CN108332843A - 一种电气设备故障电弧的噪声诊断方法 - Google Patents

一种电气设备故障电弧的噪声诊断方法 Download PDF

Info

Publication number
CN108332843A
CN108332843A CN201810083462.2A CN201810083462A CN108332843A CN 108332843 A CN108332843 A CN 108332843A CN 201810083462 A CN201810083462 A CN 201810083462A CN 108332843 A CN108332843 A CN 108332843A
Authority
CN
China
Prior art keywords
acoustical signal
arc
short
frame
arc acoustical
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201810083462.2A
Other languages
English (en)
Inventor
刘四军
贺要锋
史雷敏
吴占
刘斌
陶涛
张柯
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Age Polytron Technologies Inc
State Grid Corp of China SGCC
Xuchang Power Supply Co of Henan Electric Power Co
Original Assignee
Age Polytron Technologies Inc
State Grid Corp of China SGCC
Xuchang Power Supply Co of Henan Electric Power Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Age Polytron Technologies Inc, State Grid Corp of China SGCC, Xuchang Power Supply Co of Henan Electric Power Co filed Critical Age Polytron Technologies Inc
Priority to CN201810083462.2A priority Critical patent/CN108332843A/zh
Publication of CN108332843A publication Critical patent/CN108332843A/zh
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01HMEASUREMENT OF MECHANICAL VIBRATIONS OR ULTRASONIC, SONIC OR INFRASONIC WAVES
    • G01H11/00Measuring mechanical vibrations or ultrasonic, sonic or infrasonic waves by detecting changes in electric or magnetic properties
    • G01H11/06Measuring mechanical vibrations or ultrasonic, sonic or infrasonic waves by detecting changes in electric or magnetic properties by electric means

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Measurement Of Mechanical Vibrations Or Ultrasonic Waves (AREA)

Abstract

本发明公开了一种电气设备故障电弧的噪声诊断方法,包括以下步骤:A、采集电气设备弧声信号,并对弧声信号进行预加重处理、FIR数字滤波和分帧;B、计算每帧弧声信号的短时能量和短时过零率,确定短时平均能量和短时平均过零率,采用双门限阈值判定法检测弧声信号异常区间;C、采用M个FIR滤波器对弧声信号异常区间进行滤波,并计算各频域子带能量值,形成M维特征向量;D、利用样本集数据和核函数的最优参数建立初级线性核模型,通过反复修改参数获得最佳线性核模型,利用最佳线性核模型对M维特征向量进行诊断,确认电气设备运行状态是否正常。本发明实现了对电气设备运行状态的在线检测和实时预警,降低了故障电弧产生的危害和几率。

Description

一种电气设备故障电弧的噪声诊断方法
技术领域
本发明涉及电气设备故障诊断技术领域,尤其涉及一种电气设备故障电弧的噪声诊断方法。
背景技术
国内外将声学分析应用于故障电弧的物理特性、产生机理及探测方法始于20世纪80年代中期,经过90年代的快速发展,目前已在很多领域获得了成功的应用。在电气设备的运行状态诊断中,由于20Hz~20kHz人耳可听到频段的声波信号受外界干扰较大,运行现场工作人员采用传统的方法-凭感官初步判断电气设备是否发生故障时,不仅费时费力,且准确度主要取决于巡检人员的专业素养。因此,研究更准确、便捷的故障弧声识别方法,对构建在线电气设备故障智能诊断、辅助决策系统具有十分重要的意义。
发明内容
本发明的目的在于提供一种电气设备故障电弧的噪声诊断方法,能够基于电弧声音检测准确识别电弧故障的发生,减少故障电弧产生的危害。
为实现上述目的,本发明采用的技术方案是:
一种电气设备故障电弧的噪声诊断方法,包括以下步骤:
A、弧声信号采集及预处理:采用音频传感器采集电气设备在运行中的弧声信号,并对弧声信号进行预加重处理、FIR数字滤波和分帧,得到以帧为单位的弧声信号;
B、弧声信号异常区间检测:计算每帧弧声信号的短时能量和短时过零率,将前X帧弧声信号短时能量的平均值作为短时平均能量ampth,将前X帧弧声信号短时过零率的平均值作为短时平均过零率zcrth,依据短时平均能量ampth和短时平均过零率zcrth,采用双门限阈值判定法检测弧声信号异常区间;
C、异常区间特征向量提取:将0~fs/2的频段分为M个等长区间,其中fs为音频传感器的采样率,针对每个区间设计对应的FIR滤波器,采用M个FIR滤波器对弧声信号异常区间进行滤波,并计算各频域子带能量值,得到弧声信号异常区间能量分布,形成M维特征向量;D、基于向量机的故障诊断:采用已收集的电气设备故障弧声信号建立样本集数据,采用网格寻优法确定核函数的最优参数,利用样本集数据和核函数的最优参数建立初级线性核模型,采用测试集数据对初级线性核模型的识别率进行验证和统计,通过反复修改参数获得最佳线性核模型,利用最佳线性核模型对M维特征向量进行诊断,确认电气设备运行状态是否正常。
所述的步骤B中,采用双门限阈值判定法检测弧声信号异常区间包括以下步骤:B1、依据短时平均能量ampth确定短时能量阈值高门限amp1和短时能量阈值低门限amp2,依据短时平均过零率zcrth确定短时过零率阈值zcr2,并设定最大无声段长度maxsilence和最小语音段长度minlen;
B2、定义status为语音段状态,status=0为静音状态,status=1为可能开始状态,status=2为语音状态,每帧弧声信号的status初始值均为0,定义count为语音段长度,count的初始值为0,定义silence为无声段长度,silence的初始值为0;
B3、将各帧弧声信号依次标记为A1,A2,A3,……,记各帧弧声信号的短时能量为amp1,amp2,amp3,……,各帧弧声信号的短时过零率为zcr1,zcr2,zcr3,……;
B4、取k=k+1,其中k为迭代索引,k=0,1,2,……;
B5、若ampk>amp1,将该帧弧声信号的status标记为2,并将该帧弧声信号记为弧声信号异常区间的起始帧,更新count=count+1,然后进入步骤B7,若ampk≤amp1,则进入步骤B6;
B6、若ampk>amp2并且zcrk>zcr2,将该帧弧声信号的status标记为1,并将该帧弧声信号记为弧声信号异常区间的起始帧,更新count=count+1,然后进入步骤B7,若ampk≤amp2或者zcrk≤zcr2,则返回步骤B4;
B7、取k=k+1,若ampk>amp2并且zcrk>zcr2,更新count=count+1,初始化silence=0,然后返回步骤B7,若ampk≤amp2或者zcrk≤zcr2,则进入步骤B8;
B8、更新silence=silence+1,比较silence与maxsilence,若silence<maxsilence,更新count=count+1,然后返回步骤B7,若silence≥maxsilence,比较count与minlen,若count>minlen,则将该帧弧声信号记为异常信号区间的结束帧,提取弧声信号异常区间,然后返回步骤B4,若count≤minlen,则返回步骤B4。
所述的步骤B中,每帧弧声信号的短时能量计算公式为:
式中ampi为第i帧弧声信号的短时能量,N为每帧弧声信号对应的点数,yi(n)为第i帧弧声信号中第n点对应的幅值;
每帧弧声信号的短时过零率计算公式为:
式中ZCRi是第i帧弧声信号的短时过零率,sign[yi(n)]为符号函数,且
所述的步骤A中,采用汉明窗对弧声信号进行分帧,每帧弧声信号的帧长为10ms~30ms,帧移为帧长的1/4~1/2。
本发明通过采集弧声信号并进行预处理,利用弧声信号的短时能量和短时过零率检测信号异常区间,进而提取信号异常区间的特征向量,最终基于支持向量机诊断电气设备运行状态是否正常,既避免了传统人工巡检带来不必要的浪费,又实现了对开闭所中电气设备运行状态的在线检测和实时预警,省时省力,大大降低了故障电弧产生的危害和几率,减少重大的经济和生命财产损失。
附图说明
图1为本发明的流程图;
图2为本发明采用双门限阈值判定法检测弧声信号异常区间的流程图。
具体实施方式
由于电气设备故障电弧在剧烈放电之前,一般会有相对较长的局部放电与辉光放电过程,此时电弧还不足以对电路造成严重损坏,因此是预警电弧的良好时机。局部放电会产生电弧声音,本发明利用对电弧声音的检测作为故障电弧检测和预警的依据,对于构建在线电气设备故障智能诊断、辅助决策系统具有十分重要的意义。
如图1所示,本发明所述的一种电气设备故障电弧的噪声诊断方法,包括以下步骤:
A、弧声信号采集及预处理:采用音频传感器采集电气设备在运行中的弧声信号,并对弧声信号进行预加重处理、FIR数字滤波和分帧,得到以帧为单位的弧声信号。
本发明通过对弧声信号进行预加重处理,提升了弧声信号的高频部分,使信号的频率谱更加平滑,方便进行频谱和声道参数的相关操作。由于故障电弧噪声频率一般在5kHz~8kHz,本发明采用FIR数字滤波滤除5k~8kHz外的信号,有利于提高故障电弧噪声诊断的准确率。声音信号虽然具有时变性,但在一个短时间内,其基本特性保持相对稳定,可将其看作是一个准稳态过程,因此本发明通过分帧对弧声信号进行短时分析。本发明综合考虑主瓣和旁瓣的平衡,采用汉明窗对弧声信号进行分帧,使弧声信号成为连续的小段,其中每一段为一帧,每帧弧声信号的帧长为10ms~30ms,帧移为帧长的1/4~1/2。
B、弧声信号异常区间检测:计算每帧弧声信号的短时能量和短时过零率,将前X帧弧声信号短时能量的平均值作为短时平均能量ampth,将前X帧弧声信号短时过零率的平均值作为短时平均过零率zcrth,依据短时平均能量ampth和短时平均过零率zcrth,采用双门限阈值判定法检测弧声信号异常区间。
其中,每帧弧声信号的短时能量计算公式为:
式中ampi为第i帧弧声信号的短时能量,N为每帧弧声信号对应的点数,yi(n)为第i帧弧声信号中第n点对应的幅值。
每帧弧声信号的短时过零率计算公式为:
式中ZCRi是第i帧弧声信号的短时过零率,sign[yi(n)]为符号函数,且
X为前导无话段的帧数,根据语音信号的波形图可以估算前导无话段的时长,X值计算公式如下所示:
X=fix((IS*fs-wlen)/inc+1);
式中IS为前导无话段的时长,fs为音频传感器的采样率,wlen为每帧弧声信号的帧长,inc为每帧弧声信号的帧移,fix为将结果向零方向取整。
如图2所示,本发明采用双门限阈值判定法检测弧声信号异常区间,包括以下步骤:
B1、依据短时平均能量ampth确定短时能量阈值高门限amp1和短时能量阈值低门限amp2,依据短时平均过零率zcrth确定短时过零率阈值zcr2,例如,设定amp1=4*ampth,amp1=2*ampth,zcr2=0.8*zcrth,式中系数均为经验值,并设定最大无声段长度maxsilence和最小语音段长度minlen;
B2、定义status为语音段状态,status=0为静音状态,status=1为可能开始状态,status=2为语音状态,每帧弧声信号的status初始值均为0,定义count为语音段长度,count的初始值为0,定义silence为无声段长度,silence的初始值为0;
B3、将各帧弧声信号依次标记为A1,A2,A3,……,记各帧弧声信号的短时能量为amp1,amp2,amp3,……,各帧弧声信号的短时过零率为zcr1,zcr2,zcr3,……;
B4、取k=k+1,其中k为迭代索引,k=0,1,2,……;
B5、若ampk>amp1,将该帧弧声信号的status标记为2,并将该帧弧声信号记为弧声信号异常区间的起始帧,更新count=count+1,然后进入步骤B7,若ampk≤amp1,则进入步骤B6;
B6、若ampk>amp2并且zcrk>zcr2,将该帧弧声信号的status标记为1,并将该帧弧声信号记为弧声信号异常区间的起始帧,更新count=count+1,然后进入步骤B7,若ampk≤amp2或者zcrk≤zcr2,则返回步骤B4;
B7、取k=k+1,若ampk>amp2并且zcrk>zcr2,更新count=count+1,初始化silence=0,然后返回步骤B7,若ampk≤amp2或者zcrk≤zcr2,则进入步骤B8;
B8、更新silence=silence+1,比较silence与maxsilence,若silence<maxsilence,更新count=count+1,然后返回步骤B7,若silence≥maxsilence,比较count与minlen,若count>minlen,则将该帧弧声信号记为异常信号区间的结束帧,提取弧声信号异常区间,然后返回步骤B4,若count≤minlen,则返回步骤B4。
由于故障电弧声音属于异常声音,出现的频率比较低,因此音频传感器采集到的大部分是环境噪声帧。为了避免产生过多不必要的计算与存储,本发明首先利用短时能量或者短时能量与短时过零率的结合对异于环境噪声帧的弧声信号进行识别,找出异常信号帧在时域上的起点,并将起点作为故障电弧声音识别算法的触发标识,在识别故障电弧声音过程中,利用最大无声段长度判断异于环境噪声帧的弧声信号是否结束,若已结束,利用最小语音段长度判断该段信号是否属于异常信号区间,最终实现只对异常弧声信号进行电弧声音识别处理的目标,大大减少了计算量。
C、异常区间特征向量提取:将0~fs/2的频段分为M个等长区间,其中fs为音频传感器的采样率,针对每个区间设计对应的FIR滤波器,采用M个FIR滤波器对弧声信号异常区间进行滤波,并计算各频域子带能量值,得到弧声信号异常区间能量分布,形成M维特征向量。
D、基于向量机的故障诊断:采用已收集的电气设备故障弧声信号建立样本集数据,采用网格寻优法确定核函数的最优参数,利用样本集数据和核函数的最优参数建立初级线性核模型,采用测试集数据对初级线性核模型的识别率进行验证和统计,通过反复修改参数获得最佳线性核模型,利用最佳线性核模型对M维特征向量进行诊断,确认电气设备运行状态是否正常。
本发明通过长时间的收集电气设备故障音频数据的集合,采用基于支持向量机作为训练与决策的依据,建立线性核模型,对异常信号区间的特征向量进行诊断,有效提高了故障弧声识别的准确性和便捷性。

Claims (4)

1.一种电气设备故障电弧的噪声诊断方法,其特征在于,包括以下步骤:
A、弧声信号采集及预处理:采用音频传感器采集电气设备在运行中的弧声信号,并对弧声信号进行预加重处理、FIR数字滤波和分帧,得到以帧为单位的弧声信号;
B、弧声信号异常区间检测:计算每帧弧声信号的短时能量和短时过零率,将前X帧弧声信号短时能量的平均值作为短时平均能量ampth,将前X帧弧声信号短时过零率的平均值作为短时平均过零率zcrth,依据短时平均能量ampth和短时平均过零率zcrth,采用双门限阈值判定法检测弧声信号异常区间;
C、异常区间特征向量提取:将0~fs/2的频段分为M个等长区间,其中fs为音频传感器的采样率,针对每个区间设计对应的FIR滤波器,采用M个FIR滤波器对弧声信号异常区间进行滤波,并计算各频域子带能量值,得到弧声信号异常区间能量分布,形成M维特征向量;
D、基于向量机的故障诊断:采用已收集的电气设备故障弧声信号建立样本集数据,采用网格寻优法确定核函数的最优参数,利用样本集数据和核函数的最优参数建立初级线性核模型,采用测试集数据对初级线性核模型的识别率进行验证和统计,通过反复修改参数获得最佳线性核模型,利用最佳线性核模型对M维特征向量进行诊断,确认电气设备运行状态是否正常。
2.如权利要求1所述的一种电气设备故障电弧的噪声诊断方法,其特征在于:所述的步骤B中,采用双门限阈值判定法检测弧声信号异常区间包括以下步骤:
B1、依据短时平均能量ampth确定短时能量阈值高门限amp1和短时能量阈值低门限amp2,依据短时平均过零率zcrth确定短时过零率阈值zcr2,并设定最大无声段长度maxsilence和最小语音段长度minlen;
B2、定义status为语音段状态,status=0为静音状态,status=1为可能开始状态,status=2为语音状态,每帧弧声信号的status初始值均为0,定义count为语音段长度,count的初始值为0,定义silence为无声段长度,silence的初始值为0;
B3、将各帧弧声信号依次标记为A1,A2,A3,……,记各帧弧声信号的短时能量为amp1,amp2,amp3,……,各帧弧声信号的短时过零率为zcr1,zcr2,zcr3,……;
B4、取k=k+1,其中k为迭代索引,k=0,1,2,……;
B5、若ampk>amp1,将该帧弧声信号的status标记为2,并将该帧弧声信号记为弧声信号异常区间的起始帧,更新count=count+1,然后进入步骤B7,若ampk≤amp1,则进入步骤B6;
B6、若ampk>amp2并且zcrk>zcr2,将该帧弧声信号的status标记为1,并将该帧弧声信号记为弧声信号异常区间的起始帧,更新count=count+1,然后进入步骤B7,若ampk≤amp2或者zcrk≤zcr2,则返回步骤B4;
B7、取k=k+1,若ampk>amp2并且zcrk>zcr2,更新count=count+1,初始化silence=0,然后返回步骤B7,若ampk≤amp2或者zcrk≤zcr2,则进入步骤B8;
B8、更新silence=silence+1,比较silence与maxsilence,若silence<maxsilence,更新count=count+1,然后返回步骤B7,若silence≥maxsilence,比较count与minlen,若count>minlen,则将该帧弧声信号记为异常信号区间的结束帧,提取弧声信号异常区间,然后返回步骤B4,若count≤minlen,则返回步骤B4。
3.如权利要求1所述的一种电气设备故障电弧的噪声诊断方法,其特征在于:所述的步骤B中,每帧弧声信号的短时能量计算公式为:
式中ampi为第i帧弧声信号的短时能量,N为每帧弧声信号对应的点数,yi(n)为第i帧弧声信号中第n点对应的幅值;
每帧弧声信号的短时过零率计算公式为:
式中ZCRi是第i帧弧声信号的短时过零率,sign[yi(n)]为符号函数,且
4.如权利要求1所述的一种电气设备故障弧声的噪声诊断方法,其特征在于:所述的步骤A中,采用汉明窗对弧声信号进行分帧,每帧弧声信号的帧长为10ms~30ms,帧移为帧长的1/4~1/2。
CN201810083462.2A 2018-01-29 2018-01-29 一种电气设备故障电弧的噪声诊断方法 Pending CN108332843A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201810083462.2A CN108332843A (zh) 2018-01-29 2018-01-29 一种电气设备故障电弧的噪声诊断方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201810083462.2A CN108332843A (zh) 2018-01-29 2018-01-29 一种电气设备故障电弧的噪声诊断方法

Publications (1)

Publication Number Publication Date
CN108332843A true CN108332843A (zh) 2018-07-27

Family

ID=62925943

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201810083462.2A Pending CN108332843A (zh) 2018-01-29 2018-01-29 一种电气设备故障电弧的噪声诊断方法

Country Status (1)

Country Link
CN (1) CN108332843A (zh)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109274832A (zh) * 2018-11-18 2019-01-25 赛拓信息技术有限公司 手机端测量噪声的方法
CN109785865A (zh) * 2019-03-07 2019-05-21 上海电力学院 基于短时能零比的广播语音与噪声检测的方法
CN109900469A (zh) * 2019-03-28 2019-06-18 西安交通大学 一种高压断路器螺旋弹簧应力松弛故障检测装置及方法
CN110010158A (zh) * 2019-03-29 2019-07-12 联想(北京)有限公司 检测方法、检测装置、电子设备和计算机可读介质
CN110988137A (zh) * 2019-12-31 2020-04-10 四川长虹电器股份有限公司 一种基于时频域特征的异音检测系统及方法
CN111755025A (zh) * 2019-03-26 2020-10-09 北京君林科技股份有限公司 一种基于音频特征的状态检测方法、装置及设备
CN111913084A (zh) * 2020-08-14 2020-11-10 浙江恒捷智能科技有限公司 一种智能故障电弧探测器
CN112382307A (zh) * 2020-10-29 2021-02-19 国家能源集团宁夏煤业有限责任公司 分级破碎设备异物检测方法、存储介质及电子设备
CN112863546A (zh) * 2021-01-21 2021-05-28 安徽理工大学 音频特征决策的带式运输机健康分析方法
CN113160835A (zh) * 2021-04-23 2021-07-23 河南牧原智能科技有限公司 一种猪只声音提取方法、装置、设备及可读存储介质

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101261832A (zh) * 2008-04-21 2008-09-10 北京航空航天大学 汉语语音情感信息的提取及建模方法
CN102426835A (zh) * 2011-08-30 2012-04-25 华南理工大学 一种基于支持向量机模型的开关柜局部放电信号识别方法
CN103065627A (zh) * 2012-12-17 2013-04-24 中南大学 基于dtw与hmm证据融合的特种车鸣笛声识别方法
CN103744978A (zh) * 2014-01-14 2014-04-23 清华大学 一种基于网格搜索技术用于支持向量机的参数寻优方法
CN104586398A (zh) * 2013-10-30 2015-05-06 广州华久信息科技有限公司 一种基于多传感器融合的老人跌倒检测方法及系统
CN104966076A (zh) * 2015-07-21 2015-10-07 北方工业大学 基于支持向量机的光纤入侵信号分类识别方法
CN106847270A (zh) * 2016-12-09 2017-06-13 华南理工大学 一种双门限地名语音端点检测方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101261832A (zh) * 2008-04-21 2008-09-10 北京航空航天大学 汉语语音情感信息的提取及建模方法
CN102426835A (zh) * 2011-08-30 2012-04-25 华南理工大学 一种基于支持向量机模型的开关柜局部放电信号识别方法
CN103065627A (zh) * 2012-12-17 2013-04-24 中南大学 基于dtw与hmm证据融合的特种车鸣笛声识别方法
CN104586398A (zh) * 2013-10-30 2015-05-06 广州华久信息科技有限公司 一种基于多传感器融合的老人跌倒检测方法及系统
CN103744978A (zh) * 2014-01-14 2014-04-23 清华大学 一种基于网格搜索技术用于支持向量机的参数寻优方法
CN104966076A (zh) * 2015-07-21 2015-10-07 北方工业大学 基于支持向量机的光纤入侵信号分类识别方法
CN106847270A (zh) * 2016-12-09 2017-06-13 华南理工大学 一种双门限地名语音端点检测方法

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109274832A (zh) * 2018-11-18 2019-01-25 赛拓信息技术有限公司 手机端测量噪声的方法
CN109785865A (zh) * 2019-03-07 2019-05-21 上海电力学院 基于短时能零比的广播语音与噪声检测的方法
CN111755025A (zh) * 2019-03-26 2020-10-09 北京君林科技股份有限公司 一种基于音频特征的状态检测方法、装置及设备
CN111755025B (zh) * 2019-03-26 2024-02-23 苏州君林智能科技有限公司 一种基于音频特征的状态检测方法、装置及设备
CN109900469A (zh) * 2019-03-28 2019-06-18 西安交通大学 一种高压断路器螺旋弹簧应力松弛故障检测装置及方法
CN110010158B (zh) * 2019-03-29 2021-05-18 联想(北京)有限公司 检测方法、检测装置、电子设备和计算机可读介质
CN110010158A (zh) * 2019-03-29 2019-07-12 联想(北京)有限公司 检测方法、检测装置、电子设备和计算机可读介质
CN110988137A (zh) * 2019-12-31 2020-04-10 四川长虹电器股份有限公司 一种基于时频域特征的异音检测系统及方法
CN111913084A (zh) * 2020-08-14 2020-11-10 浙江恒捷智能科技有限公司 一种智能故障电弧探测器
CN111913084B (zh) * 2020-08-14 2023-04-11 浙江恒捷智能科技有限公司 一种智能故障电弧探测器
CN112382307A (zh) * 2020-10-29 2021-02-19 国家能源集团宁夏煤业有限责任公司 分级破碎设备异物检测方法、存储介质及电子设备
CN112863546A (zh) * 2021-01-21 2021-05-28 安徽理工大学 音频特征决策的带式运输机健康分析方法
CN113160835A (zh) * 2021-04-23 2021-07-23 河南牧原智能科技有限公司 一种猪只声音提取方法、装置、设备及可读存储介质

Similar Documents

Publication Publication Date Title
CN108332843A (zh) 一种电气设备故障电弧的噪声诊断方法
US5715372A (en) Method and apparatus for characterizing an input signal
Dufaux et al. Automatic sound detection and recognition for noisy environment
CN108896878B (zh) 一种基于超声波的局部放电检测方法
CN105611477B (zh) 数字助听器中深度和广度神经网络相结合的语音增强算法
EP3998557A1 (en) Audio signal processing method, model training method, and related apparatus
CN102426835B (zh) 一种基于支持向量机模型的开关柜局部放电信号识别方法
US6427134B1 (en) Voice activity detector for calculating spectral irregularity measure on the basis of spectral difference measurements
CN109545188A (zh) 一种实时语音端点检测方法及装置
EP1973104B1 (en) Method and apparatus for estimating noise by using harmonics of a voice signal
CN112735456B (zh) 一种基于dnn-clstm网络的语音增强方法
CN107103901B (zh) 人工耳蜗声音场景识别系统和方法
CN109507510A (zh) 一种变压器故障诊断系统
EP2486562A1 (en) Method for the detection of speech segments
CN112857767B (zh) 基于卷积神经网络的水轮发电机组转子故障声学判别方法
CN111508517A (zh) 一种基于噪声特征的微电机智能品控方法
Hu et al. Techniques for estimating the ideal binary mask
CN111833902A (zh) 唤醒模型训练方法、唤醒词识别方法、装置及电子设备
CN105916090A (zh) 一种基于智能化语音识别技术的助听器系统
CN111489763A (zh) 一种基于gmm模型的复杂环境下说话人识别自适应方法
Dang et al. Cochlear filter cepstral coefficients of acoustic signals for mechanical faults identification of power transformer
CN111341351A (zh) 基于自注意力机制的语音活动检测方法、装置及存储介质
US11490198B1 (en) Single-microphone wind detection for audio device
CN115798511A (zh) 一种通过声音检测工业设备异常的方法
CN108074585A (zh) 一种基于声源特征的语音异常检测方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication

Application publication date: 20180727

RJ01 Rejection of invention patent application after publication