CN108322076B - Voltage-sharing control system and method for parallel H-bridge type converter of alternating current system - Google Patents
Voltage-sharing control system and method for parallel H-bridge type converter of alternating current system Download PDFInfo
- Publication number
- CN108322076B CN108322076B CN201810141406.XA CN201810141406A CN108322076B CN 108322076 B CN108322076 B CN 108322076B CN 201810141406 A CN201810141406 A CN 201810141406A CN 108322076 B CN108322076 B CN 108322076B
- Authority
- CN
- China
- Prior art keywords
- voltage
- controller
- current
- value
- bridge
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 238000000034 method Methods 0.000 title claims description 23
- 239000004065 semiconductor Substances 0.000 claims description 6
- 238000002347 injection Methods 0.000 description 8
- 239000007924 injection Substances 0.000 description 8
- 238000010586 diagram Methods 0.000 description 6
- 239000003990 capacitor Substances 0.000 description 2
- 230000008878 coupling Effects 0.000 description 2
- 238000010168 coupling process Methods 0.000 description 2
- 238000005859 coupling reaction Methods 0.000 description 2
- 238000002847 impedance measurement Methods 0.000 description 2
- 239000000243 solution Substances 0.000 description 2
- 230000009286 beneficial effect Effects 0.000 description 1
- 230000007812 deficiency Effects 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 230000003993 interaction Effects 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02M—APPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
- H02M7/00—Conversion of AC power input into DC power output; Conversion of DC power input into AC power output
- H02M7/42—Conversion of DC power input into AC power output without possibility of reversal
- H02M7/44—Conversion of DC power input into AC power output without possibility of reversal by static converters
- H02M7/48—Conversion of DC power input into AC power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
- H02M7/493—Conversion of DC power input into AC power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode the static converters being arranged for operation in parallel
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02M—APPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
- H02M7/00—Conversion of AC power input into DC power output; Conversion of DC power input into AC power output
- H02M7/42—Conversion of DC power input into AC power output without possibility of reversal
- H02M7/44—Conversion of DC power input into AC power output without possibility of reversal by static converters
- H02M7/48—Conversion of DC power input into AC power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
- H02M7/53—Conversion of DC power input into AC power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
- H02M7/537—Conversion of DC power input into AC power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters
- H02M7/5387—Conversion of DC power input into AC power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters in a bridge configuration
Landscapes
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Inverter Devices (AREA)
- Supply And Distribution Of Alternating Current (AREA)
Abstract
本发明公开了一种交流系统并联H桥型变流器的均压控制方法,通过在交流电压控制器中引入无功分量指令值,同时在直流电压均衡控制器中将各模块直流侧电压偏差生成无功电流偏差,从而在不影响整个变流器总有功功率的条件下实现各模块之间有功功率的重新分配,进而实现各模块直流侧电压的均衡控制,由于该方法可对交流电压无功分量电压指令值进行设计以调节各模块之间有功功率偏差的大小,因而能确保在系统电流幅度全范围内实现各模块直流电压均衡,本发明无需直流侧额外电阻,因而能降低装置体积且提高系统效率,具有良好的应用前景。
The invention discloses a voltage equalization control method of an AC system paralleled H-bridge type converter. By introducing a reactive component command value into an AC voltage controller, and at the same time in the DC voltage equalization controller, the DC side voltage deviation of each module is adjusted. The reactive current deviation is generated, so as to realize the real power redistribution among the modules without affecting the total active power of the entire converter, and then realize the balanced control of the DC side voltage of each module. The power component voltage command value is designed to adjust the active power deviation between the modules, thus ensuring that the DC voltage balance of each module is achieved within the full range of the system current range. Improve system efficiency and have good application prospects.
Description
技术领域technical field
本发明属于电力电子变流器控制技术领域,尤其涉及到一种交流系统并联H桥型变流器的均压控制系统及方法。The invention belongs to the technical field of power electronic converter control, and in particular relates to a voltage equalization control system and method of an AC system paralleling H-bridge type converters.
背景技术Background technique
随着交流电力系统中越来越多的电力电子元件的接入,他们之间的相互作用易引发系统小信号稳定性问题,而该问题可以通过考察系统母线上各端口阻抗之间的关系来进行分析,因此实际工程中端口阻抗的测量对于分析系统稳定性至关重要。交流系统端口阻抗测量的基本原理为:首先向系统端口注入特定频率一定幅度的电流或电压扰动,然后提取端口在该频率处的电压或电流响应,进而计算出该频率处的端口阻抗。由于扰动需要注入到功率端口中,需要承受系统高电压或者大电流,因此扰动注入是整个阻抗测量中最为关键的环节。With the access of more and more power electronic components in the AC power system, the interaction between them is easy to cause the problem of small signal stability of the system, and this problem can be solved by examining the relationship between the impedances of each port on the system bus. Therefore, the measurement of port impedance in actual engineering is very important to analyze the stability of the system. The basic principle of AC system port impedance measurement is: first inject a current or voltage disturbance with a certain frequency and a certain amplitude into the system port, then extract the voltage or current response of the port at this frequency, and then calculate the port impedance at this frequency. Since the disturbance needs to be injected into the power port and needs to withstand the high voltage or high current of the system, the disturbance injection is the most critical link in the entire impedance measurement.
扰动注入分并联注入和串联注入两类,并联注入用于精确测量母线上阻抗偏低的端口,串联注入用于精确测量阻抗偏高的端口。串联扰动注入目前主要有两种实现方式,即基于耦合变压器的桥式变流器和并联H桥型变流器,后者由于避免了耦合变压器,可以实现低频扰动注入,对于实现宽频带阻抗测量具有重要意义。Disturbance injection is divided into parallel injection and series injection. Parallel injection is used to accurately measure the low impedance port on the bus, and series injection is used to accurately measure the high impedance port. There are two main ways to realize series disturbance injection at present, namely bridge converter based on coupling transformer and parallel H-bridge converter. The latter can realize low-frequency disturbance injection because of avoiding coupling transformer. significant.
图1以H桥模块数目N等于3为例,给出了并联H桥型变流器的基本结构,由于并联H桥型变流器直流侧电容悬浮,因而需要对其电压进行控制;同时为了使系统电流在各模块之间均分,需要对各模块交流侧电流进行控制。图2给出了并联H桥型变流器控制系统的总体结构,其首先接收上层控制器的扰动电压指令,然后通过采集各模块直流侧电压、各模块交流侧电流、输出交流电压以及系统电流,经过控制系统处理后,输出控制信号,分别控制各H桥模块内部全控型功率半导体器件的通断,最终使交流输出端口输出电压中包含扰动电压分量。Figure 1 shows the basic structure of a parallel H-bridge converter by taking the number of H-bridge modules N equal to 3 as an example. Since the DC-side capacitance of the parallel-connected H-bridge converter is suspended, its voltage needs to be controlled; at the same time, in order to In order to divide the system current evenly among the modules, it is necessary to control the AC side current of each module. Figure 2 shows the overall structure of the parallel H-bridge converter control system. It first receives the disturbance voltage command from the upper controller, and then collects the DC side voltage of each module, the AC side current of each module, the output AC voltage and the system current by collecting After being processed by the control system, the control signal is output to control the on-off of the fully-controlled power semiconductor devices inside each H-bridge module, and finally the output voltage of the AC output port contains a disturbance voltage component.
现有并联H桥型变流器控制系统,当系统电流幅度较小时,可实现各模块直流侧电压之间均衡控制,此时各电压相等;当系统电流幅度大于某一特定值(且该特定值远小于额定值)时,无法实现各模块直流侧电压,此时各电压之间存在较大差异,进而可触发过压保护导致停机,进而严重制约了并联H桥型变流器的运行范围。此外,现有技术中也通过在各模块直流侧并联额外电阻来实现系统电流幅度较大时各直流侧电压均衡控制,该方案能在一定程度上提高系统电流幅度运行范围,但是额外电阻的引入将导致装置体积增大、系统损耗升高。In the existing parallel H-bridge converter control system, when the current amplitude of the system is small, the balanced control of the DC side voltages of each module can be achieved, and the voltages are equal at this time; when the system current amplitude is greater than a certain value (and the specific When the value is much smaller than the rated value), the DC side voltage of each module cannot be realized, and there is a large difference between the voltages at this time, which can trigger the overvoltage protection and cause shutdown, which seriously restricts the operating range of the parallel H-bridge converter. . In addition, in the prior art, additional resistors are connected in parallel on the DC side of each module to realize the voltage balance control of each DC side when the system current amplitude is large. This solution can improve the operating range of the system current amplitude to a certain extent. However, the introduction of additional resistors It will lead to an increase in the size of the device and an increase in system loss.
发明内容SUMMARY OF THE INVENTION
本发明的目的在于提供一种交流系统并联H桥型变流器的均压控制系统及方法,以克服现有技术的不足。The purpose of the present invention is to provide a voltage equalization control system and method of parallel H-bridge type converters in an AC system, so as to overcome the deficiencies of the prior art.
为达到上述目的,本发明采用如下技术方案。In order to achieve the above objects, the present invention adopts the following technical solutions.
一种交流系统并联H桥型变流器的均压控制方法,包括以下步骤:A voltage equalization control method for an AC system paralleled H-bridge type converter, comprising the following steps:
步骤1)、通过平均直流电压控制器得到交流电压有功分量幅度指令值vCpm *;Step 1), obtain the AC voltage active component amplitude command value v Cpm * through the average DC voltage controller;
步骤2)、通过锁相环获取系统电流iS的基波分量相位θ的余弦值和正弦值;Step 2), obtain the cosine value and the sine value of the fundamental component phase θ of the system current i S by the phase-locked loop;
步骤3)、通过交流电压控制器根据步骤1)得到的交流电压有功分量幅度指令值以及步骤2)得到的基波分量相位θ的余弦值和正弦值得到各H桥模块交流电流统一指令值iL *;Step 3), through the AC voltage controller according to the AC voltage active component amplitude command value obtained in step 1) and the cosine value and sine value of the fundamental wave component phase θ obtained in step 2) to obtain each H-bridge module AC current unified command value i L * ;
步骤4)、通过直流电压均衡控制器得到各H桥模块交流电流偏差指令值iLdk *;Step 4), obtain each H-bridge module AC current deviation command value i Ldk * through the DC voltage equalization controller;
步骤5)、将交流电压控制器输出的交流电流统一指令值iL *与直流电压均衡控制器输出的交流电流偏差指令值iLdk *加和后得到相应H桥模块交流电流指令值iLk *;然后将iLk *与相应H桥模块实际交流电流iLk作差后作为交流电流调节器输入,其输出为相应H桥模块占空比dk,输入至连接于各H桥模块的脉宽调制器,即可实现H桥型变流器的均压控制。Step 5), add the AC current unified command value i L * output by the AC voltage controller and the AC current deviation command value i Ldk * output by the DC voltage equalization controller to obtain the corresponding H bridge module AC current command value i Lk * ; Then the difference between i Lk * and the actual AC current i Lk of the corresponding H-bridge module is used as the input of the AC current regulator, and its output is the duty cycle d k of the corresponding H-bridge module, which is input to the pulse width connected to each H-bridge module The modulator can realize the voltage equalization control of the H-bridge converter.
进一步的,步骤1)中,首先通过平均直流电压控制器采集各H桥模块直流侧电压vdck,然后经过平均直流电压控制器中的AVE模块计算出各H桥模块直流侧电压vdck的平均值将直流电压指令值vdc *与平均值作差后作为直流电压调节器GVDC的输入,进而得到交流电压有功分量幅度指令值vCpm *。Further, in step 1), first collect the DC side voltage v dck of each H bridge module through the average DC voltage controller, and then calculate the average DC side voltage v dck of each H bridge module through the AVE module in the average DC voltage controller. value Compare the DC voltage command value v dc * with the average value After the difference, it is used as the input of the DC voltage regulator G VDC , and then the command value v Cpm * of the amplitude of the active component of the AC voltage is obtained.
进一步的,步骤2)中,锁相环采集系统电流,滤除其中噪声,输出系统电流基波分量相位θ:Further, in step 2), the phase-locked loop collects the system current, filters out the noise, and outputs the phase θ of the fundamental component of the system current:
iS1=ISm cosθi S1 =I Sm cosθ
其中iS1为系统电流基波分量瞬时值,ISm为基波电流幅度。Among them, i S1 is the instantaneous value of the fundamental wave component of the system current, and I Sm is the amplitude of the fundamental wave current.
进一步的,步骤3)中,根据步骤2)得到的基波分量相位θ的余弦值与步骤1)平均直流电压控制器输出的交流电压有功分量幅度指令值vCpm *相乘,同时根据步骤2)得到的基波分量相位θ的正弦值与给定的交流电压无功分量幅度指令值vCqm *相乘,将两个乘积相加后叠加交流电压上层指令值vp *得到交流电压指令值vC *;将交流电压指令值vC *减去采样得到的交流电压实际值vC后得到数值为交流电压调节器GVC输入,即可得到各H桥模块交流电流统一指令值iL *。Further, in step 3), the cosine value of the fundamental wave component phase θ obtained according to step 2) is multiplied by the command value v Cpm * of the active component amplitude of the AC voltage output by the average DC voltage controller in step 1), and at the same time according to step 2 ) The sine value of the fundamental wave component phase θ obtained is multiplied by the given AC voltage reactive component amplitude command value v Cqm * , and after adding the two products, superimpose the AC voltage upper layer command value v p * to obtain the AC voltage command value v C * ; Subtract the AC voltage command value v C * from the sampled actual AC voltage value v C to obtain the value as the input of the AC voltage regulator G VC , and then the unified command value i L * of the AC current of each H-bridge module can be obtained .
进一步的,步骤4)中,通过直流电压均衡控制器对各H桥模块直流电压进行采集并计算出它们的平均值然后将平均值分别于各H桥模块直流电压vdck作差,得到各H桥模块直流电压与它们平均值之间偏差,并将这些偏差分别作为各H桥模块直流电压均衡调节器GILT的输入,然后根据步骤2)得到的基波分量相位θ的正弦值与各H桥模块直流电压均衡调节器的输出相乘,即得到各H桥模块交流电流偏差指令值iLdk *。Further, in step 4), the DC voltage of each H-bridge module is collected by the DC voltage equalization controller and their average value is calculated. then average Differentiate the DC voltage v dck of each H-bridge module to obtain the deviation between the DC voltage of each H-bridge module and their average value, and use these deviations as the input of the DC voltage equalization regulator G ILT of each H-bridge module, and then according to Step 2) Multiply the obtained sine value of the phase θ of the fundamental wave component by the output of each H-bridge module DC voltage equalizer to obtain the AC current deviation command value i Ldk * of each H-bridge module.
一种交流系统并联H桥型变流器的均压控制系统,包括平均直流电压控制器、锁相环、交流电压控制器、直流电压均衡控制器、交流电流控制器和脉宽调制器,平均直流电压控制器的输出端连接至交流电压控制器的输入端,锁相环的输出端连接至交流电压控制器的输入端和直流电压均衡控制器的输入端,交流电压控制器的输出端和直流电压均衡控制器的输出端均连接至交流电流控制器的输入端,交流电流控制器与脉宽调制器连接;A voltage equalization control system for an AC system paralleled H-bridge type converters, comprising an average DC voltage controller, a phase-locked loop, an AC voltage controller, a DC voltage balance controller, an AC current controller and a pulse width modulator. The output end of the DC voltage controller is connected to the input end of the AC voltage controller, the output end of the phase-locked loop is connected to the input end of the AC voltage controller and the input end of the DC voltage balance controller, the output end of the AC voltage controller and the The output terminals of the DC voltage equalization controller are all connected to the input terminals of the AC current controller, and the AC current controller is connected to the pulse width modulator;
平均直流电压控制器用于获取交流电压有功分量幅度指令值vCpm *,The average DC voltage controller is used to obtain the command value v Cpm * of the active component amplitude of the AC voltage,
锁相环用于获取系统电流iS的基波分量相位θ,The phase-locked loop is used to obtain the phase θ of the fundamental component of the system current i S ,
交流电压控制器用于获取各H桥模块交流电流统一指令值iL *,The AC voltage controller is used to obtain the unified command value i L * of the AC current of each H-bridge module,
直流电压均衡控制器用于获取各H桥模块交流电流偏差指令值iLdk *;The DC voltage equalization controller is used to obtain the AC current deviation command value i Ldk * of each H-bridge module;
脉宽调制器用于将各H桥模块控制占空比转换为相应H桥模块内部功率半导体器件的通断控制信号。The pulse width modulator is used to convert the control duty ratio of each H-bridge module into an on-off control signal of the power semiconductor device inside the corresponding H-bridge module.
进一步的,交流电流控制器和脉宽调制器均与H桥模块一一对应连接。Further, the AC current controller and the pulse width modulator are connected with the H bridge module in one-to-one correspondence.
与现有技术相比,本发明具有以下有益的技术效果:Compared with the prior art, the present invention has the following beneficial technical effects:
本发明提供了一种交流系统并联H桥型变流器的均压控制方法,通过在交流电压控制器中引入无功分量指令值,同时在直流电压均衡控制器中将各H桥模块直流侧电压偏差生成无功电流偏差,从而在不影响整个变流器总有功功率的条件下实现各H桥模块之间有功功率的重新分配,进而实现各H桥模块直流侧电压的均衡控制,由于该方法可对交流电压无功分量电压指令值进行设计以调节各模块之间有功功率偏差的大小,因而能确保在系统电流幅度全范围内实现各模块直流电压均衡,本发明无需直流侧额外电阻,因而能降低装置体积且提高系统效率,具有良好的应用前景。The invention provides a voltage equalization control method of an AC system paralleled H-bridge type converters. By introducing a reactive component command value into an AC voltage controller, and at the same time, in the DC voltage equalization controller, the DC side of each H-bridge module is connected. The voltage deviation generates reactive current deviation, so that the active power redistribution between the H-bridge modules can be realized without affecting the total active power of the entire converter, and the balanced control of the DC side voltage of each H-bridge module is realized. The method can design the voltage command value of the AC voltage reactive power component to adjust the size of the active power deviation between the modules, thus ensuring that the DC voltage balance of each module can be achieved within the full range of the system current range, and the present invention does not require additional resistance on the DC side, Therefore, the volume of the device can be reduced and the system efficiency can be improved, which has a good application prospect.
附图说明Description of drawings
图1为并联H桥型变流器的主电路图。Fig. 1 is the main circuit diagram of the parallel H-bridge type converter.
图2为本发明控制系统总体结构。Fig. 2 is the overall structure of the control system of the present invention.
图3为本发明平均直流电压控制器内部结构。FIG. 3 is the internal structure of the average DC voltage controller of the present invention.
图4为本发明交流电压控制器内部结构。FIG. 4 is the internal structure of the AC voltage controller of the present invention.
图5为本发明直流电压均衡控制器内部结构。FIG. 5 is the internal structure of the DC voltage equalization controller of the present invention.
图6为本发明交流电流控制器内部结构。FIG. 6 is the internal structure of the AC current controller of the present invention.
图7为采用本发明提出的均压控制方法的实验波形图。FIG. 7 is an experimental waveform diagram of the voltage equalization control method proposed by the present invention.
图8为采用现有控制方法的实验波形图。FIG. 8 is an experimental waveform diagram using the existing control method.
具体实施方式Detailed ways
下面结合附图对本发明做进一步详细描述:Below in conjunction with accompanying drawing, the present invention is described in further detail:
如图1所示,并联H桥型变流器包括N个并联的H桥模块,N不小于2,各H桥模块内部由四个4只带反并联二极管的全控型功率半导体器件连接构成,各H桥模块直流侧连接至各自的直流电容Ck,交流侧通过电感Lk并联后连接至输出端口,同时在输出端口并联交流电容Cp;并联H桥型变流器串联在交流系统中,系统电流从其一个输出端子流入并从其另一个端子流出。As shown in Figure 1, the parallel H-bridge converter includes N parallel H-bridge modules, N is not less than 2, and each H-bridge module is composed of four fully-controlled power semiconductor devices with anti-parallel diodes connected inside. , the DC side of each H-bridge module is connected to its own DC capacitor C k , the AC side is connected to the output port in parallel through the inductor L k , and the AC capacitor C p is connected in parallel at the output port; the parallel H-bridge converter is connected in series in the AC system , the system current flows in from one of its output terminals and flows out from the other.
如图2至图6所示,一种并联H桥型变流器控制系统,包括平均直流电压控制器、锁相环、交流电压控制器、直流电压均衡控制器、交流电流控制器和脉宽调制器,平均直流电压控制器的输出端连接至交流电压控制器的输入端,锁相环的输出端连接至交流电压控制器的输入端和直流电压均衡控制器的输入端,交流电压控制器的输出端和直流电压均衡控制器的输出端均连接至交流电流控制器的输入端,交流电流控制器与脉宽调制器连接,脉宽调制器用于将各H桥模块控制占空比转换为相应H桥模块内部功率半导体器件的通断控制信号,交流电流控制器和脉宽调制器均与H桥模块一对一连接;As shown in Figures 2 to 6, a parallel H-bridge converter control system includes an average DC voltage controller, a phase-locked loop, an AC voltage controller, a DC voltage balance controller, an AC current controller and a pulse width controller. A modulator, the output terminal of the average DC voltage controller is connected to the input terminal of the AC voltage controller, the output terminal of the phase-locked loop is connected to the input terminal of the AC voltage controller and the input terminal of the DC voltage balance controller, the AC voltage controller The output terminal of the DC voltage equalization controller and the output terminal of the DC voltage equalization controller are both connected to the input terminal of the AC current controller, and the AC current controller is connected to the pulse width modulator. The pulse width modulator is used to convert the control duty ratio of each H-bridge module into Corresponding on-off control signals of power semiconductor devices inside the H-bridge module, AC current controller and pulse width modulator are all connected one-to-one with the H-bridge module;
平均直流电压控制器用于获取交流电压有功分量幅度指令值vCpm *,The average DC voltage controller is used to obtain the command value v Cpm * of the active component amplitude of the AC voltage,
锁相环用于获取系统电流iS的基波分量相位θ,The phase-locked loop is used to obtain the phase θ of the fundamental component of the system current i S ,
交流电压控制器用于获取各H桥模块交流电流统一指令值iL *,The AC voltage controller is used to obtain the unified command value i L * of the AC current of each H-bridge module,
直流电压均衡控制器用于获取各H桥模块交流电流偏差指令值iLdk *,The DC voltage balance controller is used to obtain the AC current deviation command value i Ldk * of each H-bridge module,
脉宽调制器用于将各H桥模块控制占空比转换为相应H桥模块内部功率半导体器件的通断控制信号。The pulse width modulator is used to convert the control duty ratio of each H-bridge module into an on-off control signal of the power semiconductor device inside the corresponding H-bridge module.
一种交流系统并联H桥型变流器的均压控制方法,包括以下步骤:A voltage equalization control method for an AC system paralleled H-bridge type converter, comprising the following steps:
步骤1)、通过平均直流电压控制器得到交流电压有功分量幅度指令值vCpm *;Step 1), obtain the AC voltage active component amplitude command value v Cpm * through the average DC voltage controller;
步骤2)、通过锁相环获取系统电流iS的基波分量相位θ的余弦值和正弦值;Step 2), obtain the cosine value and the sine value of the fundamental component phase θ of the system current i S by the phase-locked loop;
步骤3)、通过交流电压控制器根据步骤1)得到的交流电压有功分量幅度指令值以及步骤2)得到的基波分量相位θ的余弦值和正弦值得到各H桥模块交流电流统一指令值iL *;Step 3), through the AC voltage controller according to the AC voltage active component amplitude command value obtained in step 1) and the cosine value and sine value of the fundamental wave component phase θ obtained in step 2) to obtain each H-bridge module AC current unified command value i L * ;
步骤4)、通过直流电压均衡控制器得到各H桥模块交流电流偏差指令值iLdk *;Step 4), obtain each H-bridge module AC current deviation command value i Ldk * through the DC voltage equalization controller;
步骤5)、将交流电压控制器输出的交流电流统一指令值iL *与直流电压均衡控制器输出的交流电流偏差指令值iLdk *加和后得到相应H桥模块交流电流指令值iLk *;然后将iLk *与相应H桥模块实际交流电流iLk作差后作为交流电流调节器输入,其输出为相应H桥模块占空比dk,输入至连接于各H桥模块的脉宽调制器,即可实现H桥型变流器的均压控制。Step 5), adding the AC current unified command value i L * output by the AC voltage controller and the AC current deviation command value i Ldk * output by the DC voltage equalization controller to obtain the corresponding H bridge module AC current command value i Lk * ; Then the difference between i Lk * and the actual AC current i Lk of the corresponding H-bridge module is used as the input of the AC current regulator, and its output is the duty cycle d k of the corresponding H-bridge module, which is input to the pulse width connected to each H-bridge module The modulator can realize the voltage equalization control of the H-bridge converter.
步骤1)中,首先通过平均直流电压控制器采集各H桥模块直流侧电压vdck,然后经过平均直流电压控制器中的AVE模块计算出各H桥模块直流侧电压vdck的平均值将直流电压指令值vdc *与平均值作差后作为直流电压调节器GVDC的输入,进而得到交流电压有功分量幅度指令值vCpm *;In step 1), first collect the DC side voltage v dck of each H bridge module through the average DC voltage controller, and then calculate the average value of the DC side voltage v dck of each H bridge module through the AVE module in the average DC voltage controller. Compare the DC voltage command value v dc * with the average value After the difference, it is used as the input of the DC voltage regulator G VDC , and then obtains the command value v Cpm * of the amplitude of the active component of the AC voltage;
直流电压调节器GVDC采用比例积分调节器;DC voltage regulator G VDC adopts proportional integral regulator;
步骤2)中,锁相环采集系统电流,滤除其中噪声,输出系统电流基波分量相位θ;In step 2), the phase-locked loop collects the system current, filters out the noise, and outputs the phase θ of the fundamental wave component of the system current;
iS1=ISm cosθi S1 =I Sm cosθ
其中iS1为系统电流基波分量瞬时值,ISm为基波电流幅度。Among them, i S1 is the instantaneous value of the fundamental wave component of the system current, and I Sm is the amplitude of the fundamental wave current.
步骤2)中,通过锁相环获取系统电流iS的基波分量相位θ,并计算出基波分量相位θ的余弦值和正弦值;In step 2), the fundamental wave component phase θ of the system current i S is obtained by the phase-locked loop, and the cosine value and the sine value of the fundamental wave component phase θ are calculated;
步骤3)中,根据步骤2)得到的基波分量相位θ的余弦值与步骤1)平均直流电压控制器输出的交流电压有功分量幅度指令值vCpm *相乘,同时根据步骤2)得到的基波分量相位θ的正弦值与给定的交流电压无功分量幅度指令值vCqm *相乘,将两个乘积相加后叠加交流电压上层指令值vp *得到交流电压指令值vC *;将交流电压指令值vC *减去采样得到的交流电压实际值vC后得到数值为交流电压调节器GVC输入,即可得到各H桥模块交流电流统一指令值iL *;In step 3), the cosine value of the fundamental wave component phase θ obtained according to step 2) is multiplied by the command value v Cpm * of the active component amplitude of the AC voltage outputted by the average DC voltage controller in step 1), and at the same time according to step 2) The sine value of the fundamental wave component phase θ is multiplied by the given AC voltage reactive component amplitude command value v Cqm * , and after adding the two products, the AC voltage upper layer command value v p * is superimposed to obtain the AC voltage command value v C * ; After subtracting the AC voltage command value v C * from the sampled actual AC voltage value v C , the value obtained is the input of the AC voltage regulator G VC , and the unified command value i L * of the AC current of each H-bridge module can be obtained;
步骤4)中,通过直流电压均衡控制器对各H桥模块直流电压进行采集并计算出它们的平均值然后将平均值分别于各H桥模块直流电压vdck作差,得到各H桥模块直流电压与它们平均值之间偏差,并将这些偏差分别作为各H桥模块直流电压均衡调节器GILT的输入,然后根据步骤2)得到的基波分量相位θ的正弦值与各H桥模块直流电压均衡调节器的输出相乘,即得到各H桥模块交流电流偏差指令值iLdk *;In step 4), the DC voltage of each H-bridge module is collected by the DC voltage equalization controller and their average value is calculated then average Differentiate the DC voltage v dck of each H-bridge module to obtain the deviation between the DC voltage of each H-bridge module and their average value, and use these deviations as the input of the DC voltage equalization regulator G ILT of each H-bridge module, and then according to Step 2) Multiplying the sine value of the obtained fundamental wave component phase θ with the output of each H-bridge module DC voltage equalization regulator to obtain each H-bridge module AC current deviation command value i Ldk * ;
如图7、图8所示,对本发明所提出控制方法与传统控制方法在相同系统电流条件下进行了实验测试,测试中系统电流基波幅度为24A,系统基波频率为60Hz,直流电压指令值vdc *为130V,利用四通道示波器测量得到时域波形图,图7为采用本发明所提控制方法的波形图,图8为采用传统控制方法的波形图,图中通道1为#1H桥模块直流电压vdc1,通道2为#2H桥模块直流电压vdc2,通道3为交流电压vC,通道4为系统电流iS;As shown in Figures 7 and 8, the control method proposed by the present invention and the traditional control method were tested experimentally under the same system current conditions. During the test, the system current fundamental wave amplitude was 24A, the system fundamental wave frequency was 60Hz, and the DC voltage command was The value v dc * is 130V, and a four-channel oscilloscope is used to measure the time-domain waveform diagram. Figure 7 is the waveform diagram of the control method proposed by the present invention, and Figure 8 is the waveform diagram of the traditional control method.
从实验测试波形可以看出,传统控制方法下模块直流电压明显不均衡,直流电压之间偏差超出10V,而采用本发明的控制方法,直流电压之间偏差可以忽略,很好地实现了直流电压均衡。It can be seen from the experimental test waveforms that under the traditional control method, the DC voltage of the modules is obviously unbalanced, and the deviation between the DC voltages exceeds 10V. With the control method of the present invention, the deviation between the DC voltages can be ignored, and the DC voltage is well realized. balanced.
Claims (7)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201810141406.XA CN108322076B (en) | 2018-02-11 | 2018-02-11 | Voltage-sharing control system and method for parallel H-bridge type converter of alternating current system |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201810141406.XA CN108322076B (en) | 2018-02-11 | 2018-02-11 | Voltage-sharing control system and method for parallel H-bridge type converter of alternating current system |
Publications (2)
Publication Number | Publication Date |
---|---|
CN108322076A CN108322076A (en) | 2018-07-24 |
CN108322076B true CN108322076B (en) | 2020-03-17 |
Family
ID=62903699
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201810141406.XA Active CN108322076B (en) | 2018-02-11 | 2018-02-11 | Voltage-sharing control system and method for parallel H-bridge type converter of alternating current system |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN108322076B (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN114070028B (en) * | 2021-11-19 | 2023-09-22 | 新风光电子科技股份有限公司 | Voltage equalizing control method of cascaded bidirectional converter device |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH11112301A (en) * | 1997-10-03 | 1999-04-23 | Toyota Autom Loom Works Ltd | Power circuit |
CN101295877A (en) * | 2008-06-05 | 2008-10-29 | 上海交通大学 | Offshore Wind Power Flexible DC Transmission Converter Control System |
CN102522749A (en) * | 2011-11-10 | 2012-06-27 | 中冶华天工程技术有限公司 | H-bridge cascaded active power filter and control method thereof |
JP2013255308A (en) * | 2012-06-05 | 2013-12-19 | Toshiba Corp | Semiconductor power conversion device |
CN103944403A (en) * | 2014-05-09 | 2014-07-23 | 北京四方继保自动化股份有限公司 | Dynamic voltage-sharing control method for power module of chained multi-level converter |
-
2018
- 2018-02-11 CN CN201810141406.XA patent/CN108322076B/en active Active
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH11112301A (en) * | 1997-10-03 | 1999-04-23 | Toyota Autom Loom Works Ltd | Power circuit |
CN101295877A (en) * | 2008-06-05 | 2008-10-29 | 上海交通大学 | Offshore Wind Power Flexible DC Transmission Converter Control System |
CN102522749A (en) * | 2011-11-10 | 2012-06-27 | 中冶华天工程技术有限公司 | H-bridge cascaded active power filter and control method thereof |
JP2013255308A (en) * | 2012-06-05 | 2013-12-19 | Toshiba Corp | Semiconductor power conversion device |
CN103944403A (en) * | 2014-05-09 | 2014-07-23 | 北京四方继保自动化股份有限公司 | Dynamic voltage-sharing control method for power module of chained multi-level converter |
Also Published As
Publication number | Publication date |
---|---|
CN108322076A (en) | 2018-07-24 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN105071405B (en) | Micro-grid system with unbalanced nonlinear loads and Power balance control method | |
CN102545227B (en) | Phase-sequence-identification-based adaptive control method for active power filter | |
CN111682542B (en) | Harmonic coupling external characteristic prediction method of three-phase rectification circuit | |
CN111740454B (en) | A unified AC and DC voltage control method for hybrid microgrid based on bus interface converter | |
CN102593851A (en) | PWM rectifier control method under unbalanced power grid voltage based on power instruction compensation | |
CN107732921B (en) | Electric energy quality composite control device based on nine-switch-tube inverter and working method | |
CN106374530B (en) | A kind of circulation inhibition method of parallel running current transformer | |
CN104682407A (en) | Load imbalance compensation system comprising amplitude-limiting controller and amplitude-limiting compensation method | |
CN105322770A (en) | Secondary ripple current suppression method for direct current micro-grid two-way energy storage converters | |
CN116087623A (en) | Method and device for measuring overall impedance of new energy grid-connected system | |
CN108322076B (en) | Voltage-sharing control system and method for parallel H-bridge type converter of alternating current system | |
CN104037802B (en) | A kind of photovoltaic combining inverter control method based on LPRC-NLPI composite controller | |
CN103743931A (en) | High-power grid voltage simulation circuit | |
CN115236404B (en) | Grid-connected inverter port impedance self-measurement method | |
CN112098918A (en) | Direct current electric energy meter calibrating device and method applied to working condition with larger direct current ripple factor | |
CN109802405A (en) | Inverter resonance suppressing method based on network voltage abnormality feedback | |
CN206892704U (en) | A kind of AC constant-current source | |
Wu et al. | Frequency characteristic and impedance analysis on three-phase grid-connected inverters based on DDSRF-PLL | |
CN110426649A (en) | The single-phase test method and system of cascade converter submodule | |
CN108879739A (en) | A kind of three-phase imbalance regulating device | |
CN105471120B (en) | The current constant control and circulation inhibition method of the inductive electric energy transmission system of multi-inverter parallel | |
CN115173441A (en) | Voltage control method and device based on direct-current power distribution mode and storage medium | |
CN204408202U (en) | The power source special of composite electromagnetic constraint vibration device | |
CN206460083U (en) | A kind of numerical control variable frequency test power device tested for large ground network | |
CN103187891B (en) | The carrier wave amplitude adjustment control system of single-phase controllable rectifier |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant | ||
TR01 | Transfer of patent right | ||
TR01 | Transfer of patent right |
Effective date of registration: 20230711 Address after: Room 101, 1st Floor, South Cross, Tianhong Park, No. 25 Biyuan 1st Road, High tech Zone, Xi'an City, Shaanxi Province, 710199 Patentee after: Xi'an Singularity Energy Co.,Ltd. Address before: Beilin District Xianning West Road 710049, Shaanxi city of Xi'an province No. 28 Patentee before: XI'AN JIAOTONG University |