CN108317129B - 一种针对液压机油箱的冷凝管道快速主动散热开孔方法 - Google Patents

一种针对液压机油箱的冷凝管道快速主动散热开孔方法 Download PDF

Info

Publication number
CN108317129B
CN108317129B CN201810019893.2A CN201810019893A CN108317129B CN 108317129 B CN108317129 B CN 108317129B CN 201810019893 A CN201810019893 A CN 201810019893A CN 108317129 B CN108317129 B CN 108317129B
Authority
CN
China
Prior art keywords
condensation pipe
oil outlet
oil
condensation
flow
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201810019893.2A
Other languages
English (en)
Other versions
CN108317129A (zh
Inventor
冯毅雄
赵彬
高一聪
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Zhejiang University ZJU
Original Assignee
Zhejiang University ZJU
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Zhejiang University ZJU filed Critical Zhejiang University ZJU
Priority to CN201810019893.2A priority Critical patent/CN108317129B/zh
Publication of CN108317129A publication Critical patent/CN108317129A/zh
Application granted granted Critical
Publication of CN108317129B publication Critical patent/CN108317129B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B21/00Common features of fluid actuator systems; Fluid-pressure actuator systems or details thereof, not covered by any other group of this subclass
    • F15B21/04Special measures taken in connection with the properties of the fluid
    • F15B21/042Controlling the temperature of the fluid

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Pipeline Systems (AREA)

Abstract

本发明公开了一种针对液压机油箱的冷凝管道快速主动散热开孔方法。沿冷凝管道对称的两侧均开设一排通孔作为出油孔,每侧的一排出油孔沿同轴向直线间隔均布布置在冷凝管道的两端之间;计算出油孔的孔径,根据冷凝管道和油箱的参数计算冷凝管道总流量,根据总流量和出油孔的总数计算各出油孔的流量,计算相邻出油孔在冷凝管道上的间距,然后根据各出油孔的流量和流速计算各冷凝出油孔的开孔直径,判断冷凝出油孔喷射出的冷凝液体区域是否干涉,寻找可使冷却液可快速扩散至最大范围的冷凝管道开孔优化方案。本发明对油箱冷凝管道进行优化设计,保证在相同的冷却条件下,冷却液可以快速扩散至最大范围,达到更好的油箱冷却效果。

Description

一种针对液压机油箱的冷凝管道快速主动散热开孔方法
技术领域
本发明涉及了液压油冷却回油系统冷凝管的改进方案,尤其是涉及了一种针对液压机油箱的冷凝管道快速主动散热开孔方法。
背景技术
针对现有的油箱冷却问题,目前的冷凝管道只是将冷凝后液体送回油箱。由于管道并未经过合理设计,管道仅有一个出油口。造成整体油箱温度分布不均、冷却液体集中等问题。本发明提出了一种针对液压机油箱的冷凝管道快速主动散热开孔方法,基于使冷却液可快速扩散至最大范围的优化思路。通过在冷凝管上布置合理间距和大小的出油孔,使得冷却后的液体可以更大范围的充满整个油箱区域,热交换更充分,改善整个油箱的冷却情况。
发明内容
为了解决油箱冷凝管设计不合理造成的冷却效果不良的问题,本发明提供一种针对液压机油箱的冷凝管道快速主动散热开孔方法,解决了油箱冷却管设计不合理而造成的冷却范围小、油箱温度场分布不均的问题。
如图1所示,本发明采用以下技术方案,包括以下步骤:
本发明在沿冷凝管道对称的两侧均开设一排通孔作为出油孔,每侧的一排出油孔沿同轴向直线间隔均布布置在冷凝管道的两端之间。
并且采用以下方式计算获得每个出油孔的孔径:
步骤1:根据冷凝管道和油箱的参数(包括冷凝管道长度L1、直径尺寸D1以及冷凝管道出口的速度V,液压油密度)计算冷凝管道总流量Q1
步骤2:初始化冷凝出油孔的总数i=1;
步骤3:设置在冷凝管道的上下两侧均开设一排出油孔,一排出油孔包括i个出油孔,据总流量和出油孔的总数计算各出油孔的流量Q2
步骤4:计算相邻出油孔在冷凝管道上的间距l1,然后根据各出油孔的流量和流速计算各冷凝出油孔的开孔直径d1、d2、…、di
步骤5:判断冷凝出油孔喷射出的冷凝液体区域是否干涉:
若任意出油孔之间存在干涉,则以最后一次计算获得的开孔直径作为出油孔的孔径,为冷凝管道开孔最佳优化方案;
若各个出油孔之间均不干涉,开孔数i=i+1,回到步骤3,重复进行步骤3-4,不断迭代处理直到任意出油孔之间存在干涉,以最后一次计算获得的开孔直径作为出油孔的孔径,为冷凝管道开孔最佳优化方案。
传统的液压机油箱的冷凝管道,仅由冷凝管道两端单一的进油口和出油口组成,其作用仅为将冷却完成的油排回到油箱内。整个冷凝管道并未针对冷却效果进行设计,其结果为大量冷却液集中从一个出油口流出,冷却液集中在一个流体区域,造成冷却效果不理想,液压机油箱温度场不平衡的现象。
本发明对于冷凝管道的优化基于使冷却液可快速扩散至最大范围的优化思路,利用冷凝管道上开设更多出油孔的方式使得冷却液可以从更多的出口内排入油箱内,使得冷却液分布范围更广,避免液体集中造成散热效果不好,温度场不平衡现象。
开孔的方式是在沿冷凝管道对称的两侧均开设一排沿轴向间隔均布的出油孔,并且设定特定孔径使每个孔排入油箱中的流量相同,防止某处的流量过大造成的液体集中。本发明的每个出油孔排出的冷却区域尽量不重叠、不干涉,使得冷却油充分发挥作用,又可避免各出油孔流场的相互影响。
所述的液压机油箱冷凝管道水平布置。
所示步骤1中,采用以下公式计算冷凝管道总流量Q1
Q1=S×V
其中,S为冷凝管道的截面面积,V为冷凝管道出口的速度;
冷凝管道的截面面积S的计算为:
所示步骤5的各出油孔的流量Q2计算:
其中,Q1为冷凝管道总流量,i为冷凝管道的出油孔总数。由于上下两侧各开i个孔,加上原管道端面的一个出油口,共2i+1个出油孔。
所示步骤4具体为:
4.1、计算冷凝出油孔在管道上的间距l1
其中,L1为冷凝管道长度;
4.2、然后以以下步骤计算各冷凝出油孔的开孔直径d1、d2、…、di,先计算管道内剩余流量Qi
Qi=Q1-Q2×2×(i-1)
其中,Q1为冷凝管道总流量,Q2为各出油孔的流量;
4.3、利用管道内剩余流量Qi计算冷凝管道上第i个出油孔的压力坡降Ji
Ji=Qi 2×A
冷凝管道的比阻A计算为:
其中,n为管道的粗糙度,D1为冷凝管道的直径。
4.3、利用第i个出油孔的压力坡降Ji计算冷凝管道上第i个出油孔的压力Pi
Pi=ρ1×g×l1×Ji
其中,ρ1为液压机油箱中油的密度,l1为冷凝出油孔在管道上的间距;
4.4、利用第i个出油孔的压力Pi计算水平放置的冷凝管道根据以下公式求出各出油孔处的流速Vi
其中,c为冷凝管道内流体相关常数;
4.5、最后采用以下公式各冷凝出油孔的开孔直径di
其中,Q2为各出油孔的流量。
由此利用上述公式可求出各冷凝出油孔的开孔直径。
所述步骤5中判断冷凝出油孔喷射出的冷凝液体区域是否干涉,具体为:对液压机油箱建立有限元模型,设置冷凝管到的边界条件和油箱内部环境进行油箱温度场仿真分析,通过仿真结果中迹线的分布是否重叠情况判断出油孔喷射出的冷凝液体区域是否干涉。
本发明的有益效果是:
本发明方法通过在冷凝管上布置合理间距和大小的出油孔使得冷却后的液体可以更大范围的充满整个油箱区域,热交换更充分,改善整个油箱的冷却情况,能使冷却液可快速扩散至最大范围。
本发明在未大范围进行结构尺寸修改的情况下解决了油箱冷凝管道未经过合理设计而造成整体油箱温度分布不均、冷却液体集中等问题。
附图说明
图1为本发明方法的流程图;
图2为实施例的迹线图;
图3为实施例的改进后冷凝管道图;
图4为实施例中原油箱系统温度场云图;
图5为实施例的改进后油箱系统温度场云图。
具体实施方式
下面结合附图和实施例对本发明作进一步说明。
如图1所示,本发明的实施例及其具体实施过程如下:
本实施例具体是GYZ1669分离式液压机油箱,油箱初始温度T1=60℃、冷凝管道长度L1=600mm、初始冷凝管道直径尺寸D1=50mm。油箱内46号液压油,密度872.5kg/m3,在50℃黏性系数为0.00045Pa.S。管壁为45钢,管道的粗糙度n为0.0053。冷凝口压强为0.5MPa。冷凝口出口速度为1.2m/s。仿真时采用湍流模型,湍流强度为3.4%。
经计算,冷凝管道总流量Q1=1.9625×10-3m3/s。
实施例初始总一个出油孔开设开始,逐渐增加一侧出油孔。根据上述计算方法可得到各出油孔的流量Q2,冷凝出油孔在管道上的间距l1
表1
开孔数 Q<sub>2</sub>(m<sup>3</sup>/s) l<sub>1</sub>(mm)
1 6.5×10<sup>-4</sup> 300
2 3.9×10<sup>-4</sup> 200
3 2.8×10<sup>-4</sup> 150
4 2.1×10<sup>-4</sup> 120
5 1.7×10<sup>-4</sup> 100
6 1.5×10<sup>-4</sup> 85
7 1.3×10<sup>-4</sup> 75
8 1.1×10<sup>-4</sup> 66
各出油孔的流量Q2,冷凝出油孔在管道上的间距l1计算各开孔情况下各冷凝出油孔的开孔直径di
表2
开孔数 孔直径d<sub>i</sub>(mm)
1 32
2 17,31
3 16,24,35
4 14,19,25,34
5 11,17,23,30,36
6 9,15,21,27,33,37
7 6,10,14,19,22,27,32
8 5,8,12,16,20,25,32,39
如图2所示,上下两侧分布开设8个出油孔时,前7个出油孔冷却油扩散区域未发生重叠。第7、8出油孔扩散的流场出现出现临界干涉情况。如果再增加出油孔的数量,则干涉和重叠的区域增加,散热效果减弱。故上下两侧分布开设8个出油孔为冷凝管道开孔最佳优化方案,最终开孔方案如图3所示。
图4为实施例中原油箱系统温度场云图,根据云图显示可知,原油箱冷却后最低温度为46.1℃。油箱系统大部分区域温度在55.3℃-57.3℃。右侧油箱温度较左侧油箱温度明显更高。图5为实施例的改进后油箱系统温度场云图,根据云图显示可知,原油箱冷却后最低温度为43.1℃。油箱系统大部分区域温度在52.4℃-54.7℃。
因此,对比图4和图5可发现,改进后的冷凝管道使得整个油箱系统最低温度更低,大部分区域的冷却效果得到改善,且使得左右油箱冷却效果基本一致。
本发明通过具有突出显著的技术效果。通过在冷凝管上布置合理间距和大小的出油孔,使得冷却后的液体可以更大范围的充满整个油箱区域,热交换更充分,改善整个油箱的冷却情况。具有突出显著的技术效果。

Claims (5)

1.一种针对液压机油箱的冷凝管道快速主动散热开孔方法,其特征在于:沿冷凝管道对称的两侧均开设一排通孔作为出油孔,每侧的一排出油孔沿同轴向直线间隔均布布置在冷凝管道的两端之间;
并且采用以下方式计算获得每个出油孔的孔径:
步骤1:根据冷凝管道和油箱的参数计算冷凝管道总流量Q1
步骤2:初始化冷凝出油孔的总数i=1;
步骤3:设置在冷凝管道的上下两侧均开设一排出油孔,一排出油孔包括i个出油孔,据总流量和出油孔的总数计算各出油孔的流量Q2
步骤4:计算相邻出油孔在冷凝管道上的间距l1,然后根据各出油孔的流量和流速计算各冷凝出油孔的开孔直径d1、d2、…、di
步骤5:判断冷凝出油孔喷射出的冷凝液体区域是否干涉:
若任意出油孔之间存在干涉,则以最后一次计算获得的开孔直径作为出油孔的孔径;
若各个出油孔之间均不干涉,开孔数i=i+1,回到步骤3,重复进行步骤3-4,不断迭代处理直到任意出油孔之间存在干涉,以最后一次计算获得的开孔直径作为出油孔的孔径。
2.根据权利要求1所述一种针对液压机油箱的冷凝管道快速主动散热开孔方法,其特征在于:所述的液压机油箱冷凝管道水平布置。
3.根据权利要求1所述一种针对液压机油箱的冷凝管道快速主动散热开孔方法,其特征在于:所示步骤1中,采用以下公式计算冷凝管道总流量Q1
所示步骤1中,采用以下公式计算冷凝管道总流量Q1
Q1=S×V
其中,S为冷凝管道的截面面积,V为冷凝管道出口的速度;
冷凝管道的截面面积S的计算为:
其中,d表示冷凝管道的直径。
4.根据权利要求1所述一种针对液压机油箱的冷凝管道快速主动散热开孔方法,其特征在于:所示步骤3的各出油孔的流量Q2计算:
其中,Q1为冷凝管道总流量,i为冷凝管道的出油孔总数。
5.根据权利要求1所述一种针对液压机油箱的冷凝管道快速主动散热开孔方法,其特征在于:所述步骤5中判断冷凝出油孔喷射出的冷凝液体区域是否干涉,具体为:对液压机油箱建立有限元模型,设置冷凝管道的边界条件和油箱内部环境进行油箱温度场仿真分析,通过仿真结果中迹线的分布是否重叠判断出油孔喷射出的冷凝液体区域是否干涉。
CN201810019893.2A 2018-01-09 2018-01-09 一种针对液压机油箱的冷凝管道快速主动散热开孔方法 Active CN108317129B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201810019893.2A CN108317129B (zh) 2018-01-09 2018-01-09 一种针对液压机油箱的冷凝管道快速主动散热开孔方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201810019893.2A CN108317129B (zh) 2018-01-09 2018-01-09 一种针对液压机油箱的冷凝管道快速主动散热开孔方法

Publications (2)

Publication Number Publication Date
CN108317129A CN108317129A (zh) 2018-07-24
CN108317129B true CN108317129B (zh) 2019-06-11

Family

ID=62894183

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201810019893.2A Active CN108317129B (zh) 2018-01-09 2018-01-09 一种针对液压机油箱的冷凝管道快速主动散热开孔方法

Country Status (1)

Country Link
CN (1) CN108317129B (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013013924A1 (de) * 2011-07-28 2013-01-31 Endress+Hauser Flowtec Ag Strömungsgleichrichter
CN103984823A (zh) * 2014-05-16 2014-08-13 中国科学院光电技术研究所 一种确定任意管型多孔板流阻的方法
CN105829836A (zh) * 2013-09-26 2016-08-03 保罗·范巴斯科克 孔板
CN106337989A (zh) * 2016-09-12 2017-01-18 西安航天动力试验技术研究所 一种管道降压装置的制备方法
CN106951601A (zh) * 2017-02-28 2017-07-14 哈尔滨工业大学 一种基于大流量偏工况水轮机泄水锥打2孔的方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013013924A1 (de) * 2011-07-28 2013-01-31 Endress+Hauser Flowtec Ag Strömungsgleichrichter
CN105829836A (zh) * 2013-09-26 2016-08-03 保罗·范巴斯科克 孔板
CN103984823A (zh) * 2014-05-16 2014-08-13 中国科学院光电技术研究所 一种确定任意管型多孔板流阻的方法
CN106337989A (zh) * 2016-09-12 2017-01-18 西安航天动力试验技术研究所 一种管道降压装置的制备方法
CN106951601A (zh) * 2017-02-28 2017-07-14 哈尔滨工业大学 一种基于大流量偏工况水轮机泄水锥打2孔的方法

Also Published As

Publication number Publication date
CN108317129A (zh) 2018-07-24

Similar Documents

Publication Publication Date Title
Wang et al. Characteristics of flow distribution in compact parallel flow heat exchangers, part II: Modified inlet header
CN110944492B (zh) 液冷流道仿生优化设计方法
CN105658027B (zh) 用于电子部件冷却的液冷板
CN106908264A (zh) 一种滑油冷却器效率的测试系统及其测试方法
CN107328144B (zh) 一种蒸发器的管内干度控制方法及蒸发器
CN110529872B (zh) 基于入口烟气温度通信控制的电站锅炉余热利用系统
CN108317129B (zh) 一种针对液压机油箱的冷凝管道快速主动散热开孔方法
CN206225140U (zh) 一种油浸式变压器散热器
CN110748912B (zh) 基于烟温通信控制阀门的电站锅炉余热利用系统
CN109959025B (zh) 一种智能通信控制的电站锅炉余热利用系统
CN207881517U (zh) 一种工程机械暖风装置热交换器
CN103016124A (zh) 柴油机高低温自动分配冷却系统
CN108870445A (zh) 一种采用y形多斜孔冷却方式的燃烧室火焰筒壁面
CN205841377U (zh) 一种油压机械设备油温冷却装置
CN101592561A (zh) 闭环系统等压差式流量分配试验方法
Deng et al. Simplified analysis of thermal contact resistance on arc-slotted fin core
CN106802027A (zh) 一种复合式风冷管翅式换热器结构
CN205487648U (zh) 一种变压器的散热冷却装置
CN206626981U (zh) 一种二次杀菌冷却水冷却循环装置
CN209838515U (zh) V型结构散热器
CN203731754U (zh) 离心式气液两相制冷剂分配器及风冷热泵系统
CN208006455U (zh) 一种散热效果好的印刷机
CN206531313U (zh) 一种多路泵出及多路回油型油冷系统
CN207556025U (zh) 一种蒸发器
CN105135906A (zh) 一种液压油热交换器

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant