CN108319772A - A kind of analysis method again of wave long term data - Google Patents
A kind of analysis method again of wave long term data Download PDFInfo
- Publication number
- CN108319772A CN108319772A CN201810076619.9A CN201810076619A CN108319772A CN 108319772 A CN108319772 A CN 108319772A CN 201810076619 A CN201810076619 A CN 201810076619A CN 108319772 A CN108319772 A CN 108319772A
- Authority
- CN
- China
- Prior art keywords
- data
- wave
- altimeter
- time
- space
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 230000007774 longterm Effects 0.000 title claims abstract description 39
- 238000004458 analytical method Methods 0.000 title abstract description 11
- 238000004088 simulation Methods 0.000 claims abstract description 64
- 238000000034 method Methods 0.000 claims abstract description 55
- 238000012950 reanalysis Methods 0.000 claims abstract description 38
- 230000001360 synchronised effect Effects 0.000 claims abstract description 16
- 238000012937 correction Methods 0.000 claims description 27
- 230000002123 temporal effect Effects 0.000 claims description 9
- 238000007619 statistical method Methods 0.000 claims description 2
- 238000012545 processing Methods 0.000 abstract description 8
- 238000011160 research Methods 0.000 abstract description 4
- 238000004364 calculation method Methods 0.000 description 3
- 238000010276 construction Methods 0.000 description 3
- 230000010354 integration Effects 0.000 description 3
- 238000012360 testing method Methods 0.000 description 3
- 230000007613 environmental effect Effects 0.000 description 2
- OMPJBNCRMGITSC-UHFFFAOYSA-N Benzoylperoxide Chemical compound C=1C=CC=CC=1C(=O)OOC(=O)C1=CC=CC=C1 OMPJBNCRMGITSC-UHFFFAOYSA-N 0.000 description 1
- 101100423891 Caenorhabditis elegans qars-1 gene Proteins 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 239000003653 coastal water Substances 0.000 description 1
- 230000007812 deficiency Effects 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 230000009897 systematic effect Effects 0.000 description 1
- 229940060894 topex Drugs 0.000 description 1
Classifications
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F30/00—Computer-aided design [CAD]
- G06F30/20—Design optimisation, verification or simulation
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F17/00—Digital computing or data processing equipment or methods, specially adapted for specific functions
- G06F17/10—Complex mathematical operations
- G06F17/18—Complex mathematical operations for evaluating statistical data, e.g. average values, frequency distributions, probability functions, regression analysis
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02A—TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
- Y02A90/00—Technologies having an indirect contribution to adaptation to climate change
- Y02A90/10—Information and communication technologies [ICT] supporting adaptation to climate change, e.g. for weather forecasting or climate simulation
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Theoretical Computer Science (AREA)
- Data Mining & Analysis (AREA)
- Mathematical Physics (AREA)
- Computational Mathematics (AREA)
- General Engineering & Computer Science (AREA)
- Pure & Applied Mathematics (AREA)
- Mathematical Optimization (AREA)
- Mathematical Analysis (AREA)
- Bioinformatics & Computational Biology (AREA)
- Life Sciences & Earth Sciences (AREA)
- Evolutionary Biology (AREA)
- Geometry (AREA)
- Probability & Statistics with Applications (AREA)
- Operations Research (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Computer Hardware Design (AREA)
- Algebra (AREA)
- Evolutionary Computation (AREA)
- Databases & Information Systems (AREA)
- Software Systems (AREA)
- Geophysics And Detection Of Objects (AREA)
- Management, Administration, Business Operations System, And Electronic Commerce (AREA)
Abstract
本发明涉及一种波浪长期模拟数据的再分析方法,包括以下步骤:构建基于卫星高度计的波浪要素(有效波高和平均周期)长期观测数据和基于波浪数值模式的波浪要素长期模拟后报数据,并对两者进行时空配准;利用时空同步数据对波浪后报数据进行分析校正,得到波浪要素的再分析数据。本发明提出了一种应用于波浪要素长期模拟后报数据的新型再分析方法,相较常用的数据同化方法,该发明方法处理效率高,集成观测数据灵活,尤其适用于对波浪要素长期后报模拟数据的处理,可为波浪要素的气候变率、年际变化和海洋工程环境研究分析提供有力支持。
The invention relates to a method for reanalyzing long-term wave simulation data, comprising the following steps: constructing long-term observation data of wave elements (effective wave height and average period) based on a satellite altimeter and long-term simulation post-report data of wave elements based on a wave numerical model, and The time-space registration is carried out on the two; the time-space synchronous data is used to analyze and correct the wave post-report data to obtain the re-analysis data of the wave elements. The present invention proposes a new reanalysis method applied to long-term simulation post-report data of wave elements. Compared with commonly used data assimilation methods, the inventive method has high processing efficiency and flexible integrated observation data, and is especially suitable for long-term post-report of wave elements. The processing of simulated data can provide strong support for the research and analysis of climate variability, interannual variation of wave elements and marine engineering environment.
Description
技术领域technical field
本发明涉及一种数据再分析方法,具体地说,是一种波浪长期模拟数据的再分析方法。The invention relates to a data reanalysis method, in particular to a reanalysis method for long-term wave simulation data.
背景技术Background technique
气候变化对海洋动力环境和人类生活生产安全产生有重要影响,其中波浪是海洋动力环境的主要动力过程之一,获取高质量、高分辨率、连续的波浪要素(包括有效波高、平均周期)长期历史数据对研究波浪长期变化趋势,年际变化规律以及用于海洋工程设计的波浪要素极值推算至关重要。目前获取波浪长期数据的技术手段包括定点观测,卫星高度计观测和波浪数值模式。定点观测主要基于浮标观测,其空间分布极为有限,在空间上不具有代表性;卫星高度计观测手段已经积累了超过30年(1985至今)的全球波浪要素数据,但由于其采用极轨模式的星下点观测,数据时空分辨率很低,且对于某一空间位置在时间上不连续。海浪数值模式可以获取高分辨率、时空连续的波浪要素长期模拟数据,但是其数据质量受模式物理机制可靠性、风场和地形场精度的影响较大。Climate change has an important impact on the marine dynamic environment and the safety of human life and production. Waves are one of the main dynamic processes in the marine dynamic environment. Obtaining high-quality, high-resolution, and continuous wave elements (including effective wave height and average period) for a long-term Historical data is crucial to the study of long-term wave trends, interannual changes, and extreme value calculations of wave elements used in ocean engineering design. At present, the technical means of obtaining long-term wave data include fixed-point observation, satellite altimeter observation and wave numerical model. Fixed-point observations are mainly based on buoy observations, whose spatial distribution is extremely limited and not spatially representative; satellite altimeter observations have accumulated more than 30 years (1985-present) For observation at the next point, the temporal and spatial resolution of the data is very low, and for a certain spatial position, it is discontinuous in time. Numerical models of ocean waves can obtain long-term simulation data of wave elements with high resolution and continuous time and space, but the quality of the data is greatly affected by the reliability of the model's physical mechanism and the accuracy of wind and terrain fields.
再分析方法是利用客观分析方法,利用观测数据对数值模拟数据进行分析校正;其中,数据同化方法最为常用,它是在考虑数据时空分布以及观测场和背景场误差的基础上,在数值模型的动态运行过程中融合新的观测数据的方法。数据同化通常应用在波浪要素预报上,它可以为下一时段的预报提供最优初始条件和模式参数。但是它处理数据计算成本高,不利于获取波浪要素的长期后报数据。目前已公开发布的有欧洲天气预报中心的波浪要素再分析数据,它主要基于波浪数值模式模拟波浪要素,并通过四维变分同化方法用卫星高度计数据对数值模式数据进行校正,其同化了1991年以来发射的12个卫星高度计中的6个高度计数据产品。已有研究报告表明,该波浪再分析数据可以很好地描述波浪要素的气候变率,但是其给出的波浪有效波高整体偏低,特别是高风速情形,这可能与使用的卫星高度计数据有限或同化方法有效性有关,而由于同化方法的技术限制,决定了其无法快速的使用其它高度计观测数据进行更新优化。The reanalysis method is to use the objective analysis method to analyze and correct the numerical simulation data by using the observation data; among them, the data assimilation method is the most commonly used method, which is based on the consideration of the temporal and spatial distribution of data and the errors of the observation field and the background field, and in the numerical model. A method for fusing new observational data during dynamic operation. Data assimilation is usually applied to the forecast of wave elements, which can provide the optimal initial conditions and model parameters for the forecast of the next period. However, it is expensive to process data and is not conducive to obtaining long-term posterior data of wave elements. At present, the reanalysis data of the wave elements of the European Weather Forecasting Center has been publicly released. It is mainly based on the wave numerical model to simulate the wave elements, and uses the four-dimensional variational assimilation method to correct the numerical model data with satellite altimeter data. It assimilates the 1991 6 altimeter data products out of 12 satellite altimeters launched since. Previous research reports have shown that the wave reanalysis data can well describe the climate variability of wave elements, but the effective wave heights given by it are generally low, especially in the case of high wind speed, which may be due to the limited satellite altimeter data used. Or the effectiveness of the assimilation method, but due to the technical limitations of the assimilation method, it is determined that it cannot be updated and optimized quickly using other altimeter observation data.
因此,需要发展一种针对波浪长期模拟数据的,分析处理效率更高,对观测数据集成更为灵活的技术方法,以满足波浪要素的气候变率、年际变化和海洋工程环境影响等方面的数据需求。Therefore, it is necessary to develop a technical method for long-term wave simulation data, with higher analysis and processing efficiency and more flexible integration of observation data, so as to meet the requirements of climate variability, interannual change of wave elements, and ocean engineering environmental impact. data requirements.
发明内容Contents of the invention
针对已有技术不足,本发明的目的是提供一种波浪长期模拟数据的再分析方法。相较数据同化方法主要用于波浪要素的模拟预报,该方法主要应用于波浪要素的长期模拟后报数据,具有分析处理效率高,集成观测数据灵活的优点。Aiming at the deficiencies of the prior art, the purpose of the present invention is to provide a reanalysis method for long-term wave simulation data. Compared with the data assimilation method, which is mainly used for the simulation forecast of wave elements, this method is mainly used for the long-term simulation and forecast data of wave elements, which has the advantages of high analysis and processing efficiency and flexible integration of observation data.
为实现上述发明目的,本发明采用下述技术方案予以实现:一种波浪长期模拟数据的再分析方法,包括以下步骤:In order to achieve the above-mentioned purpose of the invention, the present invention adopts the following technical solutions to achieve: a method for reanalyzing wave long-term simulation data, comprising the following steps:
1)构建基于卫星高度计的波浪要素观测数据和基于波浪数值模式的波浪要素模拟数据,并对两者进行时空配准,得到波浪要素的时空同步数据;1) Construct the observation data of wave elements based on satellite altimeter and the simulated data of wave elements based on wave numerical model, and perform temporal and spatial registration on the two to obtain the temporal and spatial synchronization data of wave elements;
2)利用时空同步数据对波浪要素模拟数据进行分析校正,得到波浪要素的再分析数据。2) The simulated data of the wave element is analyzed and corrected by using the space-time synchronous data to obtain the reanalysis data of the wave element.
所述步骤1)包括以下步骤:Described step 1) comprises the following steps:
获取基于波浪数值模式的波浪要素模拟数据;Obtain the wave element simulation data based on the wave numerical model;
对各卫星高度计波浪要素观测数据进行校正和网格化;Correct and grid the observation data of wave elements of each satellite altimeter;
对波浪要素模拟数据和卫星高度计波浪要素观测数据进行时空配准和同步,得到时空同步数据。Time-space registration and synchronization are performed on the wave element simulation data and the satellite altimeter wave element observation data to obtain time-space synchronization data.
所述对各卫星高度计波浪要素观测数据进行校正和网格化包括以下步骤:Correcting and gridding the wave element observation data of each satellite altimeter includes the following steps:
选取单个卫星高度计的波浪要素观测数据,对于某一时刻任意一个浮标的波浪要素观测数据,其与空间间隔小于设定长度、且时间间隔小于设定时间的高度计波浪要素观测数据的平均值作为时空同步数据;Select the wave element observation data of a single satellite altimeter. For the wave element observation data of any buoy at a certain moment, the average value of the wave element observation data of the altimeter whose space interval is less than the set length and time interval is less than the set time is taken as the space-time Synchronous Data;
对单个卫星的时空同步数据进行线性拟合;不同的卫星高度计得到不同的线性拟合关系,即浮标观测的波浪要素观测数据与高度计观测的波浪要素观测数据间的拟合关系;Linear fitting is performed on the time-space synchronization data of a single satellite; different satellite altimeters obtain different linear fitting relationships, that is, the fitting relationship between the wave element observation data observed by the buoy and the wave element observation data observed by the altimeter;
应用拟合关系对多个高度计进行逐一校正,得到校正后的高度计波浪要素数据;Apply the fitting relationship to correct multiple altimeters one by one to obtain the corrected altimeter wave element data;
对应网格化的模拟数据,将高度计数据划分到不同的网格内:对任意一个高度计的观测位置,选取与其空间距离最小的模拟数据网格点,将其划分到该网格点下;对同一网格点,时间跨度不超过设定值的高度计波浪要素观测数据进行代数平均,得到该时刻下高度计波浪要素的网格化数据。Corresponding to the gridded simulation data, divide the altimeter data into different grids: for any observation position of the altimeter, select the grid point of the simulation data with the smallest spatial distance to it, and divide it into the grid point; At the same grid point, the altimeter wave element observation data whose time span does not exceed the set value is algebraically averaged to obtain the gridded data of the altimeter wave element at this moment.
所述对波浪要素模拟数据和卫星高度计波浪要素观测数据进行时空配准和同步,得到时空同步数据包括以下步骤:The described wave element simulation data and satellite altimeter wave element observation data are carried out time-space registration and synchronization, and obtaining time-space synchronization data includes the following steps:
根据网格化的模拟数据和高度计波浪要素的网格化数据,对两者进行时空配准:对应某一时刻的高度计波浪要素的网格数据,选取模拟数据中与之最为接近的数据点,最终得到两者的波浪要素时空同步数据组;每一个高度计网格数据点都得到对应同步的模拟数据点;所有的数据组合形成时空同步数据。According to the gridded simulation data and the gridded data of the altimeter wave elements, the two are space-time registered: corresponding to the grid data of the altimeter wave elements at a certain moment, select the closest data point in the simulated data, Finally, the time-space synchronization data set of the wave elements of the two is obtained; each altimeter grid data point obtains a corresponding synchronization simulation data point; all data are combined to form time-space synchronization data.
所述步骤2)包括以下步骤:Described step 2) comprises the following steps:
基于时空同步数据通过统计分析方法构建校正模型:时空同步数据中,针对单个年、某一网格点下的同步数据子集Bjk,j表示年份,k是网格标号,计算波浪要素模拟数据和高度计观测数据的相关系数,仅当两者的相关系数大于阈值时,认为波浪要素的模拟数据用于后续校正,否则,不用于校正,标记为坏点数据;将用于校正的模拟数据拟合得到Bjk中高度计观测波浪要素和波浪要素模拟数据之间的校正关系;Based on the time-space synchronization data, the correction model is constructed by statistical analysis method: in the time-space synchronization data, for a single year and a subset of synchronization data B jk under a certain grid point, j represents the year, k is the grid label, and the simulated data of the wave element is calculated Only when the correlation coefficient between the two is greater than the threshold value, the simulated data of the wave element is considered to be used for subsequent correction, otherwise, it is not used for correction and marked as bad point data; the simulated data used for correction is simulated Combined to obtain the correction relationship between the altimeter observed wave elements and wave element simulation data in B jk ;
根据校正关系对模拟数据进行校正,得到波浪再分析数据。The simulated data is corrected according to the correction relationship to obtain the wave reanalysis data.
本发明具有以下有益效果及优点:The present invention has the following beneficial effects and advantages:
1.本发明方法应用于波浪要素的长期模拟后报数据,方法简单、快速、有效,可为波浪要素的气候变率、年际变化和海洋工程环境影响等研究提供必要的数据支持。1. The method of the present invention is applied to the long-term simulation post-report data of wave elements. The method is simple, fast and effective, and can provide necessary data support for research on climate variability, interannual variation and ocean engineering environmental impact of wave elements.
2.本发明方法集成观测数据灵活,便于不断提高波浪要素再分析数据的可靠性和精度。2. The method of the present invention integrates the observation data flexibly, and is convenient for continuously improving the reliability and precision of the wave element reanalysis data.
附图说明Description of drawings
图1是本发明应用于波浪长期后报数据的再分析方法的实施流程图;Fig. 1 is the implementation flowchart of the reanalysis method that the present invention is applied to wave long-term post-report data;
图2a是基于多平台融合风场(CCMP)强迫的波浪有效波高模拟后报数据;Fig. 2a is the post-report data of wave significant wave height simulation based on multi-platform combined wind field (CCMP) forcing;
图2b是基于气候预报中心风场(CFSR)强迫的波浪有效波高模拟后报数据;Figure 2b is the simulated aftercast data of wave significant wave height based on the wind field of the Climate Forecast Center (CFSR);
图2c是基于对CCMP波浪有效波高模拟后报的再分析数据;Figure 2c is based on the reanalysis data reported after the simulation of the significant wave height of CCMP waves;
图2d是基于对CFSR波浪有效波高模拟后报的再分析数据;Figure 2d is the reanalysis data based on the simulation of CFSR significant wave height;
图2e是欧洲预报中心发布的基于数据同化的波浪有效波高再分析数据。Figure 2e is the reanalysis data of wave significant wave height based on data assimilation released by the European Forecasting Center.
具体实施方式Detailed ways
下面结合附图和具体实施方式对本发明的技术方案作进一步详细的说明。The technical solutions of the present invention will be further described in detail below in conjunction with the accompanying drawings and specific embodiments.
一种波浪长期模拟数据的再分析方法,包括基于卫星高度计的波浪要素(有效波高和平均周期)长期观测数据构建过程,基于波浪数值模式的波浪要素长期模拟后报数据构建过程,通过时空配准方法获取两者的波浪要素时空同步数据过程,利用波浪要素的时空同步数据分析并构建校正模型过程,利用校正模型对波浪要素的模拟后报数据进行校正优化,得到波浪要素的再分析数据过程。本发明是针对波浪要素长期模拟数据提出的,其分析处理效率高,集成波浪要素观测数据灵活,尤其适用于波浪要素的气候变率、年际变化和海洋工程环境方面的研究。A re-analysis method for long-term wave simulation data, including the construction process of long-term observation data of wave elements (effective wave height and average period) based on satellite altimeter, the construction process of long-term simulation post-report data of wave elements based on wave numerical model, and through space-time registration Methods The process of obtaining the time-space synchronization data of the two wave elements, using the time-space synchronization data of the wave elements to analyze and construct the correction model process, using the correction model to correct and optimize the simulated post-report data of the wave elements, and obtaining the reanalysis data process of the wave elements. The invention is proposed aiming at the long-term simulation data of wave elements, which has high analysis and processing efficiency and flexible integration of wave element observation data, and is especially suitable for research on climate variability, interannual variation and marine engineering environment of wave elements.
如图1所示,一种波浪要素长期数据的再分析方法,包括以下步骤:As shown in Figure 1, a reanalysis method for long-term data of wave elements includes the following steps:
构建基于卫星高度计的波浪要素长期观测数据和基于波浪数值模式的波浪要素长期模拟后报数据,并对两者进行时空配准,得到波浪要素的时空同步数据;Construct the long-term observation data of wave elements based on the satellite altimeter and the long-term simulation post-report data of wave elements based on the wave numerical model, and perform temporal and spatial registration on the two to obtain the temporal and spatial synchronization data of the wave elements;
利用时空同步数据对波浪要素的后报数据进行分析校正,得到波浪要素的再分析数据。Using the space-time synchronous data to analyze and correct the aftercast data of the wave element, the reanalysis data of the wave element is obtained.
所述构建基于卫星高度计的波浪要素长期观测数据和基于波浪数值模式的波浪要素长期后报数据,并对两者进行时空配准,得到波浪要素的时空同步数据包括以下步骤:The long-term observation data of the wave element based on the satellite altimeter and the long-term follow-up data of the wave element based on the wave numerical model are constructed, and the time-space registration is performed on the two, and the time-space synchronization data of the wave element is obtained. The steps include the following steps:
基于波浪数值模式的波浪要素长期数据模拟后报;Post-report of long-term data simulation of wave elements based on wave numerical model;
多卫星高度计波浪要素观测数据校正和网格化;Multi-satellite altimeter wave element observation data correction and gridding;
波浪要素的数值模拟后报数据和卫星高度计观测数据的时空配准和同步数据获取。Space-time registration and synchronous data acquisition of numerical simulation hindcast data of wave elements and satellite altimeter observation data.
所述利用时空同步数据对波浪要素的后报数据进行分析校正,得到波浪要素的再分析数据,包括以下步骤:Said utilizing the space-time synchronous data to analyze and correct the post-report data of the wave element, and obtain the reanalysis data of the wave element, comprising the following steps:
基于波浪要素的时空同步数据,通过分析拟合方法构建校正模型;Based on the time-space synchronization data of wave elements, a correction model is constructed by analysis and fitting method;
利用校正模型对波浪要素的后报数据进行校正,得到波浪要素的再分析数据。The post-report data of the wave element is corrected by using the correction model to obtain the reanalysis data of the wave element.
本实施例具体步骤如下:The specific steps of this embodiment are as follows:
1.基于波浪数值模式的波浪要素(有效波高和平均周期)的长期模拟后报模拟。波浪数值模式可选用目前较为成熟的模式,例如Wavewatch III模式,SWAN模式,WAM模式等。本实施例选用Wavewatch III波浪模式,该模式为公开发布,并且在业务化应用也有较好的表现。使用风场驱动,风场的时空分辨率要求较高,本实施例选用公开发布的高分辨率风场:多平台融合风场(CCMP)和美国气候预报中心风场(CFSR),这两种风场的时间分辨率都是6小时,空间分辨率为0.25°。本实例选用这两种风场分别驱动波浪模式,获取后报模拟结果。模式地形背景场选用美国地球物理中心的公开发布的水深地形数据。本实施例进行波浪要素的后报模拟,模拟时间为1992年1月1日至2010年12月31日,共获取19年的波浪要素后报数据。模拟输出时间间隔为1小时,空间分辨率为1.5°。1. Long-term simulation and forecast simulation of wave elements (significant wave height and average period) based on the wave numerical model. The wave numerical mode can choose the more mature modes at present, such as Wavewatch III mode, SWAN mode, WAM mode and so on. This embodiment selects the Wavewatch III wave mode, which is released publicly and has a good performance in business applications. Driven by a wind field, the temporal and spatial resolution of the wind field is required to be relatively high. In this embodiment, the publicly released high-resolution wind field is selected: Multi-Platform Convergence Wind Field (CCMP) and the US Climate Forecast Center Wind Field (CFSR). The time resolution of the wind field is 6 hours, and the spatial resolution is 0.25°. In this example, these two wind fields are selected to drive the wave mode separately, and the simulation results of the latter report are obtained. The terrain background field of the model uses the publicly released bathymetric terrain data from the US Geophysical Center. In this embodiment, the backward forecast simulation of the wave element is carried out. The simulation time is from January 1, 1992 to December 31, 2010, and a total of 19 years of wave element backward forecast data are obtained. The simulated output time interval is 1 hour and the spatial resolution is 1.5°.
2.多卫星高度计波浪要素观测数据校正和网格化。2. Multi-satellite altimeter wave element observation data correction and gridding.
(1)收集已发射的公开发布的卫星高度计波浪要素(有效波高和平均周期)观测数据,卫星来源包括我国卫星中心的HY-2卫星,欧空局的ERS–1,ERS–2和Envisat卫星,美国空间中心的TOPEX和Jason-1,Jason-2卫星等。高度计采用极轨观测模式,对星下点的波浪要素进行观测,相邻两个星下点的观测时间间隔约为1秒,空间间隔约为6.8公里。(1) Collect observation data of wave elements (significant wave height and average period) of satellite altimeters that have been released publicly. Satellite sources include HY-2 satellite of my country Satellite Center, ERS-1, ERS-2 and Envisat satellites of ESA , TOPEX and Jason-1, Jason-2 satellites of the US Space Center. The altimeter adopts the polar orbit observation mode to observe the wave elements of sub-satellite points. The observation time interval between two adjacent sub-satellite points is about 1 second, and the space interval is about 6.8 kilometers.
(2)虽然卫星高度计的波浪要素反演精度较高,但由于仪器内在设置不同,数据观测精度会存在一定的系统偏差,这对于研究波浪要素的气候变率影响很大,需结合波浪要素的海面浮标观测数据进行校正,目前已有的长期浮标观测数据主要来源于美国国家浮标中心公开发布的浮标观测数据,浮标的选取标准为选取离岸距离大于50km,满足条件的有44个浮标站位。采用通用的校正方法,对多个卫星进行逐一校正。首先进行时空配准:选取单个卫星高度计的波浪要素沿轨观测数据,与海面浮标的波浪要素观测数据进行时空配准,时空配准窗口选为50km和30分钟,时空配准方法为:对于某一时刻任意一个浮标的波浪要素观测数据,其与空间间隔小于50km,且时间间隔小于30分钟的高度计波浪要素观测数据的平均值作为时空同步数据,这样对多个时刻的同步数据可汇总成为同步数据集。这里为了与后文进行区分,将同步数据集称作Ai,其中下标i表示不同的卫星高度计编号。(2) Although the wave element inversion accuracy of the satellite altimeter is high, due to the different internal settings of the instrument, there will be a certain systematic deviation in the data observation accuracy, which has a great impact on the study of the climate variability of the wave element, and it is necessary to combine the wave element The sea surface buoy observation data is corrected. The existing long-term buoy observation data mainly comes from the buoy observation data publicly released by the National Buoy Center of the United States. The selection standard of the buoy is to select an offshore distance greater than 50km, and there are 44 buoy stations that meet the conditions . A common correction method is used to correct multiple satellites one by one. Firstly, space-time registration: select the along-track observation data of wave elements from a single satellite altimeter, and perform space-time registration with the wave element observation data of sea surface buoys. The time-space registration window is selected as 50km and 30 minutes. The time-space registration method is: The wave element observation data of any buoy at a time, and the average value of the altimeter wave element observation data with a space interval of less than 50km and a time interval of less than 30 minutes are used as time-space synchronization data, so that the synchronization data at multiple times can be aggregated into synchronization data set. In order to distinguish it from the following, the synchronous data set is called A i , where the subscript i represents different satellite altimeter numbers.
(3)基于单个卫星的时空同步数据集Ai,通过最小二乘法进行线性拟合:y=gx+h,其中y是浮标观测的波浪有效波高或平均周期数据,x是对应高度计观测的波浪有效波高或平均周期数据,g和h是待定拟合系数。这样不同的卫星高度计可以得到不同的线性拟合关系,并且波浪有效波高和平均周期的拟合关系也不同。应用拟合关系可对多个高度计进行逐一校正:用高度计沿轨观测的波浪有效波高或平均周期数据代入x,得到的y即为校正后的高度计波浪要素数据。(3) Based on the time-space synchronization data set A i of a single satellite, linear fitting is performed by the least square method: y=gx+h, where y is the effective wave height or average period data of the wave observed by the buoy, and x is the wave observed by the corresponding altimeter Significant wave height or average period data, g and h are undetermined fitting coefficients. In this way, different satellite altimeters can obtain different linear fitting relationships, and the fitting relationships between the significant wave height and the average period of the wave are also different. Multiple altimeters can be calibrated one by one by applying the fitting relationship: Substituting the effective wave height or average cycle data observed by the altimeter along the track into x, the obtained y is the corrected altimeter wave element data.
(4)将校正后的多卫星高度计波浪要素观测数据进行网格化处理:对应波浪数值模拟的网格信息,将高度计数据划分到不同的网格内,方法为对任意一个高度计的观测位置,选取与其空间距离最小的数值模式网格点,将其划分到该网格点下。对同一网格点,时间跨度不超过1小时的高度计波浪要素沿轨观测数据进行代数平均,得到该时刻下高度计波浪要素的网格化数据,需要注意的是,对于同一网格点的高度计波浪要素观测数据,其在时间上是不连续的。(4) Carry out grid processing on the corrected multi-satellite altimeter wave element observation data: corresponding to the grid information of wave numerical simulation, divide the altimeter data into different grids. Select the numerical model grid point with the smallest spatial distance to it, and divide it under this grid point. Algebraically average the along-track observation data of the altimeter wave elements with a time span of no more than 1 hour at the same grid point to obtain the gridded data of the altimeter wave elements at this moment. It should be noted that for the altimeter wave elements at the same grid point Feature observation data, which is discontinuous in time.
3.波浪要素的数值模拟后报数据和卫星高度计观测数据的时空配准和同步数据获取。3. Time-space registration and synchronous data acquisition of the numerical simulation data of wave elements and satellite altimeter observation data.
根据步骤1得到的基于数值模式的波浪要素网格化数据,和基于步骤2经过校正的卫星高度计网格化数据,对两者进行时空配准:如步骤2所述,两者的网格空间信息相同,因此这里只需配准时间信息,其中高度计网格数据的时间信息是不连续的,而数值后报数据的时间信息是连续的(1小时间隔),因此,对应某一时刻的高度计网格数据,选取数值后报数据中与之最为接近的数据点,最终得到两者的波浪要素时空同步数据组;每一个高度计网格数据点都会得到对应同步的数值模拟数据点,所有的数据组合形成数据集,这里将该同步数据集称为B。According to the gridded data of wave elements based on the numerical model obtained in step 1 and the corrected satellite altimeter gridded data based on step 2, the space-time registration of the two is carried out: as described in step 2, the grid space of the two The information is the same, so only the time information needs to be registered here. The time information of the altimeter grid data is discontinuous, while the time information of the numerical post-report data is continuous (1 hour interval). Therefore, the altimeter corresponding to a certain moment Grid data, select the closest data point in the reported data after the numerical value, and finally get the space-time synchronization data group of the wave elements of the two; each altimeter grid data point will get the corresponding synchronized numerical simulation data point, all data Combined to form a data set, the synchronized data set is called B here.
4.基于配准波浪要素的时空同步数据集,通过分析拟合方法构建校正模型;4. Based on the space-time synchronization data set of the registered wave elements, the correction model is constructed through the analysis and fitting method;
根据步骤3得到的同步数据集B,进行分析并构建校正模型。在气候变化和工程环境研究中,主要关注年平均或年极值的时空变化过程,因此,需要进行逐年、逐网格的分析校正。首先需要对模式的可靠性进行检验分析:同步数据集B中,针对单个年、某一网格点下的同步数据子集Bjk(下标j表示年份,k是网格标号),计算有效波高或平均周期的数值模拟数据和高度计观测数据的相关系数,仅当两者的相关系数大于0.8时,认为波浪要素的数值模拟数据可靠,可用于后续校正,否则,将不能用于校正,标记为坏点数据;通过相关性检验的数值模拟数据,拟合得到Bjk中高度计观测和数值模拟的有效波高或平均周期之间的模型关系:由于不确定模式数据的误差特征,将采用多种曲线拟合方法,包括多项式拟合、指数拟合、对数拟合等,选取拟合误差最小的作为校正模型,这里以线性拟合为例:y1=px1+q,其中y1是高度计观测的有效波高或平均周期,x1是数值模拟的有效波高或平均周期,p和q是待定模拟系数,可以通过最小二乘法得到。According to the synchronous data set B obtained in step 3, analyze and build a correction model. In the study of climate change and engineering environment, the main focus is on the spatio-temporal change process of the annual average or annual extreme value, therefore, analysis and correction need to be carried out year by year and grid by grid. First of all, it is necessary to test and analyze the reliability of the model: in the synchronous data set B, for a single year and the synchronous data subset B jk under a certain grid point (the subscript j indicates the year, and k is the grid label), the calculation is effective The correlation coefficient between the numerical simulation data of wave height or average period and the observation data of the altimeter, only when the correlation coefficient between the two is greater than 0.8, the numerical simulation data of the wave element is considered reliable and can be used for subsequent corrections, otherwise, it cannot be used for corrections, marked is the bad point data; through the numerical simulation data of the correlation test, the model relationship between the altimeter observation and the numerical simulation significant wave height or average period in B jk is obtained by fitting: due to the error characteristics of the uncertain model data, a variety of Curve fitting methods, including polynomial fitting, exponential fitting, logarithmic fitting, etc., select the one with the smallest fitting error as the calibration model, here we take linear fitting as an example: y 1 =px 1 +q, where y 1 is The significant wave height or average period observed by the altimeter, x 1 is the significant wave height or average period of the numerical simulation, p and q are undetermined simulation coefficients, which can be obtained by the least square method.
5.利用校正模型对波浪要素数值模拟数据进行优化,得到波浪再分析数据。5. Use the correction model to optimize the numerical simulation data of wave elements to obtain wave reanalysis data.
通过步骤4得到的校正模型,对波浪后报结果进行逐年、逐网格校正,这里假设最优校正模型为线性关系,即步骤4的实例:y1’=px1+q,将步骤1得到的波浪有效波高或平均周期模拟数据代入x1,得到的y1’即为波浪再分析数据。Through the correction model obtained in step 4, the wave forecast results are corrected year by year and grid by grid. Here, it is assumed that the optimal correction model is a linear relationship, that is, the example of step 4: y 1 '=px 1 +q, and the obtained Substituting the significant wave height or average period simulation data of the wave into x 1 , the obtained y 1 ' is the wave reanalysis data.
下面将应用本发明方法对波浪长期模拟后报数据进行再分析校正,检验其在计算波浪有效波高气候变率的实际效果。气候变率定义为年平均有效波高的变化趋势。Next, the method of the present invention will be used to reanalyze and correct the post-report data of the long-term wave simulation, and check its actual effect in calculating the climate variability of significant wave height. Climate variability is defined as the trend in the annual mean significant wave height.
图2a-图2e是不同波浪有效波高长期数据计算得到的中国近海波浪年平均有效波高的气候变率,其中“+”代表通过显著性检验。图2a是基于多平台融合风场(CCMP)强迫的波浪有效波高模拟后报数据;图2b是基于气候预报中心风场(CFSR)强迫的波浪有效波高模拟后报数据;图2c是基于对CCMP波浪有效波高模拟后报的再分析数据;图2d是基于对CFSR波浪有效波高模拟后报的再分析数据;图2e是欧洲预报中心发布的基于数据同化的波浪有效波高再分析数据。Figures 2a-2e show the climatic variability of the annual average significant wave height of China's coastal waters calculated from the long-term data of different wave significant wave heights, where "+" means passing the significance test. Figure 2a is the aftercast data of wave significant wave height simulation based on multi-platform combined wind field (CCMP); Figure 2d is the reanalysis data based on the CFSR wave significant wave height simulation forecast; Figure 2e is the wave significant wave height reanalysis data based on data assimilation released by the European Forecasting Center.
如图2a-图2e所示,对比图2a和图2b可以看到,不同风场驱动下的波浪模拟后报数据的有效波高气候变率存在明显的差异,利用本实例提出的再分析方法对它们进行分别校正后,对比图2c和图2d可以看到它们的结果非常相近,并且它们与欧洲预报中心的基于数据同化方法的波浪再分析数据的计算结果也有很好的一致性,从而印证了本发明对波浪长期模拟数据的再分析方法的有效性。As shown in Fig. 2a-Fig. 2e, comparing Fig. 2a and Fig. 2b, it can be seen that there are obvious differences in the significant wave height climate variability of the wave simulation data driven by different wind fields. Using the reanalysis method proposed in this example to analyze After they are corrected separately, comparing Figure 2c and Figure 2d, it can be seen that their results are very similar, and they are also in good agreement with the calculation results of the wave reanalysis data based on the data assimilation method of the European Forecasting Center, thus confirming the Effectiveness of the present invention's reanalysis method for wave long-term simulation data.
在计算效率方面,本文的步骤1的单机单核CPU计算处理时间约为10-15日,其它步骤处理时间约为1-2日,而数据同化方法则需要数月的时间才能完成再分析过程,可以看出本发明方法极大的提高了数据再分析效率,尤其适用于研究气候影响所需要的波浪长期历史数据构建。In terms of computational efficiency, the processing time of single-machine single-core CPU in step 1 of this paper is about 10-15 days, and the processing time of other steps is about 1-2 days, while the data assimilation method takes several months to complete the reanalysis process , it can be seen that the method of the present invention greatly improves the efficiency of data reanalysis, and is especially suitable for the construction of long-term wave historical data required for studying climate impact.
在数据使用上,本实例可灵活使用高度计观测数据,例如:通过本实例的步骤1-6得到再分析数据后,如果能获取新的高度计波浪要素观测数据,可直接在步骤1的基础上,仅重复步骤2-5,即可完成波浪要素模拟数据的再分析过程,快速、有效的生成新的波浪再分析数据,提高数据的可靠性。In terms of data use, this example can flexibly use the altimeter observation data, for example: after obtaining the reanalysis data through steps 1-6 of this example, if you can obtain new altimeter wave element observation data, you can directly use step 1 on the basis of Only by repeating steps 2-5, the reanalysis process of wave element simulation data can be completed, new wave reanalysis data can be generated quickly and effectively, and the reliability of data can be improved.
Claims (5)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201810076619.9A CN108319772B (en) | 2018-01-26 | 2018-01-26 | A reanalysis method for long-term wave data |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201810076619.9A CN108319772B (en) | 2018-01-26 | 2018-01-26 | A reanalysis method for long-term wave data |
Publications (2)
Publication Number | Publication Date |
---|---|
CN108319772A true CN108319772A (en) | 2018-07-24 |
CN108319772B CN108319772B (en) | 2021-05-04 |
Family
ID=62887180
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201810076619.9A Active CN108319772B (en) | 2018-01-26 | 2018-01-26 | A reanalysis method for long-term wave data |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN108319772B (en) |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN108920877A (en) * | 2018-08-02 | 2018-11-30 | 中交第四航务工程勘察设计院有限公司 | A kind of global wave method for numerical simulation based on MIKE21-SW model |
CN110222872A (en) * | 2019-05-12 | 2019-09-10 | 天津大学 | Long-term statistical prediction methods in the more elements in ocean based on empirical orthogonal function decomposition |
CN111695250A (en) * | 2020-06-04 | 2020-09-22 | 哈尔滨工程大学 | Method for extracting internal tide features |
CN112182759A (en) * | 2020-09-27 | 2021-01-05 | 中交第四航务工程勘察设计院有限公司 | Method for testing wave numerical simulation result based on satellite altimeter data |
CN113128758A (en) * | 2021-04-16 | 2021-07-16 | 北京玖天气象科技有限公司 | Maximum wave height forecasting system constructed based on offshore buoy sea wave observation data |
CN116976165A (en) * | 2023-07-10 | 2023-10-31 | 扬州大学 | Wave energy flow resource measuring and calculating method and system based on space-time combination |
CN118816826A (en) * | 2024-09-18 | 2024-10-22 | 中国海洋大学 | A temporal and spatial fusion method of satellite altimeter significant wave height considering wave characteristics |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102004856A (en) * | 2010-11-27 | 2011-04-06 | 中国海洋大学 | Rapid collective Kalman filtering assimilating method for real-time data of high-frequency observation data |
US20110216054A1 (en) * | 2007-03-09 | 2011-09-08 | Sony Corporation | Display apparatus and method for driving the same |
CN106372367A (en) * | 2016-09-30 | 2017-02-01 | 浙江大学 | Visual simulation method for Argo float ocean product |
CN107122606A (en) * | 2017-04-26 | 2017-09-01 | 国家海洋信息中心 | The Trends of Sea Level Changes computational methods and device counted based on satellite altitude |
CN107610021A (en) * | 2017-07-21 | 2018-01-19 | 华中农业大学 | The comprehensive analysis method of environmental variance spatial and temporal distributions |
-
2018
- 2018-01-26 CN CN201810076619.9A patent/CN108319772B/en active Active
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20110216054A1 (en) * | 2007-03-09 | 2011-09-08 | Sony Corporation | Display apparatus and method for driving the same |
CN102004856A (en) * | 2010-11-27 | 2011-04-06 | 中国海洋大学 | Rapid collective Kalman filtering assimilating method for real-time data of high-frequency observation data |
CN106372367A (en) * | 2016-09-30 | 2017-02-01 | 浙江大学 | Visual simulation method for Argo float ocean product |
CN107122606A (en) * | 2017-04-26 | 2017-09-01 | 国家海洋信息中心 | The Trends of Sea Level Changes computational methods and device counted based on satellite altitude |
CN107610021A (en) * | 2017-07-21 | 2018-01-19 | 华中农业大学 | The comprehensive analysis method of environmental variance spatial and temporal distributions |
Non-Patent Citations (2)
Title |
---|
ZENONPILECKI 等: "Capabilities of seismic and georadar 2D/3D imaging of shallow subsurface of transport route using the Seismobile system", 《JOURNAL OF APPLIED GEOPHYSICS》 * |
赵栋梁 等: "高度计风速反演算法比较及波浪周期反演初探", 《海洋学报》 * |
Cited By (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN108920877A (en) * | 2018-08-02 | 2018-11-30 | 中交第四航务工程勘察设计院有限公司 | A kind of global wave method for numerical simulation based on MIKE21-SW model |
CN110222872A (en) * | 2019-05-12 | 2019-09-10 | 天津大学 | Long-term statistical prediction methods in the more elements in ocean based on empirical orthogonal function decomposition |
CN110222872B (en) * | 2019-05-12 | 2023-04-18 | 天津大学 | Ocean multi-factor medium and long term statistical prediction method based on empirical orthogonal function decomposition |
CN111695250A (en) * | 2020-06-04 | 2020-09-22 | 哈尔滨工程大学 | Method for extracting internal tide features |
CN112182759A (en) * | 2020-09-27 | 2021-01-05 | 中交第四航务工程勘察设计院有限公司 | Method for testing wave numerical simulation result based on satellite altimeter data |
CN113128758A (en) * | 2021-04-16 | 2021-07-16 | 北京玖天气象科技有限公司 | Maximum wave height forecasting system constructed based on offshore buoy sea wave observation data |
CN113128758B (en) * | 2021-04-16 | 2023-10-24 | 北京玖天气象科技有限公司 | Maximum wave height forecasting system constructed based on offshore buoy wave observation data |
CN116976165A (en) * | 2023-07-10 | 2023-10-31 | 扬州大学 | Wave energy flow resource measuring and calculating method and system based on space-time combination |
CN118816826A (en) * | 2024-09-18 | 2024-10-22 | 中国海洋大学 | A temporal and spatial fusion method of satellite altimeter significant wave height considering wave characteristics |
Also Published As
Publication number | Publication date |
---|---|
CN108319772B (en) | 2021-05-04 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN108319772A (en) | A kind of analysis method again of wave long term data | |
Slivinski et al. | Towards a more reliable historical reanalysis: Improvements for version 3 of the Twentieth Century Reanalysis system | |
Tan et al. | IMERG V06: Changes to the morphing algorithm | |
CN105988146B (en) | A kind of application data processing method of satellite-borne microwave radiometer | |
Leinonen et al. | Nowcasting thunderstorm hazards using machine learning: the impact of data sources on performance | |
CN111652443B (en) | Method for predicting ocean fishery resource abundance by comprehensive multi-source satellite remote sensing and application thereof | |
CN108508505A (en) | Heavy showers and thunderstorm forecasting procedure based on multiple dimensioned convolutional neural networks and system | |
CN112906955B (en) | Tidal data fitting method based on multi-source data driving | |
CN113344149B (en) | PM2.5 hourly prediction method based on neural network | |
CN110909447B (en) | High-precision short-term prediction method for ionization layer region | |
CN113791415A (en) | Radar quantitative precipitation estimation method based on deep learning | |
CN106897957B (en) | Automatic weather station real-time data quality control method based on PCA and PSO-E L M | |
CN113536576B (en) | Method and system for correcting distance integral power statistics of numerical forecast product | |
CN117526274A (en) | New energy power prediction method, electronic equipment and storage medium in extreme climate | |
Yu et al. | Improvement of medium-range forecasts using the analog-dynamical method | |
CN107831516B (en) | A method to obtain real-time high-precision displacement of dam by integrating GNSS and ground monitoring network | |
CN116449462B (en) | Sea wave significant wave height spatio-temporal sequence prediction method, system, storage medium and equipment | |
Hotta et al. | EFSR: Ensemble forecast sensitivity to observation error covariance | |
CN117235454A (en) | Multi-time scale ensemble Kalman filter online data assimilation method | |
KR100993684B1 (en) | How to predict Madden-Julian vibration | |
CN119249343A (en) | Data fusion method and system based on multi-source satellite altimeter data | |
CN113176622A (en) | Hourly solar radiation time downscaling method for cumulative exposure | |
Shi et al. | TCNet: Triple Collocation-Based Network for Ocean Surface Wind Speed Retrieval on CYGNSS | |
CN109359862B (en) | A method and system for real-time yield estimation of food crops | |
Wei et al. | Comprehensive Evaluation and Error‐Component Analysis of Four Satellite‐Based Precipitation Estimates against Gauged Rainfall over Mainland China |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |