法,不同的帕累托解可以通过并行地解具有不同SAT需求的多个双目标问题来得到,每个复杂的双目标问题可以被划分为两个CMO问题,一个用于搜索任务,另一个用于跟踪任务,不同SAT需求对应的搜索资源分配(S-RA)问题的解是成比例的。First, the method of the present invention utilizes the unique structure of the dual-objective constrained optimization problem, and can obtain the Pareto subset BK-PS by solving the convex minimax optimization (CMO) problem in parallel; Reto subset BK-PS, researchers have developed many methods, such as weighted sum method, ant colony optimization algorithm and genetic algorithm; the method of the present invention develops a parallel minimization scheme by using the unique structure of the dual-objective optimization problem. The Pareto subset BK-PS is studied so that the method of the present invention can be used as an alternative to obtain BK-PS. Different Pareto solutions can be obtained by solving multiple dual-objective problems with different SAT requirements in parallel, each This complex dual-objective problem can be divided into two CMO problems, one for the search task and the other for the tracking task, and the solutions of the search resource allocation (S-RA) problem corresponding to different SAT requirements are proportional.
第二,对于不同的SAT参数,最小搜索资源分配问题只需要解一次,由于目标跟踪资源分配的目标函数是非线性的,因此,本发明方法通过并行求解M+1个CMO问题,能够得到具有基数为M的帕累托子集BK-PS;结果表明,极小极大雷达搜索资源分配问题将产生一个线性规划模型,因此很容易地通过著名的线性规划方法来求解;对于目标跟踪资源分配方案,其产生的极小极大问题由一组可分离的单调递减凸函数组成,可使用极小极大解算法来解决T-RA问题。Second, for different SAT parameters, the minimum search resource allocation problem only needs to be solved once. Since the objective function of target tracking resource allocation is nonlinear, the method of the present invention solves M+1 CMO problems in parallel, and can obtain a base is the Pareto subset BK-PS of M; the results show that the minimax radar search resource allocation problem will produce a linear programming model, so it can be easily solved by the well-known linear programming method; for the target tracking resource allocation scheme , the resulting minimax problem consists of a set of separable monotonically decreasing convex functions, and the minimax solution algorithm can be used to solve the T-RA problem.
附图说明Description of drawings
下面结合附图和具体实施方式对本发明作进一步详细说明。The present invention will be further described in detail below with reference to the accompanying drawings and specific embodiments.
图1是本发明的一种基于相控阵雷达搜索和跟踪双目标优化的资源分配方法流程图;1 is a flow chart of a method for resource allocation based on phased array radar search and tracking dual target optimization of the present invention;
图2是将相控阵雷达的搜索区域量化为不重叠扇区示意图;2 is a schematic diagram of quantizing the search area of a phased array radar into non-overlapping sectors;
图3是相控阵雷达雷达检测范围内的目标部署示意图;Figure 3 is a schematic diagram of the target deployment within the detection range of the phased array radar radar;
图4(a)是第5次分配期间资源平均分配方案与基于帕累托的双目标优化资源分配方案的性能比较示意图;Figure 4 (a) is a schematic diagram of the performance comparison between the average resource allocation scheme and the Pareto-based dual-objective optimal resource allocation scheme during the fifth allocation;
图4(b)是第15次分配期间资源平均分配方案与基于帕累托的双目标优化资源分配方案的性能比较示意图。Fig. 4(b) is a schematic diagram showing the performance comparison between the average resource allocation scheme and the Pareto-based dual-objective optimal resource allocation scheme during the 15th allocation.
具体实施方式Detailed ways
参照图1,为本发明的一种基于相控阵雷达搜索和跟踪双目标优化的资源分配方法流程图;其中所述基于相控阵雷达搜索和跟踪双目标优化的资源分配方法,包括以下步骤:Referring to Fig. 1, it is a flow chart of a method for resource allocation based on phased array radar search and tracking dual target optimization of the present invention; wherein the resource allocation method based on phased array radar search and tracking dual target optimization includes the following steps :
步骤1,初始化:令为第次分配,的初始值为1,为大于0的偶数;设定第次分配时相控阵雷达的搜索区域存在个目标,并且第次分配时相控阵雷达的搜索区域被分割为个不重叠的搜索扇区。
具体地,确定相控阵雷达,并以相控阵雷达正南方向93km、正西方向45km作为原点以正北方向为Y轴、正东方向为X轴建立平面直角坐标系。Specifically, the phased array radar is determined, and the origin is 93km due south and 45km due west of the phased array radar. A plane rectangular coordinate system is established with the due north direction as the Y axis and the due east direction as the X axis.
如图2所示,令为第次分配,的初始值为1,为大于0的偶数,本实施例中取值为20;设定第次分配时相控阵雷达的搜索区域存在个目标,本实施例中取值为5;并且第次分配时相控阵雷达的搜索区域被分割为个不重叠的搜索扇区前次分配时相控阵雷达的搜索区域分别被分割为个不重叠的搜索扇区,后次分配时相控阵雷达的搜索区域分别被分割为个不重叠的搜索扇区;本实施例中 As shown in Figure 2, let for the first sub-allocation, The initial value of is 1, is an even number greater than 0, in this embodiment The value is 20; set the first The search area of the phased array radar exists when the sub-allocation target, in this example takes the
步骤2,确定第次分配时相控阵雷达在第个搜索扇区的搜索模型和第次分配期间第个目标的跟踪模型;其中,表示第次分配时相控阵雷达的搜索区域存在的目标个数;表示第次分配时相控阵雷达搜索扇区总个数。
具体地,为了寻找未被探测到的目标,相控阵雷达需要把它的时间资源分配给不同的搜索扇区;进而得到第次分配时相控阵雷达在第个搜索扇区的搜索模型为:Specifically, in order to find undetected targets, the phased array radar needs to allocate its time resources to different search sectors; and then obtain the first The phased array radar is in the first search sectors The search model is:
其中,α表示中间变量,表示第次分配时相控阵雷达分配给第个搜索扇区的搜索时间资源,表示第次分配时相控阵雷达在第个搜索扇区的目标搜索信噪比,表示相控阵雷达的平均发射功率,表示设定的相控阵雷达天线有效接收孔径,表示第次分配时相控阵雷达在第个搜索扇区的目标散射截面积,表示玻尔兹曼常数,表示设定的相控阵雷达温度,表示相控阵雷达损耗,表示第次分配时相控阵雷达所扫描的第个搜索扇区的角度,本实施例中取经验值,的经验值为6°、8°、12°、16°;表示第次分配时相控阵雷达在第个搜索扇区的目标距离搜索值,本实施例中取经验值,的经验值为200km、240km、295km、300km、310km;可以根据先验信息直接测得。in, α represents the intermediate variable, means the first When the phased array radar is assigned to the first search sectors search time resource, means the first The phased array radar is in the first search sectors The target search signal-to-noise ratio of , represents the average transmit power of the phased array radar, Indicates the effective receiving aperture of the set phased array radar antenna, means the first The phased array radar is in the first search sectors the target scattering cross-sectional area, is the Boltzmann constant, represents the set phased array radar temperature, represents the phased array radar loss, means the first The first time the phased array radar scans search sectors angle, in this example Take the experience value, The experience value of 6°, 8°, 12°, 16°; means the first The phased array radar is in the first search sectors The target distance search value of , in this example Take the experience value, The experience value of 200km, 240km, 295km, 300km, 310km; It can be directly measured based on prior information.
设定第次分配期间目标的数量是已知的,本实施例中将第次分配期间第个目标的状态矢量记为表示行向量转置,表示第次分配期间第个目标的X轴方向位置,表示第次分配期间第个目标的Y轴方向位置,表示第次分配期间第个目标沿X轴方向的速度,表示第次分配期间第个目标沿Y轴方向的速度,约束条件为第次分配期间第个目标的状态矢量的维数本实施例中表示第次分配时相控阵雷达的搜索区域存在的目标个数。set the first Number of targets during sub-allocation is known, in this example will sub-allocation period The state vector of each target is denoted as represents the row vector transpose, means the first sub-allocation period the X-axis position of the target, means the first sub-allocation period the Y-axis position of the target, means the first sub-allocation period The velocity of the target along the X-axis, means the first sub-allocation period The velocity of the target along the Y-axis direction, the constraint condition is the first sub-allocation period target state vector dimension In this example means the first The number of targets that exist in the search area of the phased array radar during sub-allocation.
然后,第次分配期间第个目标的跟踪模型如下:Then, the first sub-allocation period The tracking model of each target is as follows:
其中,表示第次分配期间第个目标的过程噪声,表示第次分配期间第个目标的状态矢量,为第次分配期间第个目标的转换矩阵,表示克罗内克算符,表示2×2维单位矩阵,假设该过程噪声服从均值为零的高斯过程,该过程噪声的协方差矩阵为表示每次分配期间时长,本实施例中当取值为1时第0次分配期间第个目标的状态矢量记为第个目标的初始状态矢量第个目标的初始状态矢量的过程噪声为第个目标的过程噪声在初始分配期间的随机数。in, means the first sub-allocation period the process noise of a target, means the first sub-allocation period the state vector of a target, for the first sub-allocation period transformation matrix of a target, represents the Kronecker operator, represents a 2 × 2 dimensional identity matrix, assuming the process is noisy obeys a Gaussian process with zero mean, which is noisy The covariance matrix of is Indicates the duration of each allocation period, in this embodiment when When the value is 1, the 0th allocation period The state vector of the target is denoted as the initial state vector of a target the first process noise of the initial state vector of a target for the first The random number of the target's process noise during the initial assignment.
第次分配期间第个目标的测量值为其表达式为:the first sub-allocation period A target is measured as Its expression is:
式(3)中In formula (3)
其中,表示第次分配期间第个目标的状态矢量的维非线性距离和方位测量函数,表示相控阵雷达在平面直角坐标系中的坐标,表示相控阵雷达在平面直角坐标系中X轴方向位置,表示相控阵雷达在平面直角坐标系中Y轴方向位置,表示第次分配期间第个目标的方位信息,表示第次分配期间第个目标与相控阵雷达的径向距离,表示第次分配期间第个目标的X轴方向位置,表示第次分配期间第个目标的Y轴方向位置,上标表示转置,arctan表示反正切。in, means the first sub-allocation period target state vector of dimensional nonlinear distance and bearing measurement functions, Represents the coordinates of the phased array radar in the plane rectangular coordinate system, Indicates the position of the phased array radar in the X-axis direction in the plane rectangular coordinate system, Represents the position of the phased array radar in the Y-axis direction of the plane rectangular coordinate system, means the first sub-allocation period location information of a target, means the first sub-allocation period The radial distance between a target and the phased array radar, means the first sub-allocation period the X-axis position of the target, means the first sub-allocation period Y-axis position of each target, superscript means transpose, arctan means arc tangent.
将第次分配期间第个目标的误差记为设定误差是均值为零的非耦合测量误差,第次分配期间第个目标的误差的对角协方差矩阵为 will sub-allocation period The error of each target is recorded as Setting error is the uncoupled measurement error with zero mean, and sub-allocation period target error The diagonal covariance matrix of is
其中,表示第次分配期间第个目标的距离估计均方误差的克拉美罗界下界,表示第次分配期间第个目标的方位信息估计均方误差的克拉美罗界下界,其值分别为:in, means the first sub-allocation period The lower bound of the Cramero bound of the mean square error of the distance estimation for each target, means the first sub-allocation period The lower bounds of the Cramero bound of the mean square error of the azimuth information estimation of each target are as follows:
其中,表示光速,表示设定常数,表示第次分配期间第个目标的预期测量回波信号与噪声的比(信噪比),表示第次分配期间第个目标的反射率,表示第次分配期间相控阵雷达分配给第个目标的跟踪时间资源,表示第次分配期间第个目标到相控阵雷达的径向距离,表示第次分配期间相控阵雷达发射的电磁波信号-3dB带宽,上标-1表示求逆,表示第次分配期间相控阵雷达天线的-3dB波束宽度;本实施例中 in, represents the speed of light, represents the setting constant, means the first sub-allocation period The expected measurement echo signal-to-noise ratio (signal-to-noise ratio) of each target, means the first sub-allocation period the reflectivity of a target, means the first The phased array radar is assigned to the tracking time resource for each target, means the first sub-allocation period The radial distance from a target to the phased array radar, means the first The -3dB bandwidth of the electromagnetic wave signal emitted by the phased array radar during the sub-distribution period, the superscript -1 indicates the inversion, means the first -3dB beamwidth of the phased array radar antenna during the sub-allocation period; in this example
由于第次分配期间第个目标的距离估计均方误差的克拉美罗界下界第次分配期间第个目标的方位信息估计均方误差的克拉美罗界下界电磁波信号-3dB带宽-3dB波束宽度和信噪比都与跟踪时间资源成反比,因此将第次分配期间第个目标的误差的对角协方差矩阵提取公因子后重写为:Due to the sub-allocation period The lower bound of the Cramero bound of the mean square error of the distance estimation for each target the first sub-allocation period The lower bound of the Cramero bound of the mean square error of the azimuth information estimation for each target Electromagnetic wave signal -3dB bandwidth -3dB beamwidth and SNR both with track time resources is inversely proportional, so the sub-allocation period target error Extract common factors from the diagonal covariance matrix of Rewrite as:
其中,表示第次分配期间第个目标的剩余矩阵, in, means the first sub-allocation period the residual matrix of the targets,
步骤3,根据第次分配时相控阵雷达在第个搜索扇区的搜索模型,得到第次分配期间搜索资源分配方案的目标函数和第次分配期间搜索资源分配方案的转换目标函数。
具体地,对于第次分配期间个不重叠的搜索扇区,相控阵雷达搜索资源分配的目标是将搜索时间资源最优地分配给多个区域并使最坏情况下的搜索信噪比最大化;用表示第次分配期间相控阵雷达分配给个不重叠的搜索扇区的搜索时间列向量,第次分配期间搜索资源分配方案的目标函数为:Specifically, for the sub-allocation period A non-overlapping search sector, the goal of phased array radar search resource allocation is to optimally allocate search time resources to multiple areas and maximize the worst-case search signal-to-noise ratio; using means the first Phased Array Radar is assigned to column vector of search times for non-overlapping search sectors, th The objective function of searching for resource allocation schemes during the secondary allocation period is:
其中,表示第次分配期间个不重叠的搜索扇区编号组成的集合, 表示约束条件,表示第次分配期间相控阵雷达分配给个不重叠搜索扇区的总搜索时间资源,表示第次分配期间相控阵雷达分配给第个搜索扇区的搜索时间资源;式(8)中第一个约束表明,第次分配期间相控阵雷达分配给个不重叠搜索扇区的总搜索时间资源为第二个约束条件表明,第次分配期间相控阵雷达分配给每个搜索扇区的搜索时间资源都要受到最小值的限制,即第次分配期间相控阵雷达分配给每个搜索扇区的搜索时间资源都要大于或等于0。in, means the first sub-allocation period A set of non-overlapping search sector numbers, represents the constraints, means the first Phased Array Radar is assigned to The total search time resources of non-overlapping search sectors, means the first The phased array radar is assigned to the search time resources of each search sector; the first constraint in equation (8) indicates that the Phased Array Radar is assigned to The total search time resource of non-overlapping search sectors is The second constraint states that the During the sub-allocation period, the search time resources allocated by the phased array radar to each search sector are limited by the minimum value, that is, the first During the secondary allocation period, the search time resources allocated by the phased array radar to each search sector must be greater than or equal to 0.
易知,一个最大化目标类型可以通过求逆转换为最小化目标类型;因此,式(8)的搜索资源分配问题可以重新制定为第次分配期间搜索资源分配方案的转换目标函数:It is easy to know that a maximizing objective type can be transformed into a minimizing objective type by inversion; therefore, the search resource allocation problem of Eq. (8) can be reformulated as the first The transformation objective function of searching resource allocation scheme during secondary allocation:
其中,表示第次分配期间的凸函数,表示第次分配期间第1个搜索扇区到第个搜索扇区搜索时间资源的累加和,α表示中间变量,表示计算的最小值,表示计算集合中每个搜索扇区的比值后得到个比值,然后比较个比值进而选出最大值操作。in, means the first Convex function during suballocation, means the first During the sub-allocation period, the first search sector to the first The accumulated sum of the search time resources of the search sectors, α represents the intermediate variable, means calculation the minimum value of , Represents a collection of computations The ratio of each search sector in get after ratios, and then compare A ratio and then select the maximum operation.
步骤4,根据第次分配期间第个目标的跟踪模型,确定第次分配期间跟踪资源分配方案的目标标准函数。
具体地,针对多目标跟踪,可以根据之前的跟踪信息对其时间资源进行优化,以改善多个目标在最坏情况下的跟踪性能;这里,使用WCT-BCRLB作为标准函数,并将目标跟踪资源分配问题的目标函数制定为第次分配期间跟踪资源分配方案的目标标准函数:Specifically, for multi-target tracking, its time resources can be optimized according to the previous tracking information to improve the tracking performance of multiple targets in the worst case; here, WCT-BCRLB is used as the standard function, and the target tracking resources The objective function of the assignment problem is formulated as The objective standard function for tracking resource allocation schemes during sub-allocations:
其中,表示第次分配期间个目标编号组成的集合,表示第次分配期间相控阵雷达分配给个目标的跟踪时间资源列向量,表示第次分配期间相控阵雷达分配给第个目标的跟踪时间资源,表示第次分配期间相控阵雷达分配给个目标的总跟踪时间资源;表示求的最小值,表示归一化最坏情况下第次分配期间个目标的跟踪贝叶斯克拉美罗下界凸函数;第一个约束条件表明第次分配期间相控阵雷达分配给个目标的总跟踪时间资源为而第二个约束表示第次分配期间相控阵雷达分配给每个目标的跟踪时间资源受到最小值的限制,即第次分配期间相控阵雷达分配给每个目标的跟踪时间资源都要大于或等于0;所述归一化最坏情况下第次分配期间个目标的跟踪贝叶斯克拉美罗下界凸函数其表达式为:in, means the first sub-allocation period A set of target numbers, means the first Phased array radar is assigned to A column vector of tracking time resources for each target, means the first The phased array radar is assigned to the tracking time resource for each target, means the first Phased array radar is assigned to total tracking time resources for each target; express request the minimum value of , represents the normalized worst-case sub-allocation period tracking Bayesian Cramero lower bound convex function for a target; the first constraint states that the first Phased array radar is assigned to The total tracking time resource for each target is while the second constraint expresses the The tracking time resource allocated by the phased array radar to each target during the sub-allocation period is limited by the minimum value, that is, the first During the sub-allocation period, the tracking time resource allocated by the phased array radar to each target must be greater than or equal to 0; the normalized worst case sub-allocation period Tracking Bayesian Cramero Lower Bound Convex Function for a Target Its expression is:
其中,表示矩阵的迹,Λ表示标准化矩阵,表明贝叶斯克拉美罗下界矩阵的元素在不同的尺度上,其表达式为:in, representation matrix The trace of , Λ represents the normalized matrix, indicating that the elements of the Bayesian Cramero lower bound matrix are at different scales, and its expression is:
表示每次分配期间时长,本实施例中表示集合中每个目标对应的中最大值;表示第次分配期间相控阵雷达分配给第个目标的跟踪时间资源的贝叶斯克拉美罗下界矩阵,其表达式为: Indicates the duration of each allocation period, in this embodiment Represents a collection for each target medium and maximum; means the first The phased array radar is assigned to the tracking time resource for a target The Bayesian Cramero lower bound matrix of , whose expression is:
其中,表示第次分配期间第个目标观测状态的预测贝叶斯信息矩阵,通过下式得到:in, means the first sub-allocation period The predicted Bayesian information matrix of a target observation state, It is obtained by the following formula:
其中,表示对第次分配期间第个目标的状态矢量的维非线性距离和方位测量函数的转置关于状态矢量的变化量,△表示求变化量,表示第次分配期间第个目标的状态矢量,表示第次分配期间第个目标的维雅克比矩阵,表示设定常数,表示将的值带入中,表示的值由的值计算得到;当时第0次分配期间第个目标的状态矢量表示第次分配期间第个目标的过程噪声的协方差矩阵,为第次分配期间第个目标的转换矩阵,表示第次分配期间相控阵雷达分配给个目标的跟踪时间资源列向量,表示第次分配期间相控阵雷达分配给第个目标的跟踪时间资源,表示第次分配期间第个目标的剩余矩阵,上标-1表示求逆,表示行向量转置。in, express the sub-allocation period target state vector of Dimensional Nonlinear Distance and Bearing Measurement Functions transpose of About the state vector The amount of change, △ represents the amount of change, means the first sub-allocation period the state vector of a target, means the first sub-allocation period target Viacobi matrix, represents the setting constant, means to bring the value of middle, express The value of is given by The value of is calculated; when When the 0th allocation period target state vector means the first sub-allocation period target process noise The covariance matrix of , for the first sub-allocation period transformation matrix of a target, means the first Phased array radar is assigned to A column vector of tracking time resources for each target, means the first The phased array radar is assigned to the tracking time resource for each target, means the first sub-allocation period The residual matrix of the target, the superscript -1 indicates the inversion, Represents row vector transpose.
步骤5,根据第次分配期间搜索资源分配方案的转换目标函数和第次分配期间跟踪资源分配方案的目标标准函数,得到第次分配期间双目标资源分配方案的数学优化模型。
具体地,相控阵雷达的能力对雷达资源管理器提出了重大挑战,管理器必须在每一次分配期间确定雷达是否应该搜索新的目标或跟踪已存在的目标;理想情况下,搜索能力的最大化和多目标跟踪精度是两个相互冲突的目标,必须同时考虑;因此,第次分配期间相控阵雷达集成SAT应用的双目标资源分配方案的数学模型可以写成:Specifically, the capabilities of phased array radars present significant challenges to radar resource managers, who must determine during each assignment whether the radar should search for new targets or track existing targets; ideally, the maximum search capability Targeting and multi-target tracking accuracy are two conflicting goals that must be considered simultaneously; therefore, the first The mathematical model of the dual-target resource allocation scheme for phased array radar integrated SAT applications during sub-allocation can be written as:
其中,表示求得的和同时使和最小化,表示第次分配期间相控阵雷达分配给个不重叠搜索扇区的总搜索时间资源,表示第次分配期间相控阵雷达分配给个目标的总跟踪时间资源,表示第次分配期间集成相控阵雷达搜索和跟踪应用的总时间资源;最后一个约束条件表明在第次分配期间集成相控阵雷达搜索和跟踪应用的总资源为表示第次分配期间占空比,表示第次分配期间相控阵雷达分配给第个搜索扇区的搜索时间资源,表示第次分配期间相控阵雷达分配给第个目标的跟踪时间资源,表示第次分配期间的凸函数,表示归一化最坏情况下第次分配期间个目标的跟踪贝叶斯克拉美罗下界凸函数,表示第次分配期间相控阵雷达分配给个不重叠的搜索扇区的搜索时间列向量,表示第次分配期间相控阵雷达分配给个目标的跟踪时间资源列向量。in, to express and at the same time make and minimize, means the first Phased array radar is assigned to The total search time resources of non-overlapping search sectors, means the first Phased array radar is assigned to total tracking time resource for each target, means the first The total time resources for the integrated phased array radar search and track application during the sub-allocation; the last constraint indicates that in the first The total resources for the integrated phased array radar search and track application during the sub-allocation period are means the first duty cycle during sub-distribution, means the first The phased array radar is assigned to the search time resources for each search sector, means the first The phased array radar is assigned to the tracking time resource for each target, means the first Convex function during suballocation, represents the normalized worst-case sub-allocation period The tracking Bayesian Cramero lower bound convex function of a target, means the first Phased array radar is assigned to A column vector of search times for non-overlapping search sectors, means the first Phased array radar is assigned to A column vector of tracking time resources for each target.
将第次分配期间相控阵雷达分配给个不重叠的搜索扇区的搜索时间列向量和第次分配期间相控阵雷达分配给个目标的跟踪时间资源列向量整合为单个向量,记为维向量表示行向量转置;进而得到第次分配期间双目标资源分配方案的数学优化模型为:will Phased Array Radar is assigned to column vector of search times for non-overlapping search sectors and Phased Array Radar is assigned to a column vector of tracking time resources for each target integrated into a single vector, denoted as dimensional vector represents the row vector transpose; and then we get the first The mathematical optimization model of the dual-objective resource allocation scheme during the secondary allocation period is:
其中,表示第次分配期间的凸函数,表示归一化最坏情况下第次分配期间个目标的跟踪贝叶斯克拉美罗下界凸函数,表示长度为且前个元素为1、其余元素均为零的行向量,表示长度为且从第个元素到第个元素为1、其余元素均为0的行向量,表示行向量中第个元素;第一个约束条件表明第次分配期间相控阵雷达分配给个不重叠搜索扇区的总搜索时间资源为第次分配期间相控阵雷达分配给个目标的总跟踪时间资源为第二个约束条件表明第次分配期间每个搜索扇区的搜索时间及每个目标的跟踪时间均需大于或等于0;最后一个约束条件表明第次分配期间相控阵雷达分配给个不重叠搜索扇区的总搜索时间资源与第次分配期间相控阵雷达分配给个目标的总跟踪时间资源的和为第次分配期间集成相控阵雷达搜索和跟踪应用的总时间资源为 in, means the first Convex function during suballocation, represents the normalized worst-case sub-allocation period The tracking Bayesian Cramero lower bound convex function of a target, represents the length of and before A row vector with 1 element and all other elements being zero, represents the length of and from the element to A row vector with 1 element and 0 elements, represents a row vector B elements; the first constraint states that the first Phased array radar is assigned to The total search time resource of non-overlapping search sectors is the first Phased array radar is assigned to The total tracking time resource for each target is The second constraint states that the The search time of each search sector and the tracking time of each target during the sub-allocation must be greater than or equal to 0; the last constraint indicates that the first Phased array radar is assigned to Total search time resources for non-overlapping search sectors with the first Phased array radar is assigned to total tracking time resource for goals The sum is the first The total time resource for the integrated phased array radar search and track application during the sub-allocation period is
步骤6,求解第次分配期间双目标资源分配方案的数学优化模型,分别得到第次分配期间相控阵雷达分配给个不重叠搜索扇区的最优搜索时间资源和第次分配期间相控阵雷达分配给个目标的跟踪时间资源列向量最优解
步骤6的子步骤为:The sub-steps of
6.1为了获得帕累托子集(不同的总搜索预算求解式(9)得到的解相互独立,不同的总跟踪预算求解问题(10)得到的解相互独立);设定第次分配期间有个总搜索预算和个总跟踪预算,本实施例中从第1个总搜索预算到第个总搜索预算满足:其中表示第次分配期间第个总搜索预算,将第次分配期间第个总跟踪预算记为且第次分配期间第个总搜索预算和第次分配期间第个总跟踪预算满足:6.1 In order to obtain Pareto subsets (the solutions obtained by different total search budgets to solve Equation (9) are independent of each other, and the solutions obtained from different total tracking budgets to solve problem (10) are independent of each other); set the first The allocation period has total search budget and total tracking budget, in this example From the 1st total search budget to the 1st total search budgets meet: in means the first sub-allocation period total search budget, will sub-allocation period The total tracking budget is recorded as and the first sub-allocation period total search budget and sub-allocation period total tracking budget Satisfy:
其中表示第次分配期间集成相控阵雷达搜索和跟踪应用的总时间资源。 in means the first Total time resources for integrated phased array radar search and track applications during sub-allocations.
6.2根据第次分配期间第个总搜索预算和线性规划法求解式(9),即将第次分配期间第个总搜索预算代入式(9)中第一个约束条件右边,根据线性规划法得到第次分配期间相控阵雷达分配给个不重叠的搜索扇区的搜索时间向量对第个总搜索预算资源分配的最优解根据第次分配期间第个总跟踪预算和极大极小解算法求解式(10),即将第次分配期间第个总跟踪预算代入(10)中第一个约束条件右边,并根据极大极小解算法得到第次分配期间相控阵雷达分配给个目标的跟踪时间资源列向量对第个总跟踪预算资源分配的最优解下标表示第次分配期间,下标表示搜索,下标表示跟踪,下标表示最优解;将所述第个总搜索预算资源分配的最优解和所述第个总跟踪预算资源分配的最优解组成双目标资源第次分配(式(16))的第个帕累托最优解 (并行最小化方案),其中上标表示转置,双目标资源分配的第个帕累托最优解包括个元素。6.2 According to the sub-allocation period total search budget and the linear programming method to solve equation (9), that is, the first sub-allocation period total search budget Substitute into the right side of the first constraint in Eq. (9), according to the linear programming method, the first Phased array radar is assigned to search time vector pair of non-overlapping search sectors The optimal solution for resource allocation of total search budget According to the sub-allocation period total tracking budget and the max-min solution algorithm to solve equation (10), that is, the first sub-allocation period total tracking budget Substitute into the right side of the first constraint in (10), and obtain the first Phased array radar is assigned to tracking time resource column vector pair The optimal solution for resource allocation of total tracking budget subscript means the first sub-allocation period, subscript Indicates search, subscript Indicates trace, subscript represents the optimal solution; the first The optimal solution for resource allocation of total search budget and the The optimal solution for resource allocation of total tracking budget Composition of dual-target resources sub-allocation (equation (16)) Pareto optimal solutions (parallel minimization scheme), where superscript represents the transpose, the first Pareto optimal solutions include elements.
6.3令的值分别取1至重复执行6.2,直到得到双目标资源第次分配的第1个帕累托最优解至双目标资源第次分配的第个帕累托最优解记为基数为的帕累托子集 6.3 Order The values are taken from 1 to Repeat 6.2 until you get the dual target resource No. The first Pareto optimal solution of the sub-distribution to double target resource sub-allocated Pareto optimal solutions recorded as the base Pareto subset of
由于对于第次分配期间任意两个不同的总搜索预算和上标表示第个总搜索预算,上标表示第个总搜索预算,表示第次分配期间第个总搜索预算,表示第次分配期间第个总搜索预算,第次分配期间第个总搜索预算资源分配的最优解和第次分配期间第个总搜索预算资源分配的最优解具有如下关系故由第次分配期间其中一个总搜索预算和该搜索预算资源分配的最优解和个总搜索预算间的比例关系,可以得到个总搜索预算分别关于式(9)的解。Due to the Any two different total search budgets during the allocation period and superscript means the first total search budget, superscript means the first total search budget, means the first sub-allocation period total search budget, means the first sub-allocation period total search budget, No. sub-allocation period The optimal solution for resource allocation of total search budget and sub-allocation period The optimal solution for resource allocation of total search budget has the following relationship Therefore, the first One of the total search budgets during the sub-allocation period and the optimal solution sum of the resource allocation for this search budget The proportional relationship between the total search budgets, we can get Each total search budget is about the solution of Eq. (9).
根据基数为的帕累托子集计算基数为的帕累托子集中每个最优解的函数值,将基数为的帕累托子集中每个最优解的函数值分别记为帕累托点,进而得到第次分配时相控阵雷达的帕累托点集 (只计算前个元素),α表示中间变量,表示第次分配时相控阵雷达在第个搜索扇区的目标距离搜索值,表示第次分配时相控阵雷达所扫描的第个搜索扇区的角度,表示第次分配期间个不重叠的搜索扇区编号组成的集合,表示第次分配时相控阵雷达的第1个帕累托最优解的函数值,表示第次分配时相控阵雷达的第个帕累托最优解的函数值,表示第次分配时相控阵雷达的第个帕累托最优解的函数值。According to the base Pareto subset of The calculation base is Pareto subset of The function value of each optimal solution in , the base is Pareto subset of The function value of each optimal solution is recorded as the Pareto point, and then the first Pareto Point Sets of Phased Array Radars in Subdistribution (only before counting elements), α represents the intermediate variable, means the first The phased array radar is in the first search sectors The target distance search value of , means the first The first time the phased array radar scans search sectors Angle, means the first sub-allocation period A set of non-overlapping search sector numbers, means the first The 1st Pareto Optimal Solution of Phased Array Radar in Subdistribution the function value of , means the first Phased Array Radar Pareto optimal solution the function value of , means the first Phased Array Radar Pareto optimal solution the function value.
利用第次分配期间的凸函数的单调性,即 表示双目标资源第次分配的第γ个帕累托最优解的函数值,表示双目标资源第次分配的第β个帕累托最优解的函数值, 表示第次分配期间第β个总搜索预算资源分配的最优解,表示第β个总跟踪预算资源分配的最优解,表示第次分配期间第γ个总搜索预算资源分配的最优解,表示第γ个总跟踪预算资源分配的最优解;上标Τ表示转置,表示第次分配期间个不重叠搜索扇区中最坏情况下的搜索信噪比,和是两个相邻的帕累托最优解的函数值。Use the Convex function during suballocation the monotonicity of Represents a dual target resource The γth Pareto optimal solution of the subdistribution the function value of , Represents a dual target resource The βth Pareto optimal solution of the subdistribution the function value of , means the first The optimal solution of resource allocation for the βth total search budget during the sub-allocation period, represents the optimal solution of the βth total tracking budget resource allocation, means the first the optimal solution of resource allocation for the γth total search budget during the sub-allocation period, represents the optimal solution of the γth total tracking budget resource allocation; the superscript Τ represents the transposition, means the first sub-allocation period Worst-case search SNR in non-overlapping search sectors, and is the function value of two adjacent Pareto optimal solutions.
由两个帕累托最优解和可以得到两个总搜索预算和 表示第次分配期间第β个总搜索预算,是双目标资源第次分配的第β个帕累托最优解中前个元素的累加和;表示第次分配期间第γ个总搜索预算,是双目标资源第次分配的第γ个帕累托最优解中前个元素的累加和;对两个总搜索预算和使用二分法得到第次分配期间相控阵雷达分配给个不重叠搜索扇区的最优总搜索时间资源和第次分配期间相控阵雷达分配给个目标的最优总跟踪时间资源 by two Pareto optimal solutions and You can get two total search budgets and means the first The βth total search budget during the sub-allocation period is the first The βth Pareto optimal solution of the subdistribution middle front cumulative sum of elements; means the first The γth total search budget during the sub-allocation period is the second The γth Pareto optimal solution of the subdistribution middle front Cumulative sum of elements; for two total search budgets and Use dichotomy to get the Phased array radar is assigned to optimal total search time resource for non-overlapping search sectors and Phased array radar is assigned to optimal total tracking time resource for each target
将所述最优总搜索时间资源代入第次分配期间搜索资源分配方案的转换目标函数中,并利用线性规划法求解得到第次分配期间相控阵雷达分配给个不重叠搜索扇区的最优搜索时间资源将所述最优总跟踪时间资源代入第次分配期间跟踪资源分配方案的目标标准函数中,并利用极小极大解算法得到第次分配期间相控阵雷达分配给个目标的跟踪时间资源列向量最优解 The optimal total search time resource Substitute the first During the sub-allocation period, the conversion objective function of the resource allocation scheme is searched, and the linear programming method is used to obtain the first Phased Array Radar is assigned to optimal search time resources for non-overlapping search sectors The optimal total tracking time resource Substitute the first In the objective standard function of tracking the resource allocation scheme during the sub-allocation period, and using the minimax solution algorithm to obtain the first Phased Array Radar is assigned to The optimal solution of tracking time resource column vector for each target
其中,是第次分配期间最优搜索资源分配结果,是第次分配期间最优目标跟踪资源分配结果,所述第次分配期间相控阵雷达分配给个不重叠搜索扇区的最优总搜索时间资源和所述第次分配期间相控阵雷达分配给个目标的最优总跟踪时间资源的和作为第次分配期间集成相控阵雷达搜索和跟踪应用的总时间资源 in, is the first The optimal search resource allocation results during the secondary allocation period, is the first The optimal target tracking resource allocation results during the secondary allocation, the Phased array radar is assigned to optimal total search time resource for non-overlapping search sectors and the Phased array radar is assigned to optimal total tracking time resource for each target the sum as the first Total time resources for integrated phased array radar search and track applications during sub-allocations
具体步骤为:The specific steps are:
6a)分别设置迭代索引和停止阈值ε=10-3,以及设置第次分配期间搜索资源下界和第次分配期间搜索资源上界 表示第次分配期间第β个总搜索预算,表示第次分配期间第γ个总搜索预算;其中,γ=β+1,表示第次分配期间设定的总搜索预算个数或总跟踪预算个数。6a) Set the iteration index separately and stop threshold ε=10 -3 , and set the first Search resource lower bound during sub-allocation and Search resource upper bound during sub-allocation means the first the βth total search budget during the sub-allocation period, means the first The γth total search budget during the sub-allocation period; where γ=β+1, means the first The total search budget or total tracking budget set during the allocation period.
6b)根据第次分配期间搜索资源下界和第次分配期间搜索资源上界计算第次迭代后第次分配期间相控阵雷达的总搜索资源然后利用第次迭代后第次分配期间相控阵雷达的总搜索资源和线性规划法求解第次分配期间搜索资源分配方案的转换目标函数,得到第次迭代后第次分配期间相控阵雷达分配给个不重叠的搜索扇区的搜索时间列向量最优解 6b) According to the Search resource lower bound during sub-allocation and Search resource upper bound during sub-allocation Calculate the first after the iteration Total search resources of phased array radar during sub-allocation Then use the after the iteration Total search resources of phased array radar during sub-allocation and linear programming to solve the first During the sub-allocation period, the transformation objective function of the resource allocation scheme is searched to obtain the first after the iteration Phased Array Radar is assigned to search time column vector optimal solution for non-overlapping search sectors
6c)如果更新令的值加1,执行6b);否则执行6d)。6c) If renew
6d)如果更新令的值加1,执行6b);否则执行6e)。6d) If renew
6e)如果取搜索资源分配最优解为表示第次分配期间相控阵雷达分配给个不重叠搜索扇区的最优搜索时间资源,表示第次迭代后第次分配期间相控阵雷达分配给个不重叠的搜索扇区的搜索时间向量最优解。6e) If Pick The optimal solution of search resource allocation is means the first Phased Array Radar is assigned to optimal search time resources for non-overlapping search sectors, means the first after the iteration Phased Array Radar is assigned to The optimal solution of the search time vector for the non-overlapping search sectors.
6f)计算第次分配期间相控阵雷达分配给个目标的最优总跟踪时间资源 其中,表示第次分配期间集成相控阵雷达搜索和跟踪应用的总资源,表示第次分配期间占空比,表示每次分配期间时长,本实施例中 6f) Calculate the first Phased array radar is assigned to optimal total tracking time resource for each target in, means the first total resources for integrated phased array radar search and track applications during the sub-allocation, means the first duty cycle during sub-distribution, Indicates the duration of each allocation period, in this embodiment
6g)将所述最优总跟踪时间资源代入第次分配期间跟踪资源分配方案的目标标准函数中,并利用极小极大解算法得到第次分配期间相控阵雷达分配给个目标的跟踪时间资源列向量最优解 6g) The optimal total tracking time resource Substitute the first In the objective standard function of tracking the resource allocation scheme during the sub-allocation period, and using the minimax solution algorithm to obtain the first Phased array radar is assigned to The optimal solution of the tracking time resource column vector for each target
步骤7,令的值加1,返回步骤2,直到得到第1次分配期间相控阵雷达分配给个不重叠搜索扇区的最优搜索时间资源至第次分配期间相控阵雷达分配给个不重叠搜索扇区的最优搜索时间资源以及第1次分配期间相控阵雷达分配给个目标的跟踪时间资源列向量最优解至第次分配期间相控阵雷达分配给个目标的跟踪时间资源列向量最优解记为基于相控阵雷达搜索和跟踪双目标优化的资源分配结果;本实施例取 Step 7, let
本发明将资源分配方案制定为一个双目标优化框架,根据并行最小化方案得到基数为的帕累托子集;然后利用线性规划法和极小极大解算法,有效地解决了双目标资源分配问题。The invention formulates the resource allocation scheme as a dual-objective optimization framework, and obtains the cardinal number according to the parallel minimization scheme as The Pareto subset of , and then use the linear programming method and the minimax solution algorithm to effectively solve the dual-objective resource allocation problem.
通过以下仿真对本发明效果进行进一步验证说明。The effect of the present invention is further verified and explained by the following simulation.
1.仿真参数:1. Simulation parameters:
相控阵雷达固定的位置为(93,45)km,其信号有效带宽和半功率波束宽度分别设置为和总的时间资源为使用20次分配期间来进行模拟,每次分配的时长被设置为实际上,相控阵雷达可能有不同的搜索需求。因此,考虑两种类型的搜索模型和来描述两种不同的搜索需求,详细请参阅表I和表II,表I为模型中的每个扇区的搜索参数,表II为模型中的每个扇区的搜索参数。The fixed position of the phased array radar is (93, 45) km, and its signal effective bandwidth and half-power beamwidth are respectively set as and The total time resource is The simulation is run using 20 allocation periods, each allocation duration is set to In practice, phased array radars may have different search needs. Therefore, consider two types of search models and To describe two different search requirements, please refer to Table I and Table II for details, Table I is the model search parameters for each sector in Table II for the model search parameters for each sector in .
前10次分配期间相控阵雷达采用第一个搜索模型其中扇区的数量被设置为在后10个分配期间相控阵雷达采用第二种搜索模型扇区的数量为 During the first 10 allocations Phased Array Radar Adopts First Search Model where the number of sectors is set to During the last 10 allocation periods Phased array radar uses a second search model The number of sectors is
表ITable I
表IITable II
在模拟中,将需要跟踪的目标数量设置为表III中给出每个目标状态参数。In the simulation, set the number of targets that need to be tracked to Each target state parameter is given in Table III.
表IIITable III
参照图3,为相控阵雷达雷达检测范围内的目标部署示意图;图3给出了这些目标相对雷达系统的角分布。Referring to FIG. 3 , it is a schematic diagram of the deployment of targets within the detection range of the phased array radar radar; FIG. 3 shows the angular distribution of these targets relative to the radar system.
为了得到基数为的帕累托子集,个搜索时间预算设置为对于给定的 表示基准解(资源平均分配方案的解),其中 表示具有个元素的全1列向量,表示第次分配期间第个总资源预算采用资源平均分配方案的解,表示第次分配期间第个总搜索资源预算采用搜索资源平均分配方案的解,表示第次分配期间第个总跟踪资源预算采用跟踪资源平均分配方案的解,基准集为各基准解的目标函数值称为基准结果,由基准结果构成的曲线称为基准曲线,同样帕累托子集中各帕累托解的目标函数值称为帕累托结果,由帕累托结果构成的曲线称为帕累托曲线。In order to get the base as Pareto subset of , search time budgets are set to for a given represents the benchmark solution (the solution of the resource average allocation scheme), where means to have an all-one-column vector of elements, means the first sub-allocation period A total resource budget adopts the solution of the resource average allocation scheme, means the first sub-allocation period The total search resource budget adopts the solution of the search resource average allocation scheme, means the first sub-allocation period The total tracking resource budget adopts the solution of the tracking resource average allocation scheme, and the benchmark set is The objective function value of each benchmark solution is called the benchmark result, and the curve formed by the benchmark result is called the benchmark curve, and the same Pareto subset The objective function value of each Pareto solution in is called the Pareto result, and the curve formed by the Pareto result is called the Pareto curve.
2.仿真内容:2. Simulation content:
本发明针对资源平均分配方案和基于帕累托理论的双目标优化资源分配方案的分配结果作对比仿真实验。The present invention conducts a comparative simulation experiment for the allocation results of the resource average allocation scheme and the dual-objective optimal resource allocation scheme based on Pareto theory.
3.仿真结果分析:3. Analysis of simulation results:
图4(a)的结果显示,搜索需求模型就最坏情况下的搜索信噪比和最坏情况下的跟踪贝叶斯克拉美罗界下界而言,帕累托曲线明显优于基准曲线;图4(b)的结果显示,搜索需求模型就最坏情况下的搜索信噪比和最坏情况下的跟踪贝叶斯克拉美罗界下界而言,帕累托曲线明显优于基准曲线;因此有了帕累托曲线,对于任意的任务需求,使用二分法可以轻松地获得最佳搜索和跟踪性能。The results in Figure 4(a) show that the search demand model In terms of worst-case search SNR and worst-case tracking Bayesian Cramero lower bound, the Pareto curve is significantly better than the benchmark curve; the results in Figure 4(b) show that the search demand model In terms of worst-case search SNR and worst-case tracking Bayesian Cramero lower bound, the Pareto curve is significantly better than the benchmark curve; therefore, with the Pareto curve, for arbitrary tasks requirements, optimal search and tracking performance can be easily obtained using the dichotomy method.
综上所述,仿真实验验证了本发明的正确性,有效性和可靠性。To sum up, the simulation experiment verifies the correctness, effectiveness and reliability of the present invention.
显然,本领域的技术人员可以对本发明进行各种改动和变型而不脱离本发明的精神和范围。这样,倘若本发明的这些修改和变型属于本发明权利要求及其等同技术的范围之内,则本发明也意图包含这些改动和变型在内。It will be apparent to those skilled in the art that various modifications and variations can be made in the present invention without departing from the spirit and scope of the invention. Thus, provided that these modifications and variations of the present invention fall within the scope of the claims of the present invention and their equivalents, the present invention is also intended to include these modifications and variations.
Claims (7)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201810057487.5A CN108333583B (en) | 2018-01-22 | 2018-01-22 | A Resource Allocation Method Based on Phased Array Radar Search and Tracking Dual Target Optimization |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201810057487.5A CN108333583B (en) | 2018-01-22 | 2018-01-22 | A Resource Allocation Method Based on Phased Array Radar Search and Tracking Dual Target Optimization |
Publications (2)
Publication Number | Publication Date |
---|---|
CN108333583A CN108333583A (en) | 2018-07-27 |
CN108333583B true CN108333583B (en) | 2021-08-03 |
Family
ID=62926491
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201810057487.5A Active CN108333583B (en) | 2018-01-22 | 2018-01-22 | A Resource Allocation Method Based on Phased Array Radar Search and Tracking Dual Target Optimization |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN108333583B (en) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN112034448B (en) * | 2020-08-10 | 2022-11-04 | 西安电子科技大学 | Optimization method of networked radar resource allocation based on tracking accuracy and resource constraints |
CN115097439B (en) * | 2022-06-23 | 2025-03-25 | 中国电子科技集团公司第十四研究所 | Phased array radar multi-projectile arrangement method |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7555383B2 (en) * | 2003-05-28 | 2009-06-30 | Northrop Grumman Corporation | Target acquisition and tracking system |
CN104077488A (en) * | 2014-07-05 | 2014-10-01 | 中国船舶重工集团公司第七二四研究所 | Rotary phased array radar sliding window resource scheduling technique based on sectors |
CN105046412A (en) * | 2015-06-29 | 2015-11-11 | 中国船舶重工集团公司第七二四研究所 | Passive phased array radar multistation joint resource scheduling and distribution method |
CN106199579A (en) * | 2016-06-22 | 2016-12-07 | 中国人民解放军信息工程大学 | Distributed MIMO radar target tracking precision method for joint optimization of resources |
CN106990399A (en) * | 2017-05-11 | 2017-07-28 | 西安电子科技大学 | Radar network system power and bandwidth combined distributing method for target following |
CN107167798A (en) * | 2017-05-05 | 2017-09-15 | 电子科技大学 | Based on the cognitive tracking of the controllable many radars of tracking accuracy |
CN107450070A (en) * | 2017-04-14 | 2017-12-08 | 电子科技大学 | Phased-array radar wave beam and residence time combined distributing method based on target following |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US8634982B2 (en) * | 2009-08-19 | 2014-01-21 | Raytheon Company | System and method for resource allocation and management |
-
2018
- 2018-01-22 CN CN201810057487.5A patent/CN108333583B/en active Active
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7555383B2 (en) * | 2003-05-28 | 2009-06-30 | Northrop Grumman Corporation | Target acquisition and tracking system |
CN104077488A (en) * | 2014-07-05 | 2014-10-01 | 中国船舶重工集团公司第七二四研究所 | Rotary phased array radar sliding window resource scheduling technique based on sectors |
CN105046412A (en) * | 2015-06-29 | 2015-11-11 | 中国船舶重工集团公司第七二四研究所 | Passive phased array radar multistation joint resource scheduling and distribution method |
CN106199579A (en) * | 2016-06-22 | 2016-12-07 | 中国人民解放军信息工程大学 | Distributed MIMO radar target tracking precision method for joint optimization of resources |
CN107450070A (en) * | 2017-04-14 | 2017-12-08 | 电子科技大学 | Phased-array radar wave beam and residence time combined distributing method based on target following |
CN107167798A (en) * | 2017-05-05 | 2017-09-15 | 电子科技大学 | Based on the cognitive tracking of the controllable many radars of tracking accuracy |
CN106990399A (en) * | 2017-05-11 | 2017-07-28 | 西安电子科技大学 | Radar network system power and bandwidth combined distributing method for target following |
Non-Patent Citations (2)
Title |
---|
Simultaneous Multibeam Resource Allocation Scheme for Multiple Target Tracking;Junkun Yan等;《IEEE Transactions on Signal Processing》;20150326;第3110-3122页 * |
相控阵雷达多目标跟踪模式波束资源管理与优化研究;牛俊翔;《中国优秀硕士学位论文全文数据库信息科技辑》;20170315;第43-60页 * |
Also Published As
Publication number | Publication date |
---|---|
CN108333583A (en) | 2018-07-27 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN106199579B (en) | Distributed MIMO radar target tracking precision method for joint optimization of resources | |
CN111007495B (en) | A Target Track Optimization Method Based on Double Fusion Maximum Entropy Fuzzy Clustering JPDA | |
CN108089183B (en) | An Integrated Detection and Tracking Method for Asynchronous Multistatic Radar System | |
US20030085840A1 (en) | System and method for central association and tracking in passive coherent location applications | |
CN109581354B (en) | Multi-target tracking resource management method for simultaneous multi-beam co-site MIMO radar | |
CN109901153A (en) | Target Track Optimization Method Based on Information Entropy Weight and Nearest Neighbor Data Association | |
CN106021697B (en) | A fast phased array radar time-energy resource joint management method | |
KR20220023749A (en) | Co-optimization method of integrated network radar dwell time and radiated power for low detection | |
CN109581355B (en) | Centralized MIMO radar self-adaptive resource management method for target tracking | |
Zheng et al. | Dynamic programming track‐before‐detect algorithm for radar target detection based on polynomial time series prediction | |
CN108802720A (en) | The cooperation detection and power distribution method of target following in a kind of multiple radar system | |
CN108333583B (en) | A Resource Allocation Method Based on Phased Array Radar Search and Tracking Dual Target Optimization | |
CN103728615B (en) | Phased array secondary radar multi-target detection method and system | |
CN111123253B (en) | Vehicle identification method, system and medium based on adaptive threshold target clustering | |
CN105137418A (en) | Multi-object tracking and data interconnection method based on whole neighborhood fuzzy clustering | |
CN115598593A (en) | Equal-length short-baseline high-precision direction-finding positioning method, system, equipment and terminal | |
CN106597441A (en) | Multi-target ISAR imaging task-oriented MIMO radar waveform optimal design method | |
CN110376580B (en) | A performance-driven heterogeneous radar network resource allocation method for asynchronous multi-target tracking | |
CN108572363A (en) | High-resolution imaging method of electromagnetic vortex based on sparse Bayesian learning | |
CN111208505B (en) | Distributed MIMO radar minimum array element rapid extraction method based on multi-target tracking | |
CN115236611A (en) | Multi-jammer cooperative suppression resource scheduling method for radar system | |
Wang et al. | Target positioning algorithm based on RSS fingerprints of SVM of fuzzy kernel clustering | |
CN111736143B (en) | A target capacity-based synchronous multi-beam power allocation method | |
CN110488276B (en) | Optimal resource on-demand allocation method for heterogeneous radar networks for multi-target tracking tasks | |
Johnson et al. | Adaptive beamsteering cognitive radar with integrated search-and-track of swarm targets |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |