CN108333129B - 一种蚀变信息获取方法及系统 - Google Patents

一种蚀变信息获取方法及系统 Download PDF

Info

Publication number
CN108333129B
CN108333129B CN201810145611.3A CN201810145611A CN108333129B CN 108333129 B CN108333129 B CN 108333129B CN 201810145611 A CN201810145611 A CN 201810145611A CN 108333129 B CN108333129 B CN 108333129B
Authority
CN
China
Prior art keywords
principal component
band ratio
alteration
minerals
satellite data
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201810145611.3A
Other languages
English (en)
Other versions
CN108333129A (zh
Inventor
荆林海
丁海峰
唐韵玮
李慧
戈文艳
苗中杰
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Institute of Remote Sensing and Digital Earth of CAS
Original Assignee
Institute of Remote Sensing and Digital Earth of CAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Institute of Remote Sensing and Digital Earth of CAS filed Critical Institute of Remote Sensing and Digital Earth of CAS
Priority to CN201810145611.3A priority Critical patent/CN108333129B/zh
Publication of CN108333129A publication Critical patent/CN108333129A/zh
Application granted granted Critical
Publication of CN108333129B publication Critical patent/CN108333129B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/25Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
    • G01N21/31Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/55Specular reflectivity
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N2021/1793Remote sensing

Landscapes

  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Image Processing (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)

Abstract

本申请公开了一种蚀变信息获取方法及系统,其中,所述蚀变信息获取方法通过对传统的主成分分析法进行改进,根据确定的待识别蚀变矿物的波段比值提取公式,利用主成分分析法确定所述遥感图像中的待识别矿物信息的过程中分为三种情况,进行一次或多次主成分分析,以实现直接利用主成分分析法获得待识别蚀变信息的目的,避免了在深切割地形地区从遥感图像中提取蚀变信息可能产生的异常,以及在地表覆盖严重地区的遥感图像中难以有效提取蚀变矿物信息的问题。

Description

一种蚀变信息获取方法及系统
技术领域
本申请涉及遥感图像处理技术领域,更具体地说,涉及一种蚀变信息获取方法及系统。
背景技术
蚀变作用是指当流体或热液作用于岩石时,两者之间必然趋于达到化学平衡和发生物质交换作用,其结果导致岩石中部分或全部原矿物的消失和新矿物的形成,即原岩中某些物质部分或全部地带出和新物质带入的交代作用。蚀变信息对于矿物探测具有重大的意义,因此,通过提取遥感地图中的蚀变信息是矿物探测过程中的重要一环。
从遥感图像中提取蚀变信息的现有方法主要包括波段比值法和主成分分析法,例如Crosta技术。其中,在使用波段比值法提取深切割地区的遥感图像的蚀变信息时,可能会在波段比值过程中产生异常结果。这是因为深切割地区的海拔落差较大,山体坡度较陡,遥感图像中含有明显的地形阴影,如果遥感图像预处理过程中的大气校正不甚精确,遥感图像中阴影的某些波段的值有可能接近于0,从而在波段比值过程中产生异常高的结果,从而导致蚀变信息的提取产生较大的误差。在使用Crosta技术提取覆盖地区的遥感图像的蚀变矿物时,也难以达到良好的提取效果。这是因为在这些地区,矿物表面覆盖了大量的杂质(土、沙、砂石、植被等)。这些杂质遮盖了蚀变矿物的信息,使得蚀变矿物的信息在遥感图像中显示较弱,从而难以在主成分分析过程中将蚀变信息集中到单一的主成分中,进而导致蚀变矿物信息提取的效果较差。
发明内容
为解决上述技术问题,本申请提供了一种蚀变信息获取方法及系统,以解决在提取深切割地区的遥感图像的蚀变信息提取时可能产生的异常结果,以及在提取覆盖严重的地区的遥感图像的蚀变信息时,提取效果较差的问题。
为解决上述技术问题,本申请实施例提供了如下技术方案:
一种蚀变信息获取方法,用于遥感图像的蚀变矿物的信息提取,所述蚀变信息获取方法包括:
获取遥感图像,根据所述遥感图像确定待使用卫星数据的种类;
对确定的待使用卫星数据进行预处理;
根据待使用卫星数据,确定待识别蚀变矿物的波段比值提取公式;
根据确定的待识别蚀变矿物的波段比值提取公式,利用主成分分析法确定所述遥感图像中的待识别蚀变矿物的信息;
所述根据确定的待识别蚀变矿物的波段比值提取公式,利用主成分分析法确定所述遥感图像中的待识别蚀变矿物的信息包括:
当待识别蚀变矿物的波段比值提取公式为
Figure BDA0001578741080000021
时,对光谱反射峰Bn和光谱吸收峰Bm进行主成分分析,主成分分析结果中的第二主成分为所述待识别蚀变矿物的信息;
当待识别蚀变矿物的波段比值提取公式为
Figure BDA0001578741080000022
时,对光谱反射峰Bn和光谱吸收峰Bm进行第一次主成分分析,对光谱反射峰Bi和光谱吸收峰Bm进行第二次主成分分析,对第一次主成分分析结果中的第二主成分和第二次主成分分析结果中的第二主成分进行第三次主成分分析,第三次主成分分析结果中的第一主成分为所述待识别蚀变矿物的信息;
当待识别蚀变矿物的波段比值提取公式为
Figure BDA0001578741080000031
时,对光谱反射峰Bn和光谱吸收峰Bm进行第一次主成分分析,对光谱反射峰Bi和光谱吸收峰Bc进行第二次主成分分析,对第一次主成分分析结果中的第二主成分和第二次主成分分析结果中的第二主成分进行第三次主成分分析,第三次主成分分析结果中的第一主成分为所述待识别蚀变矿物的变信息,其中,n、m、i、c均为大于或等于1的正整数。
可选的,所述待使用卫星数据的种类为ASTER卫星数据或Landsat 8OLI 卫星数据或哨兵2号卫星数据或高分1号卫星数据或WorldView-3卫星数据。
可选的,所述待识别蚀变矿物为铝羟基蚀变矿物或镁羟基蚀变矿物或铁羟基蚀变矿物或粘土蚀变矿物或Fe3+铁染蚀变矿物或Fe2+铁染蚀变矿物或明矾石蚀变矿物或绿泥石和碳酸盐混合蚀变矿物。
可选的,所述根据待使用卫星数据,确定待识别蚀变矿物的波段比值提取公式包括:
当所述待使用卫星数据的种类为ASTER卫星数据时,铝羟基蚀变矿物的波段比值提取公式为
Figure BDA0001578741080000032
镁羟基蚀变矿物的波段比值提取公式为
Figure BDA0001578741080000033
粘土蚀变矿物的波段比值为
Figure BDA0001578741080000034
Fe3+铁染蚀变矿物的波段比值提取公式为
Figure BDA0001578741080000035
Fe2+铁染蚀变矿物的波段比值提取公式为
Figure BDA0001578741080000036
铁帽的波段比值提取公式为
Figure BDA0001578741080000037
明矾石蚀变矿物的波段比值提取公式为
Figure BDA0001578741080000038
绿泥石和碳酸盐混合蚀变矿物的波段比值提取公式为
Figure BDA0001578741080000039
当所述待使用卫星数据的种类为Landsat 8OLI卫星数据时,Fe3+铁染蚀变矿物的波段比值提取公式为
Figure BDA0001578741080000041
Fe2+铁染蚀变矿物的波段比值提取公式为
Figure BDA0001578741080000042
羟基蚀变矿物的波段比值提取公式为
Figure BDA0001578741080000043
当所述待使用卫星数据的种类为哨兵2号卫星数据时,Fe3+铁染蚀变矿物的波段比值提取公式为
Figure BDA0001578741080000044
Fe2+铁染蚀变矿物的波段比值提取公式为
Figure BDA0001578741080000045
羟基蚀变矿物的波段比值提取公式为
Figure BDA0001578741080000046
当所述待使用卫星数据的种类为高分1号卫星数据时,Fe3+铁染蚀变矿物的波段比值提取公式为
Figure BDA0001578741080000047
当所述待使用卫星数据的种类为WorldView-3卫星数据时,铝羟基蚀变矿物的波段比值提取公式为
Figure BDA0001578741080000048
镁羟基蚀变矿物的波段比值提取公式为
Figure BDA0001578741080000049
粘土蚀变矿物的波段比值为
Figure BDA00015787410800000410
Fe2+铁染蚀变矿物的波段比值提取公式为
Figure BDA00015787410800000411
明矾石蚀变矿物的波段比值提取公式为
Figure BDA00015787410800000412
绿泥石和碳酸盐混合蚀变矿物的波段比值提取公式为
Figure BDA00015787410800000413
一种蚀变信息获取系统,用于遥感图像的蚀变矿物的信息提取,所述蚀变信息获取系统包括:
图像获取模块,用于获取遥感图像,根据所述遥感图像确定待使用卫星数据的种类;
预处理模块,用于对确定的待使用卫星数据进行预处理;
公式确定模块,用于根据待使用卫星数据,确定待识别蚀变矿物的波段比值提取公式;
蚀变提取模块,用于根据确定的待识别蚀变矿物的波段比值提取公式,利用主成分分析法确定所述遥感图像中的待识别蚀变矿物的信息;
所述蚀变提取模块根据确定的待识别蚀变矿物的波段比值提取公式,利用主成分分析法确定所述遥感图像中的待识别蚀变矿物的信息具体用于,
当待识别蚀变矿物的波段比值提取公式为
Figure BDA0001578741080000051
时,对光谱反射峰Bn和光谱吸收峰Bm进行主成分分析,主成分分析结果中的第二主成分为所述待识别蚀变矿物的信息;
当待识别蚀变矿物的波段比值提取公式为
Figure BDA0001578741080000052
时,对光谱反射峰Bn和光谱吸收峰Bm进行第一次主成分分析,对光谱反射峰Bi和光谱吸收峰Bm进行第二次主成分分析,对第一次主成分分析结果中的第二主成分和第二次主成分分析结果中的第二主成分进行第三次主成分分析,第三次主成分分析结果中的第一主成分为所述待识别蚀变矿物的信息;
当待识别蚀变矿物的波段比值提取公式为
Figure BDA0001578741080000053
时,对光谱反射峰Bn和光谱吸收峰Bm进行第一次主成分分析,对光谱反射峰Bi和光谱吸收峰Bc进行第二次主成分分析,对第一次主成分分析结果中的第二主成分和第二次主成分分析结果中的第二主成分进行第三次主成分分析,第三次主成分分析结果中的第一主成分为所述待识别蚀变矿物的信息,其中,n、m、i、c均为大于或等于1的正整数。
可选的,所述待使用卫星数据的种类为ASTER卫星数据或Landsat 8OLI 卫星数据或哨兵2号卫星数据或高分1号卫星数据或WorldView-3卫星数据。
可选的,所述待识别蚀变矿物为铝羟基蚀变矿物或镁羟基蚀变矿物或铁羟基蚀变矿物或粘土蚀变矿物或Fe3+铁染蚀变矿物或Fe2+铁染蚀变矿物或铁帽蚀变矿物或明矾石蚀变矿物或绿泥石和碳酸盐混合蚀变矿物。
可选的,所述公式确定模块具体用于,当所述待使用卫星数据的种类为 ASTER卫星数据时,铝羟基蚀变矿物的波段比值提取公式为
Figure BDA0001578741080000061
镁羟基蚀变矿物的波段比值提取公式为
Figure BDA0001578741080000062
粘土蚀变矿物的波段比值为
Figure BDA0001578741080000063
Fe3+铁染蚀变矿物的波段比值提取公式为
Figure BDA0001578741080000064
Fe2+铁染蚀变矿物的波段比值提取公式为
Figure BDA0001578741080000065
铁帽蚀变矿物的波段比值提取公式为
Figure BDA0001578741080000066
明矾石蚀变矿物的波段比值提取公式为
Figure BDA0001578741080000067
绿泥石和碳酸盐混合蚀变矿物的波段比值提取公式为
Figure BDA0001578741080000068
当所述待使用卫星数据的种类为Landsat 8OLI卫星数据时,Fe3+铁染蚀变矿物的波段比值提取公式为
Figure BDA0001578741080000069
Fe2+铁染蚀变矿物的波段比值提取公式为
Figure BDA00015787410800000610
羟基蚀变矿物的波段比值提取公式为
Figure BDA00015787410800000611
当所述待使用卫星数据的种类为哨兵2号卫星数据时,Fe3+铁染蚀变矿物的波段比值提取公式为
Figure BDA00015787410800000612
Fe2+铁染蚀变矿物的波段比值提取公式为
Figure BDA00015787410800000613
当所述待使用卫星数据的种类为高分1号卫星数据时,Fe3+铁染蚀变矿物的波段比值提取公式为
Figure BDA00015787410800000614
当所述待使用卫星数据的种类为WorldView-3卫星数据时,铝羟基蚀变矿物的波段比值提取公式为
Figure BDA00015787410800000615
镁羟基蚀变矿物的波段比值提取公式为
Figure BDA00015787410800000616
粘土蚀变矿物的波段比值为
Figure BDA00015787410800000617
Fe2+铁染蚀变矿物的波段比值提取公式为
Figure BDA00015787410800000618
明矾石蚀变矿物的波段比值提取公式为
Figure BDA00015787410800000619
绿泥石和碳酸盐混合蚀变矿物的波段比值提取公式为
Figure BDA0001578741080000071
从上述技术方案可以看出,本申请实施例提供了一种蚀变信息获取方法及系统,其中,所述蚀变信息获取方法通过对传统的主成分分析法进行改进,在对确定的待使用卫星数据进行预处理后,根据待使用卫星数据,确定待识别蚀变矿物的波段比值提取公式,最后根据确定的待识别蚀变矿物的波段比值提取公式,利用主成分分析法确定所述遥感图像中的待识别蚀变矿物的过程中分为三种情况,进行一次或多次主成分分析,以实现直接利用主成分分析法获得待识别蚀变矿物的目的,避免了在深切割地区的遥感图像中进行波段除法运算,从而避免了部分阴影区会得到极大增强的可能,进而避免了对深切割地区的遥感图像进行蚀变信息提取时出现的高异常情况;而当遥感图像所对应的地区为覆盖严重的地区时,通过三种不同情况下的一次或多次主成分分析,可以将待识别蚀变矿物的信息集中到最终获得的第一主成分或第二主成分中,从而实现良好的蚀变信息的提取效果。
附图说明
为了更清楚地说明本申请实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单的介绍,显而易见地,下面描述中的附图仅仅是本申请的实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据提供的附图获得其它的附图。
图1为本申请的一个实施例提供的一种蚀变信息获取方法的流程示意图;
图2为本申请的一个实施例提供的根据确定的待识别蚀变矿物的波段比值提取公式,利用主成分分析法确定所述遥感图像中的待识别蚀变矿物的信息的具体流程示意图;
图3为本申请的一个实施例提供的一种遥感图像的光谱波段设置情况的示意图;
图4为本申请的另一个实施例提供的一种遥感图像的光谱波段设置情况的示意图;
图5为本申请的又一个实施例提供的一种遥感图像的光谱波段设置情况的示意图;
图6(a)为龙巴其保研究区的哨兵2号图像的子区图像;
图6(b)为利用现有技术中的主成分分析法对图6(a)进行蚀变信息提取的结果图像;
图6(c)为利用现有技术中的波段比值法对图6(a)进行蚀变信息提取的结果图像;
图6(d)为利用本申请实施例提供的蚀变信息获取方法对图6(a)进行蚀变信息提取的结果图像;
图7(a)为龙巴其保研究区的哨兵2号图像的另一个子区图像;
图7(b)为利用现有技术中的主成分分析法对图7(a)进行蚀变信息提取的结果图像;
图7(c)为利用现有技术中的波段比值法对图7(a)进行蚀变信息提取的结果图像;
图7(d)为利用本申请实施例提供的蚀变信息获取方法对图7(a)进行蚀变信息提取的结果图像。
具体实施方式
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整的描述。显然,所描述的实施例仅仅是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
本申请实施例提供了一种蚀变信息获取方法,如图1所示,用于遥感图像的蚀变矿物的信息提取,所述蚀变信息获取方法包括:
S101:获取遥感图像,根据所述遥感图像确定待使用卫星数据的种类;
S102:对确定的待使用卫星数据进行预处理;
在确定了待使用卫星数据后的预处理过程以ASTER卫星数据为例,主要包括:辐射定标→大气校正→影像边框和串扰效应去除→几何纠正→正射纠正→去除云雪水体等干扰因素;这些步骤均在ENVI5.2和ArcGIS10.2中完成;每个步骤的具体过程已为本领域技术人员所熟知,本申请在此不做赘述。
S103:根据待使用卫星数据,确定待识别蚀变矿物的波段比值提取公式;
S104:根据确定的待识别蚀变矿物的波段比值提取公式,利用主成分分析法确定所述遥感图像中的待识别蚀变矿物的信息;
参考图2,所述根据确定的待识别蚀变矿物的波段比值提取公式,利用主成分分析法确定所述遥感图像中的待识别蚀变矿物的信息包括:
S1041:当待识别蚀变矿物的波段比值提取公式为
Figure BDA0001578741080000091
时,对光谱反射峰Bn和光谱吸收峰Bm进行主成分分析,主成分分析结果中的第二主成分为所述待识别蚀变矿物的信息;
在S1041中的遥感图像的光谱排布情况参考图3,在图3中示出了光谱反射峰B1和光谱吸收峰B2
S1042:当待识别蚀变矿物的波段比值提取公式为
Figure BDA0001578741080000092
时,对光谱反射峰Bn和光谱吸收峰Bm进行第一次主成分分析,对光谱反射峰Bi和光谱吸收峰 Bm进行第二次主成分分析,对第一次主成分分析结果中的第二主成分和第二次主成分分析结果中的第二主成分进行第三次主成分分析,第三次主成分分析结果中的第一主成分为所述待识别蚀变矿物的信息;
在S1042中的遥感图像的光谱排布情况参考图4,在图4中示出了光谱反射峰B1、B3和光谱吸收峰B2
S1043:当待识别蚀变矿物的波段比值提取公式为
Figure BDA0001578741080000101
时,对光谱反射峰Bn和光谱吸收峰Bm进行第一次主成分分析,对光谱反射峰Bi和光谱吸收峰 Bc进行第二次主成分分析,对第一次主成分分析结果中的第二主成分和第二次主成分分析结果中的第二主成分进行第三次主成分分析,第三次主成分分析结果中的第一主成分为所述待识别蚀变矿物的信息,其中,n、m、i、c均为大于或等于1的正整数。
在S1043中的遥感图像的光谱排布情况参考图5,在图5中示出了光谱反射峰B1、B4和光谱吸收峰B2、B3
所述蚀变信息获取方法通过对传统的主成分分析法进行改进,在对确定的待使用卫星数据进行预处理后,根据待使用卫星数据,确定待识别蚀变矿物的波段比值提取公式,最后根据确定的待识别蚀变矿物的波段比值提取公式,利用主成分分析法确定所述遥感图像中的待识别蚀变矿物的信息的过程中分为三种情况,进行一次或多次主成分分析,以实现直接利用主成分分析法获得待识别蚀变矿物的信息的目的,避免了在深切割地区的遥感图像中进行除法运算,从而避免了部分阴影区会得到过分增强的可能,进而避免了对深切割地区的遥感图像进行蚀变信息提取时出现异常情况;而当遥感图像为覆盖严重的地区时,通过三种不同情况下的一次或多次主成分分析,可以将待识别蚀变矿物的信息集中到最终获得的第一主成分或第二主成分中,从而可以实现良好的蚀变信息提取效果。
在上述实施例的基础上,在本申请的一个实施例中,所述待使用卫星数据的种类为ASTER卫星数据或Landsat 8OLI卫星数据或哨兵2号卫星数据或高分1号卫星数据或WorldView-3卫星数据。
下面对其中几种卫星数据进行介绍:
Landsat 8OLI卫星数据包含11个波段,具体参考表1:
表1Landsat 8OLI数据参数表
Figure BDA0001578741080000111
高分1号卫星数据具体参数参考表2:
表2GF-1号系统参数表
Figure BDA0001578741080000112
ASTER卫星数据:ASTER数据在可见光-近红外(VNIR)范围有4个波段,空间分辨率为15m;在短波红外(SWIR)范围有6个波段,分辨率为30m;在热红外(TIR)范围有5个波段,分辨率为90m。
在上述实施例的基础上,在本申请的另一个实施例中,所述待识别蚀变矿物为铝羟基蚀变矿物或镁羟基蚀变矿物或铁羟基蚀变矿物或粘土蚀变矿物或Fe3+铁染蚀变矿物或Fe2+铁染蚀变矿物或明矾石蚀变矿物或铁帽或绿泥石和碳酸盐混合蚀变矿物。
在上述实施例的基础上,在本申请的一个具体实施例中,所述根据待使用卫星数据,确定待识别蚀变矿物的波段比值提取公式包括:
当所述待使用卫星数据的种类为ASTER卫星数据时,铝羟基蚀变矿物的波段比值提取公式为
Figure BDA0001578741080000121
镁羟基蚀变矿物的波段比值提取公式为
Figure BDA0001578741080000122
粘土蚀变矿物的波段比值为
Figure BDA0001578741080000123
Fe3+铁染蚀变矿物的波段比值提取公式为
Figure BDA0001578741080000124
Fe2+铁染蚀变矿物的波段比值提取公式为
Figure BDA0001578741080000125
铁帽的波段比值提取公式为
Figure BDA0001578741080000126
明矾石蚀变矿物的波段比值提取公式为
Figure BDA0001578741080000127
绿泥石和碳酸盐混合蚀变矿物的波段比值提取公式为
Figure BDA0001578741080000128
当所述待使用卫星数据的种类为Landsat 8OLI卫星数据时,Fe3+铁染蚀变矿物的波段比值提取公式为
Figure BDA0001578741080000129
Fe2+铁染蚀变矿物的波段比值提取公式为
Figure BDA00015787410800001210
羟基蚀变矿物的波段比值提取公式为
Figure BDA00015787410800001211
当所述待使用卫星数据的种类为哨兵2号卫星数据时,Fe3+铁染蚀变矿物的波段比值提取公式为
Figure BDA00015787410800001212
Fe2+铁染蚀变矿物的波段比值提取公式为
Figure BDA00015787410800001213
羟基蚀变矿物的波段比值提取公式为
Figure BDA00015787410800001214
当所述待使用卫星数据的种类为高分1号卫星数据时,Fe3+铁染蚀变矿物的波段比值提取公式为
Figure BDA00015787410800001215
当所述待使用卫星数据的种类为WorldView-3卫星数据时,铝羟基蚀变矿物的波段比值提取公式为
Figure BDA0001578741080000131
镁羟基蚀变矿物的波段比值提取公式为
Figure BDA0001578741080000132
粘土蚀变矿物的波段比值为
Figure BDA0001578741080000133
Fe2+铁染蚀变矿物的波段比值提取公式为
Figure BDA0001578741080000134
明矾石蚀变矿物的波段比值提取公式为
Figure BDA0001578741080000135
绿泥石和碳酸盐混合蚀变矿物的波段比值提取公式为
Figure BDA0001578741080000136
为了检验本申请实施例提供的蚀变信息获取方法的实际效果,下面通过具体实施例来说明本申请实施例提供的蚀变信息获取方法的实施效果。
实施例1:
在本实施例中,遥感图像为龙巴其保研究区的哨兵2号图像(6593行× 5923列,13个波段),通过实验对比,根据该遥感图像确定的待使用卫星数据为哨兵2号卫星数据;
图6(a)是原始遥感图像的子区(大小:1430行×930列)图像,图6 (b)为利用现有技术的主成分分析法提取的Fe3+铁染矿物图像,图6(c)为利用现有技术中的波段比值法提取的Fe3+铁染矿物图像,图6(d)为利用本申请实施例提供的蚀变信息获取方法提取的Fe3+铁染矿物图像。在进行主成分变换时,相关的参数统计只在无云雪覆盖的区域进行。在波段比值图像(图 6(c))中,中部突出的蚀变条带位于阳坡,是正地形,不会是阴影造成的虚假蚀变信息。从表3所示的主成分分析转换矩阵可以判断,第一主成分PC1 代表地表亮度,第二主成分PC2主要代表波段11与其它波段的反差,第三主成分PC3(图6(b))主要代表波段2和波段8的反差,第四主成分PC4主要代表了波段4和波段8的反差。4个主成分(PC)都与波段比值图像有明显差别,无一主成分代表波段2与4的反差,即主要包含Fe3+铁染信息。
表3波段2、4、8、11的主成分分析转换矩阵
Figure BDA0001578741080000141
在本实施例中,研究区如果属于深切割地区,地形阴影会比较明显。利用常规的波段比值来提取Fe3+铁染矿物信息时,部分阴影区会得到异常增强,并与真正的铁染信息较强的区域相混淆,严重误导铁染蚀变信息的提取。如果研究区内覆盖严重,铁染或羟基蚀变信息会被严重遮盖,在主成分分析中相关信息可能会分散在多个主成分中,不能集中于某一高阶主成分中。在此情况下,这类蚀变信息就难以用常规的主成分分析法来有效地提取。而用本申请实施例提供的蚀变信息提取方法得到的Fe3+铁染矿物信息和用波段比值得到的Fe3+蚀变信息(图6(c))相一致,中部突出的蚀变条带位于阳坡,是正地形,不会是阴影造成的虚假蚀变信息。
实施例2:
利用本申请实施例提供的蚀变信息的获取方法也可以有效地提取羟基蚀变信息。图7(a)是龙巴其保研究区的哨兵2号图像的子区(大小:1430行× 930列)图像,图7(b)为利用现有技术的主成分分析法提取的羟基矿物的图像,图7(c)为利用现有技术中的波段比值法提取的羟基矿物图像,图7(d) 为利用本申请实施例提供的蚀变信息获取方法提取的羟基矿物图像;从图中可以看出,3个羟基蚀变信息图像(图7(b)、图7(c)和图7(d))非常类似,都有效地提取出来图像中的羟基蚀变条带。
下面对本申请实施例提供的蚀变信息获取系统进行描述,下文描述的蚀变信息获取系统与上文描述的蚀变信息获取方法可相互对应参照。
一种蚀变信息获取系统,用于遥感图像的蚀变矿物的信息提取,所述蚀变信息获取系统包括:
图像获取模块,用于获取遥感图像,根据所述遥感图像确定待使用卫星数据的种类;
预处理模块,用于对确定的待使用卫星数据进行预处理;
公式确定模块,用于根据待使用卫星数据,确定待识别蚀变矿物的波段比值提取公式;
蚀变提取模块,用于根据确定的待识别蚀变矿物的波段比值提取公式,利用主成分分析法确定所述遥感图像中的待识别蚀变矿物的信息;
所述蚀变提取模块根据确定的待识别蚀变矿物的波段比值提取公式,利用主成分分析法确定所述遥感图像中的待识别蚀变矿物的信息具体用于,
当待识别蚀变矿物的波段比值提取公式为
Figure BDA0001578741080000151
时,对光谱反射峰Bn和光谱吸收峰Bm进行主成分分析,主成分分析结果中的第二主成分为所述待识别蚀变矿物的信息;
当待识别蚀变矿物的波段比值提取公式为
Figure BDA0001578741080000152
时,对光谱反射峰Bn和光谱吸收峰Bm进行第一次主成分分析,对光谱反射峰Bi和光谱吸收峰Bm进行第二次主成分分析,对第一次主成分分析结果中的第二主成分和第二次主成分分析结果中的第二主成分进行第三次主成分分析,第三次主成分分析结果中的第一主成分为所述待识别蚀变矿物的信息;
当待识别蚀变矿物的波段比值提取公式为
Figure BDA0001578741080000161
时,对光谱反射峰Bn和光谱吸收峰Bm进行第一次主成分分析,对光谱反射峰Bi和光谱吸收峰Bc进行第二次主成分分析,对第一次主成分分析结果中的第二主成分和第二次主成分分析结果中的第二主成分进行第三次主成分分析,第三次主成分分析结果中的第一主成分为所述待识别蚀变矿物的信息,其中,n、m、i、c均为大于或等于1的正整数。
可选的,所述待使用卫星数据的种类为ASTER卫星数据或Landsat 8OLI 卫星数据或哨兵2号卫星数据或高分1号卫星数据或WorldView-3卫星数据。
可选的,所述待识别蚀变矿物为铝羟基蚀变矿物或镁羟基蚀变矿物或铁羟基蚀变矿物或粘土蚀变矿物或Fe3+铁染蚀变矿物或Fe2+铁染蚀变矿物或铁帽蚀变矿物或明矾石蚀变矿物或绿泥石和碳酸盐混合蚀变矿物。
可选的,所述公式确定模块具体用于,当所述待使用卫星数据的种类为 ASTER卫星数据时,铝羟基蚀变矿物的波段比值提取公式为
Figure BDA0001578741080000162
镁羟基蚀变矿物的波段比值提取公式为
Figure BDA0001578741080000163
粘土蚀变矿物的波段比值为
Figure BDA0001578741080000164
Fe3+铁染蚀变矿物的波段比值提取公式为
Figure BDA0001578741080000165
Fe2+铁染蚀变矿物的波段比值提取公式为
Figure BDA0001578741080000166
铁帽的波段比值提取公式为
Figure BDA0001578741080000167
明矾石蚀变矿物的波段比值提取公式为
Figure BDA0001578741080000168
绿泥石和碳酸盐混合蚀变矿物的波段比值提取公式为
Figure BDA0001578741080000169
当所述待使用卫星数据的种类为Landsat 8OLI卫星数据时,Fe3+铁染蚀变矿物的波段比值提取公式为
Figure BDA0001578741080000171
Fe2+铁染蚀变矿物的波段比值提取公式为
Figure BDA0001578741080000172
羟基蚀变矿物的波段比值提取公式为
Figure BDA0001578741080000173
当所述待使用卫星数据的种类为哨兵2号卫星数据时,Fe3+铁染蚀变矿物的波段比值提取公式为
Figure BDA0001578741080000174
Fe2+铁染蚀变矿物的波段比值提取公式为
Figure BDA0001578741080000175
羟基蚀变矿物的波段比值提取公式为
Figure BDA0001578741080000176
当所述待使用卫星数据的种类为高分1号卫星数据时,Fe3+铁染蚀变矿物的波段比值提取公式为
Figure BDA0001578741080000177
当所述待使用卫星数据的种类为WorldView-3卫星数据时,铝羟基蚀变矿物的波段比值提取公式为
Figure BDA0001578741080000178
镁羟基蚀变矿物的波段比值提取公式为
Figure BDA0001578741080000179
粘土蚀变矿物的波段比值为
Figure BDA00015787410800001710
Fe2+铁染蚀变矿物的波段比值提取公式为
Figure BDA00015787410800001711
明矾石蚀变矿物的波段比值提取公式为
Figure BDA00015787410800001712
绿泥石和碳酸盐混合蚀变矿物的波段比值提取公式为
Figure BDA00015787410800001713
综上所述,本申请实施例提供了一种蚀变信息获取方法及系统,其中,所述蚀变信息获取方法通过对传统的主成分分析法进行改进,在对确定的待使用卫星数据进行预处理后,根据待使用卫星数据,确定待识别蚀变矿物的波段比值提取公式,最后根据确定的待识别蚀变矿物的波段比值提取公式,利用主成分分析法确定所述遥感图像中的待识别蚀变矿物的过程中分为三种情况,进行一次或多次主成分分析,以实现直接利用主成分分析法获得待识别蚀变矿物的目的,避免了在深切割地区的遥感图像中进行波段除法运算,从而避免了部分阴影区会得到极大增强的可能,进而避免了对深切割地区的遥感图像进行蚀变信息提取时出现的高异常情况;而当遥感图像所对应的地区为覆盖严重的地区时,通过三种不同情况下的一次或多次主成分分析,可以将待识别蚀变矿物的信息集中到最终获得的第一主成分或第二主成分中,从而实现良好的蚀变信息的提取效果。
本说明书中各个实施例采用递进的方式描述,每个实施例重点说明的都是与其他实施例的不同之处,各个实施例之间相同相似部分互相参见即可。对所公开的实施例的上述说明,使本领域专业技术人员能够实现或使用本申请。对这些实施例的多种修改对本领域的专业技术人员来说将是显而易见的,本文中所定义的一般原理可以在不脱离本申请的精神或范围的情况下,在其它实施例中实现。因此,本申请将不会被限制于本文所示的这些实施例,而是要符合与本文所公开的原理和新颖特点相一致的最宽的范围。

Claims (2)

1.一种蚀变信息获取方法,其特征在于,用于遥感图像的蚀变矿物的信息提取,所述蚀变信息获取方法包括:
获取遥感图像,根据所述遥感图像确定待使用卫星数据的种类;
对确定的待使用卫星数据进行预处理;
根据待使用卫星数据,确定待识别蚀变矿物的波段比值提取公式;
根据确定的待识别蚀变矿物的波段比值提取公式,利用主成分分析法确定所述遥感图像中的待识别蚀变矿物的信息;
所述根据确定的待识别蚀变矿物的波段比值提取公式,利用主成分分析法确定所述遥感图像中的待识别蚀变矿物的信息包括:
当待识别蚀变矿物的波段比值提取公式为
Figure FDA0002361302290000011
时,对光谱反射峰Bn和光谱吸收峰Bm进行主成分分析,主成分分析结果中的第二主成分为所述待识别蚀变矿物的信息;
当待识别蚀变矿物的波段比值提取公式为
Figure FDA0002361302290000012
时,对光谱反射峰Bn和光谱吸收峰Bm进行第一次主成分分析,对光谱反射峰Bi和光谱吸收峰Bm进行第二次主成分分析,对第一次主成分分析结果中的第二主成分和第二次主成分分析结果中的第二主成分进行第三次主成分分析,第三次主成分分析结果中的第一主成分为所述待识别蚀变矿物的信息;
当待识别蚀变矿物的波段比值提取公式为
Figure FDA0002361302290000013
时,对光谱反射峰Bn和光谱吸收峰Bm进行第一次主成分分析,对光谱反射峰Bi和光谱吸收峰Bc进行第二次主成分分析,对第一次主成分分析结果中的第二主成分和第二次主成分分析结果中的第二主成分进行第三次主成分分析,第三次主成分分析结果中的第一主成分为所述待识别蚀变矿物的变信息,其中,
Figure FDA0002361302290000014
均为大于或等于1的正整数;
所述待使用卫星数据的种类为ASTER卫星数据或Landsat 8OLI卫星数据或哨兵2号卫星数据或高分1号卫星数据或WorldView-3卫星数据;
所述待识别蚀变矿物为铝羟基蚀变矿物或镁羟基蚀变矿物或铁羟基蚀变矿物或粘土蚀变矿物或Fe3+铁染蚀变矿物或Fe2+铁染蚀变矿物或明矾石蚀变矿物或绿泥石和碳酸盐混合蚀变矿物;
所述根据待使用卫星数据,确定待识别蚀变矿物的波段比值提取公式包括:
当所述待使用卫星数据的种类为ASTER卫星数据时,铝羟基蚀变矿物的波段比值提取公式为
Figure FDA0002361302290000021
镁羟基蚀变矿物的波段比值提取公式为
Figure FDA0002361302290000022
粘土蚀变矿物的波段比值为
Figure FDA00023613022900000214
Fe3+铁染蚀变矿物的波段比值提取公式为
Figure FDA0002361302290000023
Fe2+铁染蚀变矿物的波段比值提取公式为
Figure FDA0002361302290000024
铁帽的波段比值提取公式为
Figure FDA0002361302290000025
明矾石蚀变矿物的波段比值提取公式为
Figure FDA0002361302290000026
绿泥石和碳酸盐混合蚀变矿物的波段比值提取公式为
Figure FDA0002361302290000027
当所述待使用卫星数据的种类为Landsat 8 OLI卫星数据时,Fe3+铁染蚀变矿物的波段比值提取公式为
Figure FDA0002361302290000028
Fe2+铁染蚀变矿物的波段比值提取公式为
Figure FDA0002361302290000029
羟基蚀变矿物的波段比值提取公式为
Figure FDA00023613022900000210
当所述待使用卫星数据的种类为哨兵2号卫星数据时,Fe3+铁染蚀变矿物的波段比值提取公式为
Figure FDA00023613022900000211
Fe2+铁染蚀变矿物的波段比值提取公式为
Figure FDA00023613022900000212
羟基蚀变矿物的波段比值提取公式为
Figure FDA00023613022900000213
当所述待使用卫星数据的种类为高分1号卫星数据时,Fe3+铁染蚀变矿物的波段比值提取公式为
Figure FDA0002361302290000031
当所述待使用卫星数据的种类为WorldView-3卫星数据时,铝羟基蚀变矿物的波段比值提取公式为
Figure FDA0002361302290000032
镁羟基蚀变矿物的波段比值提取公式为
Figure FDA0002361302290000033
粘土蚀变矿物的波段比值为
Figure FDA0002361302290000034
Fe2+铁染蚀变矿物的波段比值提取公式为
Figure FDA0002361302290000035
明矾石蚀变矿物的波段比值提取公式为
Figure FDA0002361302290000036
绿泥石和碳酸盐混合蚀变矿物的波段比值提取公式为
Figure FDA0002361302290000037
2.一种蚀变信息获取系统,其特征在于,用于遥感图像的蚀变矿物的信息提取,所述蚀变信息获取系统包括:
图像获取模块,用于获取遥感图像,根据所述遥感图像确定待使用卫星数据的种类;
预处理模块,用于对确定的待使用卫星数据进行预处理;
公式确定模块,用于根据待使用卫星数据,确定待识别蚀变矿物的波段比值提取公式;
蚀变提取模块,用于根据确定的待识别蚀变矿物的波段比值提取公式,利用主成分分析法确定所述遥感图像中的待识别蚀变矿物的信息;
所述蚀变提取模块根据确定的待识别蚀变矿物的波段比值提取公式,利用主成分分析法确定所述遥感图像中的待识别蚀变矿物的信息具体用于,
当待识别蚀变矿物的波段比值提取公式为
Figure FDA0002361302290000038
时,对光谱反射峰Bn和光谱吸收峰Bm进行主成分分析,主成分分析结果中的第二主成分为所述待识别蚀变矿物的信息;
当待识别蚀变矿物的波段比值提取公式为
Figure FDA0002361302290000041
时,对光谱反射峰Bn和光谱吸收峰Bm进行第一次主成分分析,对光谱反射峰Bi和光谱吸收峰Bm进行第二次主成分分析,对第一次主成分分析结果中的第二主成分和第二次主成分分析结果中的第二主成分进行第三次主成分分析,第三次主成分分析结果中的第一主成分为所述待识别蚀变矿物的信息;
当待识别蚀变矿物的波段比值提取公式为
Figure FDA0002361302290000042
时,对光谱反射峰Bn和光谱吸收峰Bm进行第一次主成分分析,对光谱反射峰Bi和光谱吸收峰Bc进行第二次主成分分析,对第一次主成分分析结果中的第二主成分和第二次主成分分析结果中的第二主成分进行第三次主成分分析,第三次主成分分析结果中的第一主成分为所述待识别蚀变矿物的信息,其中,
Figure FDA0002361302290000049
均为大于或等于1的正整数;
所述待使用卫星数据的种类为ASTER卫星数据或Landsat 8 OLI卫星数据或哨兵2号卫星数据或高分1号卫星数据或WorldView-3卫星数据;
所述待识别蚀变矿物为铝羟基蚀变矿物或镁羟基蚀变矿物或铁羟基蚀变矿物或粘土蚀变矿物或Fe3+铁染蚀变矿物或Fe2+铁染蚀变矿物或铁帽蚀变矿物或明矾石蚀变矿物或绿泥石和碳酸盐混合蚀变矿物;
所述公式确定模块具体用于,当所述待使用卫星数据的种类为ASTER卫星数据时,铝羟基蚀变矿物的波段比值提取公式为
Figure FDA0002361302290000043
镁羟基蚀变矿物的波段比值提取公式为
Figure FDA0002361302290000044
粘土蚀变矿物的波段比值为
Figure FDA0002361302290000045
Fe3+铁染蚀变矿物的波段比值提取公式为
Figure FDA0002361302290000046
Fe2+铁染蚀变矿物的波段比值提取公式为
Figure FDA0002361302290000047
铁帽蚀变矿物的波段比值提取公式为
Figure FDA0002361302290000048
明矾石蚀变矿物的波段比值提取公式为
Figure FDA0002361302290000051
绿泥石和碳酸盐混合蚀变矿物的波段比值提取公式为
Figure FDA0002361302290000052
当所述待使用卫星数据的种类为Landsat 8 OLI卫星数据时,Fe3+铁染蚀变矿物的波段比值提取公式为
Figure FDA0002361302290000053
Fe2+铁染蚀变矿物的波段比值提取公式为
Figure FDA0002361302290000054
羟基蚀变矿物的波段比值提取公式为
Figure FDA0002361302290000055
当所述待使用卫星数据的种类为哨兵2号卫星数据时,Fe3+铁染蚀变矿物的波段比值提取公式为
Figure FDA0002361302290000056
Fe2+铁染蚀变矿物的波段比值提取公式为
Figure FDA0002361302290000057
当所述待使用卫星数据的种类为高分1号卫星数据时,Fe3+铁染蚀变矿物的波段比值提取公式为
Figure FDA0002361302290000058
当所述待使用卫星数据的种类为WorldView-3卫星数据时,铝羟基蚀变矿物的波段比值提取公式为
Figure FDA0002361302290000059
镁羟基蚀变矿物的波段比值提取公式为
Figure FDA00023613022900000510
粘土蚀变矿物的波段比值为
Figure FDA00023613022900000511
Fe2+铁染蚀变矿物的波段比值提取公式为
Figure FDA00023613022900000512
明矾石蚀变矿物的波段比值提取公式为
Figure FDA00023613022900000513
绿泥石和碳酸盐混合蚀变矿物的波段比值提取公式为
Figure FDA00023613022900000514
CN201810145611.3A 2018-02-12 2018-02-12 一种蚀变信息获取方法及系统 Active CN108333129B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201810145611.3A CN108333129B (zh) 2018-02-12 2018-02-12 一种蚀变信息获取方法及系统

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201810145611.3A CN108333129B (zh) 2018-02-12 2018-02-12 一种蚀变信息获取方法及系统

Publications (2)

Publication Number Publication Date
CN108333129A CN108333129A (zh) 2018-07-27
CN108333129B true CN108333129B (zh) 2020-04-21

Family

ID=62929249

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201810145611.3A Active CN108333129B (zh) 2018-02-12 2018-02-12 一种蚀变信息获取方法及系统

Country Status (1)

Country Link
CN (1) CN108333129B (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110618106B (zh) * 2019-08-12 2022-04-01 中国地质调查局西安地质调查中心 一种基于近红外反射光谱的绿泥石矿物种类鉴定方法
CN113406041B (zh) * 2021-05-31 2023-03-17 核工业北京地质研究院 一种钠交代岩型铀矿关键蚀变矿物组合获取方法
CN114596430A (zh) * 2022-05-07 2022-06-07 交通运输通信信息集团有限公司 一种岩石蚀变信息提取方法、系统及介质

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103984940A (zh) * 2014-06-03 2014-08-13 核工业北京地质研究院 一种基于高光谱数据识别赤铁矿化的方法
CN104050252A (zh) * 2014-06-12 2014-09-17 核工业北京地质研究院 一种高光谱遥感蚀变信息提取方法
CN104991287A (zh) * 2015-07-27 2015-10-21 中国地质调查局武汉地质调查中心 中南半岛成矿带典型区铜金矿遥感找矿模型建立方法
CN105068136A (zh) * 2015-07-27 2015-11-18 中国地质调查局武汉地质调查中心 基于多源信息的中南半岛示范区铜金矿潜力定位评价方法
CN105574621A (zh) * 2016-01-18 2016-05-11 中国地质科学院矿产资源研究所 基于遥感蚀变异常的斑岩铜矿预测系统及方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103984940A (zh) * 2014-06-03 2014-08-13 核工业北京地质研究院 一种基于高光谱数据识别赤铁矿化的方法
CN104050252A (zh) * 2014-06-12 2014-09-17 核工业北京地质研究院 一种高光谱遥感蚀变信息提取方法
CN104991287A (zh) * 2015-07-27 2015-10-21 中国地质调查局武汉地质调查中心 中南半岛成矿带典型区铜金矿遥感找矿模型建立方法
CN105068136A (zh) * 2015-07-27 2015-11-18 中国地质调查局武汉地质调查中心 基于多源信息的中南半岛示范区铜金矿潜力定位评价方法
CN105574621A (zh) * 2016-01-18 2016-05-11 中国地质科学院矿产资源研究所 基于遥感蚀变异常的斑岩铜矿预测系统及方法

Non-Patent Citations (5)

* Cited by examiner, † Cited by third party
Title
刘知.多源遥感数据的蚀变异常信息提取及对比研究.《太原理工大学学报》.2017, *
解骁颖.西藏扎西康地区锌锑多金属矿产遥感蚀变异常信息提取与成矿预测.《中国优秀硕士学位论文全文数据库基础科学辑》.2017, *
解骁颖;刘晨.基于二次主成分分析的遥感蚀变信息提取研究.《山西建筑》.2015, *
陈利燕.ETM~+铁矿化蚀变信息定量提取方法的应用——以西昆仑塔什库尔干—明铁盖一带为例.《湖北农业科学》.2010, *
陈曦等.基于二次主成份分析的遥感蚀变信息提取与优化——以云南羊拉铜矿为例.《资源环境与工程》.2014, *

Also Published As

Publication number Publication date
CN108333129A (zh) 2018-07-27

Similar Documents

Publication Publication Date Title
CN108333129B (zh) 一种蚀变信息获取方法及系统
CN110390267B (zh) 一种基于高分遥感影像的山地景观建筑提取方法和设备
CN105956557B (zh) 一种面向对象的时序遥感影像云覆盖区域自动检测方法
Xu et al. Thin cloud removal from optical remote sensing images using the noise-adjusted principal components transform
CN102609726B (zh) 利用面向对象技术融合高空间和高时间分辨率数据的遥感图像分类方法
Pasher et al. Multivariate forest structure modelling and mapping using high resolution airborne imagery and topographic information
CN102879099B (zh) 一种基于高光谱成像的壁画信息提取方法
Yue et al. Remote sensing of fractional cover of vegetation and exposed bedrock for karst rocky desertification assessment
Nguyen Water body extraction from multi spectral image by spectral pattern analysis
CN112113913B (zh) 一种基于背景阈值的Himawari8陆地火点探测算法
Moron et al. Weather types across the Caribbean basin and their relationship with rainfall and sea surface temperature
CN102622738A (zh) 一种Landsat TM/ETM+图像中山体阴影区的光谱信息恢复方法
CN110334623B (zh) 一种基于Sentinel-2A卫星遥感影像提取崩岗信息的方法
CN101916440B (zh) 基于数字图像形态学理论的高光谱异常检测方法
CN113433075B (zh) 一种简单的黑臭水体遥感快速监测方法
McDonald et al. Illumination correction of Landsat TM data in South East NSW
CN115439759A (zh) 遥感影像中植被的提取方法、装置、电子设备及介质
CN105513060A (zh) 一种视觉感知启发的高分辨率遥感图像分割方法
CN113780307A (zh) 一种区域年度最大蓝绿空间信息提取方法
CN112329791A (zh) 一种高光谱影像水域自动提取方法
Zhang et al. Mapping of circular or elliptical vegetation community patches: a comparative use of SPOT-5, ALOS and ZY-3 imagery
CN111275631A (zh) 一种遥感影像提取城市水体时消除阴影干扰的方法
CN109657637B (zh) 一种利用casi图像区别不同岩石中赤铁矿的方法
CN109902557A (zh) 蚀变特征矿物的蚀变异常信息的提取方法
CN106885772A (zh) 一种地质知识参与的etm遥感羟基蚀变矿物提取改进方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant