CN108309263A - 多参数监护数据分析方法和多参数监护系统 - Google Patents

多参数监护数据分析方法和多参数监护系统 Download PDF

Info

Publication number
CN108309263A
CN108309263A CN201810157364.9A CN201810157364A CN108309263A CN 108309263 A CN108309263 A CN 108309263A CN 201810157364 A CN201810157364 A CN 201810157364A CN 108309263 A CN108309263 A CN 108309263A
Authority
CN
China
Prior art keywords
data
information
ecg
heartbeat
warning message
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201810157364.9A
Other languages
English (en)
Inventor
刘畅
赵子方
胡传言
张玥
卢海涛
薛腾辉
曹君
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Lepu Medical Technology Beijing Co Ltd
Original Assignee
Lepu Medical Technology Beijing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Lepu Medical Technology Beijing Co Ltd filed Critical Lepu Medical Technology Beijing Co Ltd
Priority to CN201810157364.9A priority Critical patent/CN108309263A/zh
Priority to PCT/CN2018/083462 priority patent/WO2019161608A1/zh
Publication of CN108309263A publication Critical patent/CN108309263A/zh
Pending legal-status Critical Current

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/02Detecting, measuring or recording pulse, heart rate, blood pressure or blood flow; Combined pulse/heart-rate/blood pressure determination; Evaluating a cardiovascular condition not otherwise provided for, e.g. using combinations of techniques provided for in this group with electrocardiography or electroauscultation; Heart catheters for measuring blood pressure
    • A61B5/0205Simultaneously evaluating both cardiovascular conditions and different types of body conditions, e.g. heart and respiratory condition
    • A61B5/02055Simultaneously evaluating both cardiovascular condition and temperature
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/74Details of notification to user or communication with user or patient ; user input means
    • A61B5/746Alarms related to a physiological condition, e.g. details of setting alarm thresholds or avoiding false alarms
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/01Measuring temperature of body parts ; Diagnostic temperature sensing, e.g. for malignant or inflamed tissue
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/02Detecting, measuring or recording pulse, heart rate, blood pressure or blood flow; Combined pulse/heart-rate/blood pressure determination; Evaluating a cardiovascular condition not otherwise provided for, e.g. using combinations of techniques provided for in this group with electrocardiography or electroauscultation; Heart catheters for measuring blood pressure
    • A61B5/021Measuring pressure in heart or blood vessels
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/02Detecting, measuring or recording pulse, heart rate, blood pressure or blood flow; Combined pulse/heart-rate/blood pressure determination; Evaluating a cardiovascular condition not otherwise provided for, e.g. using combinations of techniques provided for in this group with electrocardiography or electroauscultation; Heart catheters for measuring blood pressure
    • A61B5/021Measuring pressure in heart or blood vessels
    • A61B5/022Measuring pressure in heart or blood vessels by applying pressure to close blood vessels, e.g. against the skin; Ophthalmodynamometers
    • A61B5/0225Measuring pressure in heart or blood vessels by applying pressure to close blood vessels, e.g. against the skin; Ophthalmodynamometers the pressure being controlled by electric signals, e.g. derived from Korotkoff sounds
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/02Detecting, measuring or recording pulse, heart rate, blood pressure or blood flow; Combined pulse/heart-rate/blood pressure determination; Evaluating a cardiovascular condition not otherwise provided for, e.g. using combinations of techniques provided for in this group with electrocardiography or electroauscultation; Heart catheters for measuring blood pressure
    • A61B5/024Detecting, measuring or recording pulse rate or heart rate
    • A61B5/0245Detecting, measuring or recording pulse rate or heart rate by using sensing means generating electric signals, i.e. ECG signals
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/08Detecting, measuring or recording devices for evaluating the respiratory organs
    • A61B5/0816Measuring devices for examining respiratory frequency
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/145Measuring characteristics of blood in vivo, e.g. gas concentration, pH value; Measuring characteristics of body fluids or tissues, e.g. interstitial fluid, cerebral tissue
    • A61B5/1455Measuring characteristics of blood in vivo, e.g. gas concentration, pH value; Measuring characteristics of body fluids or tissues, e.g. interstitial fluid, cerebral tissue using optical sensors, e.g. spectral photometrical oximeters
    • A61B5/14551Measuring characteristics of blood in vivo, e.g. gas concentration, pH value; Measuring characteristics of body fluids or tissues, e.g. interstitial fluid, cerebral tissue using optical sensors, e.g. spectral photometrical oximeters for measuring blood gases
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/24Detecting, measuring or recording bioelectric or biomagnetic signals of the body or parts thereof
    • A61B5/316Modalities, i.e. specific diagnostic methods
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/24Detecting, measuring or recording bioelectric or biomagnetic signals of the body or parts thereof
    • A61B5/316Modalities, i.e. specific diagnostic methods
    • A61B5/318Heart-related electrical modalities, e.g. electrocardiography [ECG]
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/24Detecting, measuring or recording bioelectric or biomagnetic signals of the body or parts thereof
    • A61B5/316Modalities, i.e. specific diagnostic methods
    • A61B5/318Heart-related electrical modalities, e.g. electrocardiography [ECG]
    • A61B5/346Analysis of electrocardiograms
    • A61B5/349Detecting specific parameters of the electrocardiograph cycle
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/24Detecting, measuring or recording bioelectric or biomagnetic signals of the body or parts thereof
    • A61B5/316Modalities, i.e. specific diagnostic methods
    • A61B5/318Heart-related electrical modalities, e.g. electrocardiography [ECG]
    • A61B5/346Analysis of electrocardiograms
    • A61B5/349Detecting specific parameters of the electrocardiograph cycle
    • A61B5/363Detecting tachycardia or bradycardia
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/24Detecting, measuring or recording bioelectric or biomagnetic signals of the body or parts thereof
    • A61B5/316Modalities, i.e. specific diagnostic methods
    • A61B5/318Heart-related electrical modalities, e.g. electrocardiography [ECG]
    • A61B5/346Analysis of electrocardiograms
    • A61B5/349Detecting specific parameters of the electrocardiograph cycle
    • A61B5/364Detecting abnormal ECG interval, e.g. extrasystoles, ectopic heartbeats
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/72Signal processing specially adapted for physiological signals or for diagnostic purposes
    • A61B5/7203Signal processing specially adapted for physiological signals or for diagnostic purposes for noise prevention, reduction or removal
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/72Signal processing specially adapted for physiological signals or for diagnostic purposes
    • A61B5/7235Details of waveform analysis
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/72Signal processing specially adapted for physiological signals or for diagnostic purposes
    • A61B5/7235Details of waveform analysis
    • A61B5/725Details of waveform analysis using specific filters therefor, e.g. Kalman or adaptive filters
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/72Signal processing specially adapted for physiological signals or for diagnostic purposes
    • A61B5/7235Details of waveform analysis
    • A61B5/7264Classification of physiological signals or data, e.g. using neural networks, statistical classifiers, expert systems or fuzzy systems
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/72Signal processing specially adapted for physiological signals or for diagnostic purposes
    • A61B5/7235Details of waveform analysis
    • A61B5/7264Classification of physiological signals or data, e.g. using neural networks, statistical classifiers, expert systems or fuzzy systems
    • A61B5/7267Classification of physiological signals or data, e.g. using neural networks, statistical classifiers, expert systems or fuzzy systems involving training the classification device
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/72Signal processing specially adapted for physiological signals or for diagnostic purposes
    • A61B5/7271Specific aspects of physiological measurement analysis
    • A61B5/7282Event detection, e.g. detecting unique waveforms indicative of a medical condition
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B2562/00Details of sensors; Constructional details of sensor housings or probes; Accessories for sensors
    • A61B2562/08Sensors provided with means for identification, e.g. barcodes or memory chips
    • GPHYSICS
    • G16INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
    • G16HHEALTHCARE INFORMATICS, i.e. INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR THE HANDLING OR PROCESSING OF MEDICAL OR HEALTHCARE DATA
    • G16H50/00ICT specially adapted for medical diagnosis, medical simulation or medical data mining; ICT specially adapted for detecting, monitoring or modelling epidemics or pandemics
    • G16H50/70ICT specially adapted for medical diagnosis, medical simulation or medical data mining; ICT specially adapted for detecting, monitoring or modelling epidemics or pandemics for mining of medical data, e.g. analysing previous cases of other patients

Abstract

本发明实施例涉及一种多参数监护数据分析方法和多参数监护系统,该方法包括:对被测对象进行体征监护数据采集并对采集到的心电图数据进行波群特征识别,对心电图数据进行心搏分类,结合心电图基本规律参考数据得到心搏分类信息并生成心电图事件数据;根据心电图事件数据确定对应的心电图事件信息,确定心电图事件信息是否为心电异常事件信息;当为心电异常事件信息时输出第一报警信息;以及确定采集到的脉搏数据、血压数据、呼吸数据、血氧饱和度数据和体温数据中的一个或多个是否存在超出相应的设定阈值的异常数据,并根据异常数据生成其他异常事件信息;当超出设定阈值时,输出第二报警信息,并将第一报警信息和/或第二报警信息发送至工作站。

Description

多参数监护数据分析方法和多参数监护系统
技术领域
本发明涉及数据处理技术领域,尤其涉及一种多参数监护数据分析方法和多参数监护系统。
背景技术
多参数监护仪是一种常用的临床医疗设备。这种监护设备的特点是具有多组传感器,可以同时监测心电、血压、血氧、脉搏、呼吸、体温等生命体征指标。在病房监护中,多参数监护仪可以成为医生的对病人监护的重要参考,使医生能及时发现病人出现的问题并及时进行处理,从而保证了病人的生命安全。监护仪临床应用可见于:手术中、手术后、外伤护理、冠心病、危重病人、新生儿、早产儿、高压氧舱、分娩室等。
在医院的床旁监护系统中,通常会在一个系统中存在有多个多参数床旁监护仪,用于多个病患人员的监控。最常见的应用场景是,当床旁监护仪发生报警的时候,在护士站会产生相应的床位号的报警提示,通知多参数监护仪监护到异常发生,提醒医护人员处理。医护人员需要到病人床旁才能得到异常信息,无法及时获得报警消息和数据,对于异常和紧急程度的无法进行预判,容易造成紧急情况的处置延误。
此外,市场上大多数多参数监控仪采用设置阈值的方式进行报警事件的触发。比如在心率过快的时候进行报警或是在心率过缓的时候进行报警。这种设置阈值的方法虽然简单直观,但准确性比较差,因为心电信号是心肌细胞的电活动在体表反映出的微弱电流,通过体表电极和放大记录系统记录下来。在记录过程中同时还会记录到其他非心源性的电信号,比如骨骼肌活动带来的肌电信号干扰等等。这些信号可能会导致不正确心搏信号检测,从而触发警报。这些频繁发生的误报,久而久之导致病人和医护人员放松对警报事件的警惕,而在真正的需要临床处理的事件出现时病人得不到有效的关注和处理。同时,医生和护士会花费大量的精力在处理误报事件上,浪费医院的医疗资源。根据美国心脏协会的数据,在发生心脏骤停的住院患者中,只有不到四分之一可以存活下来。
此外,心电信号是心肌电活动过程的体现,因此心电信号除了可以用来检测心率以外,还可以体现出大量的心脏状态的信息。在心脏状态出现问题的时候,心电信号会出现相应的改变,很多时候不一定体现在心率上。目前的多参数监护设备只能对心电信号进行非常有限的分析和报警,这也导致有大量的漏报事件发生,病人的生命健康不能得到有效的保护。
发明内容
本发明的目的是提供一种为解决现有技术缺陷而提出的多参数监护数据分析方法和多参数监护系统。
本发明实施例第一方面提供了一种多参数监护数据分析方法,包括:
监护仪接收用户输入的或者工作站下发的监测基准数据;所述监测基准数据包括被测对象信息,以及所述被测对象信息对应的体征数据阈值及心电异常事件信息;
所述监护仪对被测对象进行体征监护数据采集,得到所述被测对象的体征监护数据;所述体征监护数据具有时间属性信息和监护仪ID信息,所述体征监护数据包括:心电图数据、脉搏数据、血压数据、呼吸数据、血氧饱和度数据和体温数据;
所述监护仪对所述心电图数据进行波群特征识别,得到所述心电图数据的特征信号,根据所述特征信号对所述心电图数据进行心搏分类,结合心电图基本规律参考数据得到心搏分类信息,并生成心电图事件数据;所述心电事件数据包括所述监护仪ID信息;
所述监护仪根据所述心电图事件数据确定对应的心电图事件信息,并确定所述心电图事件信息是否为所述心电异常事件信息;当为所述心电异常事件信息时,输出第一报警信息;所述第一报警信息包括所述心电异常事件信息、报警时间信息和所述监护仪ID信息;以及
所述监护仪确定所述脉搏数据、血压数据、呼吸数据、血氧饱和度数据和体温数据中的一个或多个是否存在超出相应的设定阈值的异常数据,并根据所述异常数据生成其他异常事件信息;当超出所述设定阈值时,输出第二报警信息;所述第二报警信息包括所述其他异常事件信息、报警时间信息和所述监护仪ID信息;
所述监护仪将所述第一报警信息和/或所述第二报警信息发送至工作站,使所述工作站根据所述第一报警信息和/或所述第二报警信息产生相应的报警输出信号。
优选的,所述方法还包括:
所述监护仪根据所述体征监护数据的时间属性信息对所述体征监护数据进行汇总,生成所述体征监护数据的时间序列数据,并进行存储。
优选的,所述方法还包括:
当为预设的心电异常事件信息时,根据所述时间属性信息获取所述心电图数据对应时间的前后预设时段内的心电图数据,生成异常事件记录数据;
所述监护仪生成所述异常事件记录数据与所述第一报警信息的关联信息,并发送给所述工作站。
进一步优选的,所述方法还包括:
所述监护仪或所述工作站接收对所述第一报警信息或第二报警信息的查阅指令,获取相应的异常事件记录数据并进行输出,和/或对所述异常事件记录数据进行分析处理,生成并输出异常事件报告数据。
优选的,所述对所述心电图数据进行波群特征识别,得到所述心电图数据的特征信号,根据所述特征信号对所述心电图数据进行心搏分类,结合心电图基本规律参考数据得到心搏分类信息,并生成心电图事件数据具体包括:
将所述心电图数据的数据格式经过重采样转换为预设标准数据格式,并对转换后的预设标准数据格式的心电图数据进行第一滤波处理;
对所述第一滤波处理后的心电图数据进行心搏检测处理,识别所述心电图数据包括的多个心搏数据,每个所述心搏数据对应一个心搏周期,包括相应的P波、QRS波群、T波的幅值和起止时间数据;
根据所述心搏数据确定每个心搏的检测置信度;
根据干扰识别二分类模型对所述心搏数据进行干扰识别,得到心搏数据是否存在干扰噪音,以及用于判断干扰噪音的一个概率值;
根据所述检测置信度确定心搏数据的有效性,并且,根据确定有效的心搏数据的导联参数和心搏数据,基于所述干扰识别的结果和时间规则合并生成心搏时间序列数据;根据所述心搏时间序列数据生成心搏分析数据;
根据心搏分类模型对所述心搏分析数据进行幅值和时间表征数据的特征提取和分析,得到所述心搏分析数据的一次分类信息;
对所述一次分类信息结果中的特定心搏的心搏分析数据输入到ST段和T波改变模型进行识别,确定ST段和T波评价信息;
根据所述心搏时间序列数据,对所述心搏分析数据进行P波和T波特征检测,确定每个心搏中P波和T波的详细特征信息,详细特征信息包括幅值、方向、形态和起止时间的数据;
对所述心搏分析数据在所述一次分类信息下根据所述心电图基本规律参考数据、所述P波和T波的详细特征信息以及所述ST段和T波评价信息进行二次分类处理,得到心搏分类信息;
对所述心搏分类信息进行分析匹配,生成所述心电图事件数据。
本发明实施例提供的多参数监护数据分析方法,实现了基于人工智能的多参数监护的数据分析和报警流程,能够对监护仪监测得到的测量数据进行自动、快速、完整的分析,对异常的心电状态和其他生命体征参数给出预警,并上传至工作站。通过本方法能够减少干扰带来的误报现象,报警准确度高,可检测的异常种类特别是心电异常的种类多,具有良好的应用前景。
本发明实施例第二方面提供了一种多参数监护数据分析方法,包括:
所述监护仪对被测对象进行体征监护数据采集,得到所述被测对象的体征监护数据并获取被测对象信息,将所述体征监护数据和被测对象信息发送给所述工作站;所述体征监护数据具有时间属性信息和监护仪ID信息,所述体征监护数据包括:心电图数据、脉搏数据、血压数据、呼吸数据、血氧饱和度数据和体温数据;
所述工作站对所述心电图数据进行波群特征识别,得到所述心电图数据的特征信号,根据所述特征信号对所述心电图数据进行心搏分类,结合心电图基本规律参考数据得到心搏分类信息,并生成心电图事件数据;所述心电事件数据包括所述监护仪ID信息;
所述工作站根据所述被测对象信息确定监测基准数据;所述监测基准数据包括所述被测对象信息对应的体征数据阈值及心电异常事件信息;
所述工作站根据所述心电图事件数据确定对应的心电图事件信息,并确定所述心电图事件信息是否为预设的心电异常事件信息;当为预设的心电异常事件信息时,生成第一报警信息;所述第一报警信息包括所述心电异常事件信息、报警时间信息和所述监护仪ID信息;以及
所述工作站确定所述脉搏数据、血压数据、呼吸数据、血氧饱和度数据和体温数据中的一个或多个是否存在超出相应的设定阈值的异常数据,并根据所述异常数据生成其他异常事件信息;当超出所述设定阈值时,生成第二报警信息;所述第二报警信息包括所述其他异常事件信息、报警时间信息和所述监护仪ID信息;
所述工作站输出所述第一报警信息和/或所述第二报警信息,并根据所述监护仪ID信息将所述第一报警信息和/或所述第二报警信息发送至所述监护仪,使所述监护仪根据所述第一报警信息和/或所述第二报警信息产生相应的报警输出信号。
优选的,所述方法还包括:
所述工作站根据所述体征监护数据的时间属性信息对所述体征监护数据进行汇总,生成所述体征监护数据的时间序列数据,并进行存储。
优选的,所述方法还包括:
当为预设的心电异常事件信息时,所述工作站根据所述时间属性信息获取所述心电图数据对应时间的前后预设时段内的心电图数据,生成异常事件记录数据;
所述工作站生成所述异常事件记录数据与所述第一报警信息的关联信息。
优选的,所述方法还包括:
所述工作站接收对所述第一报警信息或第二报警信息的查阅指令,获取相应的异常事件记录数据并进行输出,和/或对所述异常事件记录数据进行分析处理,生成并输出异常事件报告数据。
进一步优选的,所述方法还包括:
所述监护仪接收对所述第一报警信息或第二报警信息的查阅指令;
将所述查阅指令发送给所述工作站;
所述工作站获取所述异常事件记录数据,和/或对所述异常事件记录数据进行分析处理,生成异常事件报告数据;
将所述异常事件记录数据和/或异常事件报告数据发送给所述监护仪。
优选的,所述对所述心电图数据进行波群特征识别,得到所述心电图数据的特征信号,根据所述特征信号对所述心电图数据进行心搏分类,结合心电图基本规律参考数据得到心搏分类信息,并生成心电图事件数据具体包括:
将所述心电图数据的数据格式经过重采样转换为预设标准数据格式,并对转换后的预设标准数据格式的心电图数据进行第一滤波处理;
对所述第一滤波处理后的心电图数据进行心搏检测处理,识别所述心电图数据包括的多个心搏数据,每个所述心搏数据对应一个心搏周期,包括相应的P波、QRS波群、T波的幅值和起止时间数据;
根据所述心搏数据确定每个心搏的检测置信度;
根据干扰识别二分类模型对所述心搏数据进行干扰识别,得到心搏数据是否存在干扰噪音,以及用于判断干扰噪音的一个概率值;
根据所述检测置信度确定心搏数据的有效性,并且,根据确定有效的心搏数据的导联参数和心搏数据,基于所述干扰识别的结果和时间规则合并生成心搏时间序列数据;根据所述心搏时间序列数据生成心搏分析数据;
根据心搏分类模型对所述心搏分析数据进行幅值和时间表征数据的特征提取和分析,得到所述心搏分析数据的一次分类信息;
对所述一次分类信息结果中的特定心搏的心搏分析数据输入到ST段和T波改变模型进行识别,确定ST段和T波评价信息;
根据所述心搏时间序列数据,对所述心搏分析数据进行P波和T波特征检测,确定每个心搏中P波和T波的详细特征信息,详细特征信息包括幅值、方向、形态和起止时间的数据;
对所述心搏分析数据在所述一次分类信息下根据所述心电图基本规律参考数据、所述P波和T波的详细特征信息以及所述ST段和T波评价信息进行二次分类处理,得到心搏分类信息;
对所述心搏分类信息进行分析匹配,生成所述心电图事件数据。
本发明实施例提供的多参数监护数据分析方法,实现了基于人工智能的多参数监护的数据分析和报警流程,能够对监护仪监测得到的测量数据上传工作站进行自动、快速、完整的分析,对异常的心电状态和其他生命体征参数给出预警,下发报警信息到监护仪,通过本方法能够减少干扰带来的误报现象,报警准确度高,可检测的异常种类特别是心电异常的种类多,具有良好的应用前景。
本发明实施例第三方面提供了一种多参数监护系统,该设备包括上述第一方面所述的监护仪和工作站;
所述监护仪包括:存储器和处理器;所述存储器用于存储程序,所述处理器用于执行上述第一方面所述的方法。
本发明实施例第四方面提供了一种包含指令的计算机程序产品,当计算机程序产品在计算机上运行时,使得计算机执行第一方面及第一方面的各实现方式中的方法。
本发明实施例第五方面提供了一种计算机可读存储介质,计算机可读存储介质上存储有计算机程序,计算机程序被处理器执行时实现第一方面及第一方面的各实现方式中的方法。
本发明实施例第六方面提供了一种多参数监护系统,该设备包括上述第二方面所述的监护仪和工作站;
所述工作站包括:存储器和处理器;所述存储器用于存储程序,所述处理器用于执行上述第二方面所述的方法。
本发明实施例第七方面提供了一种包含指令的计算机程序产品,当计算机程序产品在计算机上运行时,使得计算机执行第二方面及第二方面的各实现方式中的方法。
本发明实施例第八方面提供了一种计算机可读存储介质,计算机可读存储介质上存储有计算机程序,计算机程序被处理器执行时实现第二方面及第二方面的各实现方式中的方法。
附图说明
图1为本发明实施例提供的一种多参数监护数据分析方法流程图;
图2为本发明实施例提供的心电图数据的处理方法的流程图;
图3为本发明实施例提供的干扰识别二分类模型的示意图;
图4为本发明实施例提供的心搏分类模型的示意图;
图5为本发明实施例提供的ST段和T波改变模型的示意图;
图6为本发明实施例提供的一种多参数监护仪的结构示意图;
图7为本发明实施例提供的另一种多参数监护数据分析方法流程图;
图8为本发明实施例提供的另一种多参数监护仪的结构示意图。
具体实施方式
下面通过附图和实施例,对本发明的技术方案做进一步的详细描述。
本发明涉及用于临床监护的多参数监护数据分析方法,以及执行该方法的多参数监护系统。该多参数监护系统包括一台或多台多参数监护仪以及与多参数监护仪相连接的工作站。多参数监护仪与工作站之间可以通过有线或无线方式连接,其中无线连接包括但不限于基于IEEE 802.11b标准的无线局域网(WIFI),蓝牙,3G/4G/5G移动通信网络,物联网等方式。
多参数监护仪是一种临床医疗监护设备。这种监护设备的特点是具有多组传感器,可以同时监测心电、血压、血氧、脉搏、呼吸、体温等生命体征指标,通过实时处理从各个传感器传入的数据,在相应指标出现异常的时候给出报警信号,使医生护士可以及时对病情进行处理。
多参数监护仪检测的心电、血压、血氧、脉搏、呼吸、体温等生命体征指标中,心电的监测是不同于其他各项参数的,通过传感器得到的心电信号需要通过一系列复杂的算法计算才能提取出其中的有效信息,相对其他信号而言处理过程比较复杂困难,也是容易出现检测错误的环节。
心电信号是心肌细胞的电活动在体表反映出的微弱电流,通过体表电极和放大记录系统记录下来。在记录过程中同时还会记录到其他非心源性的电信号,比如骨骼肌活动带来的肌电信号干扰等等。因此我们认为需要对心电信号进行有效的干扰识别和排除,才能够有效降低因为干扰信号造成的误报。
此外,心电信号是心肌电活动过程的体现,因此心电信号除了可以用来检测心率以外,还可以体现出大量的心脏状态的信息。在心脏状态出现问题的时候,心电信号会出现相应的改变。在对业内现有的多参数监护设备进行研究的过程中我们发现,现有的监护设备只能对心电信号进行非常有限的分析和报警。对此,除了对心电信号进行有效的干扰识别和排除,以降低因为干扰信号造成的误报之外,我们认为还可以从以下几点进行改进:
第一,心搏监测过程中使用合理的滤波参数设置和阈值设置,可以避免心搏检测的多检和漏检,比如对一些特殊心电图信号,例如心律比较缓慢患者的高大T波,或者T波肥大的信号的多检。
第二,对心搏的分类进行更加细致的划分,而不能仅停留在窦性、室上性和室性这三种分类,从而满足临床心电图医生复杂全面的分析要求。
第三,准确识别房扑房颤和ST-T改变,从而能够有助于提供对ST段和T波改变对心肌缺血分析的帮助。
第四,对心搏和心电事件的准确识别。
在本发明中,我们针对上述几点,通过对心电数据的分析计算,特别是引入人工智能(AI)技术,对采集的数字信号进行心律失常分析、长间歇停搏,扑动和颤动,传导阻滞,早搏和逸搏,心动过缓,心动过快,ST段改变检测、心电事件的分析与归类,以达到产生准确报警信号的目的,从而有效的进行病人生命体征的监护。
为此,本发明在实施例一中提出了一种多参数监护数据分析方法,其方法步骤流程如图1所示,该方法主要包括如下步骤:
步骤100,监护仪接收用户输入的或者工作站下发的监测基准数据;
具体的,监测基准数据包括被测对象信息,以及被测对象信息对应的体征数据阈值及心电异常事件信息;
对于脉搏数据、血压数据、呼吸数据、血氧饱和度数据和体温数据,可以具体设置对应于不同类别被测对象的相应的参数阈值。在监测基准数据选取时,可以根据被监测者的实际情况进行选择。
比如,对于新生儿的脉搏数据、呼吸数据的参数阈值的设定,比普通成年人的要高,在实际应用中可以根据需要选择相应的适合的参数阈值,使得多参数监护仪能够很好的匹配被监测者,达到有效监测、准确报警的目的。
心电异常事件信息是指需要产生报警的异常心电事件。
监测基准数据可以在监护仪上输入,可以是从监护仪的本地存储单元内选取已有的参数阈值,或者直接输入数据进行设置;也可以是通过网络或连接线由工作站获取,即可以是工作站主动分发,也可以是由监护仪发出数据请求。
步骤110,监护仪对被测对象进行体征监护数据采集,得到被测对象的体征监护数据;
具体的,被测对象是指由多参数监护仪进行床旁监护的生命体,其中,最常规的被测对象是指人。
监护仪具有与被测对象相接触的电极、探头、袖带等体征信号采集装置,通过体征信号采集装置采集被测对象的体征信号,并通过数字化处理得到体征监护数据。体征监护数据可以具体包括:心电图数据、脉搏数据、血压数据、呼吸数据、血氧饱和度数据和体温数据等。体征监护数据具有时间属性信息,每个数据点都有对应的数据采集时间,这个时间即是时间属性信息。在进行数据采集的同时,这个数据采集时间也被记录下来,并作为体征监护数据的时间属性信息进行存储。体征监护数据还具有监护仪ID信息,在进行体征监护数据采集的时候,在采集得到的体征监护数据中同时记录有用以采集该数据的监护仪的信息,即监护仪ID信息。
为更好地理解本发明的意图和实现方式,下面对各类体征监护数据的采集方法和原理进行简要介绍说明:
心电图数据:通过无创心电图检查的心电信号采集记录仪队心脏细胞电生理活动产生的信号以单导联或多导联的形式进行采集记录。
脉搏数据:脉搏是动脉血管随心脏舒缩而周期性博动的现象,脉搏包含血管内压、容积、位移和管壁张力等多种物理量的变化。我们优选的采用光电容积式脉搏测量,传感器由光源和光电变换器两部分组成,可夹在被测者的指尖或耳廓上。光源选择对动脉血中氧合血红蛋白有选择性的波长,比如采用光谱在700-900nm的发光二极管。这束光透过人体外周血管,当动脉充血容积变化时,改变了这束光的透光率,由光电变换器接收经组织透射或反射的光,转变为电信号送放大器放大和输出,由此反映动脉血管的容积变化。脉搏是随心脏的搏动而周期性变化的信号,动脉血管容积也周期性地变化,光电变换器的信号变化周期就是脉搏率,即脉搏数据。
血压数据:心脏收缩时所达到的最高压力称为收缩压,它把血液推进到主动脉,并维持全身循环。心脏扩张时所达到的最低压力称为舒张压,它使血液能回流到右心房。血压波形在一周内的积分除以心周期T称为平均压。血压数据的测量有多种方法可实现,具体可分为有创测量和无创测量。在多参数监护仪中我们优选采用柯氏音法和测振法两类无创测量方法。柯氏音法是检测袖带下的柯氏音(脉搏声)来测定血压的,柯氏音无创血压监护系统包括袖带充气系统、袖带、柯氏音传感器、音频放大及自动增益调整电路、A/D转换器、微处理器及显示部分等。测振法是检测气袖内气体的振荡波,振荡波源于血管壁的搏动,测量振荡波的相关点就可测定血压数据,包括收缩压(PS),舒张压(PD)和平均压(PM)。测振法获得脉搏振动波的方法可借助微音器和压力传感器,通过测量得到脉搏振动波即得到血压数据。对于一些特殊的应用场景下,也可以通过有创测量的方式来获得血压数据。比如对于重症加强护理组(ICU)病房的一些病人进行监测,就可通过直接在动脉进行插管,将插管的另一端连接到消毒过的注满液体的压力检测系统中实现血压数据的实时采集。这种有创监测方法的优点包括:可以实时的显示出血压大小,并可以显示连续的血压变化波形;在低血压状态可以有准确的读数;长期记录的病人舒适度得到提升,避免无创测量中长期充气放气导致的创伤;可以提取出更多的信息,包括从血压波形的形态上可以推算出血管容量等。
呼吸数据:呼吸测量是肺动能检查的重要部分。监护仪通过测量呼吸波来测定呼吸频率(次/分钟),即得到呼吸数据。呼吸频率的测量可通过热敏电阻直接测量呼吸气流的温度变化,经过电桥电路将这一变化变换成电压信号;也可采用阻抗法来测量呼吸频率,因为呼吸运动时,胸壁肌肉交变张驰,胸廓交替变形,肌体组织的电阻抗也随之交替变化。测量呼吸阻抗值的变化可采用电桥法、调制法、恒压源法和恒流源法等多种方式。在监护仪中,呼吸阻抗电极亦可与心电电极合用,检测心电信号时可同时检测呼吸阻抗变化和呼吸频率。
血氧饱和度数据:血氧饱和度是衡量人体血液携带氧的能力的重要参数。血氧饱和度的测量可以采用透射法(或反射法)双波长(红光R和红外光IR)光电检测技术,检测红光和红外光通过动脉血的光吸收引起的交变成分之比和非脉动组织(表皮、肌肉、静脉血等)引起光吸收的稳定分量(直流)值,通过计算可得到血氧饱和度值SpO2,即血氧饱和度数据。由于光电信号的脉动规律与心脏搏动的规律一致,所以根据检出信号的周期亦可同时确定脉搏数据。
体温数据:体温是了解生命状态的重要指标。体温的测量采用负温度系数的热敏电阻作为温度传感器,采用电桥作为检测电路。我们在具体的应用中可以采用集成化测温电路进行测量得到体温数据。亦可使用两道以上的测温电路,测量两个不同部位的温差对测量值进行修正。还可以采用体表探头和体腔探头,分别监护体表和腔内温度。在一些特殊的应用中,为了避免交叉传染,亦可以采用红外非接触测温技术来进行体温数据的监测。在监护仪中,我们设定测温精度在0.1℃,以便有较快的测温响应。
在本发明中,我们可以通过上述方法,使用多参数监护仪对被测对象进行体征监护数据采集,得到被测对象的体征监护数据。
在得到体征监护数据之后,就可以根据体征监护数据进行相应的数据识别和异常判断,并针对不同的异常,产生相应的报警,起到有效的监护作用。
在前面已经提到,心电的监测相对于其他血压、血氧、脉搏、呼吸、体温等生命体征指标的监测更为复杂,因此在本发明中对于心电图数据采用了不同于其他体征监护数据的处理方法,具体采用基于人工智能自学习的心电图自动分析方法进行心电图数据的识别、处理和异常判断。
如下步骤120-步骤140是针对心电图数据的处理过程,步骤150和步骤160是针对脉搏数据、血压数据、呼吸数据、血氧饱和度数据和体温数据等其他体征监护数据的处理过程。两个处理过程可以同步执行,没有先后执行顺序的限制。
步骤120,监护仪对心电图数据进行波群特征识别,得到心电图数据的特征信号,根据特征信号对心电图数据进行心搏分类,结合心电图基本规律参考数据得到心搏分类信息,并生成心电图事件数据;
具体的,本发明的心电图数据的处理过程,采用了基于人工智能自学习的心电图自动分析方法,是基于人工智能卷积神经网络(CNN)模型来实现的。CNN模型是深度学习中的监督学习方法,就是一个模拟神经网络的多层次网络(隐藏层hidden layer)连接结构,输入信号依次通过每个隐藏层,在其中进行一系列复杂的数学处理(Convolution卷积、Pooling池化、Regularization正则化、防止过拟合、Dropout暂时丢弃、Activation激活、一般使用Relu激活函数),逐层自动地抽象出待识别物体的一些特征,然后把这些特征作为输入再传递到高一级的隐藏层进行计算,直到最后几层的全连接层(Full Connection)重构整个信号,使用Softmax函数进行逻辑(logistics)回归,达到多目标的分类。
CNN属于人工智能中的监督学习方法,在训练阶段,输入信号经过多个的隐藏层处理到达最后的全连接层,softmax逻辑回归得到的分类结果,与已知的分类结果(label标签)之间会有一个误差,深度学习的一个核心思想就是通过大量的样本迭代来不断地极小化这个误差,从而计算得到连接各隐藏层神经元的参数。这个过程一般需要构造一个特别的损失函数(cost function),利用非线性优化的梯度下降算法和误差反向传播算法(backpropagation algorithm,BP),快速有效地极小化整个深度(隐藏层的层数)和广度(特征的维数)都十分复杂的神经网络结构中所有连接参数。
深度学习把需要识别的数据输入到训练模型,经过第一隐藏层、第二隐藏层、第三隐藏层,最后是输出识别结果。
在本发明中,对心电图数据进行波群特征识别、干扰识别、心搏分类等都是基于人工智能自学习的训练模型来得到输出结果,分析速度快,准确程度高。
具体的,本发明的心电图数据处理过程是在监护仪中执行的,包括对心电图数据进行波群特征识别,得到心电图数据的特征信号,根据特征信号对心电图数据进行心搏分类,结合心电图基本规律参考数据得到心搏分类信息,并生成心电图事件数据具体可以通过如图2所示的如下步骤来实现。该处理过程是实时的,因此可以迅速实时的获得处理结果。
步骤121,将心电图数据的数据格式经过重采样转换为预设标准数据格式,并对转换后的预设标准数据格式的心电图数据进行第一滤波处理;
具体的,心电图数据的格式适配读取,对不同的设备有不同的读取实现,读取后,需要调整基线、根据增益转换成毫伏数据。经过数据重采样,把数据转换成全流程能够处理的采样频率。然后通过滤波去除高频,低频的噪音干扰和基线漂移,提高人工智能分析准确率。将处理后的心电图数据以预设标准数据格式保存。
通过本步骤解决在使用不同导联,采样频率和传输数据格式的差异,以及通过数字信号滤波去除高频,低频的噪音干扰和基线漂移。
数字信号滤波可以分别采用高通滤波器,低通滤波器和中值滤波,把工频干扰、肌电干扰和基线漂移干扰消除,避免对后续分析的影响。
更具体的,可以采用低通、高通巴特沃斯滤波器进行零相移滤波,以去除基线漂移和高频干扰,保留有效的心电信号;中值滤波则可以利用预设时长的滑动窗口内数据点电压幅值的中位数替代窗口中心序列的幅值。可以去除低频的基线漂移。
步骤122,对第一滤波处理后的心电图数据进行心搏检测处理,识别心电图数据包括的多个心搏数据;
每个心搏数据对应一个心搏周期,包括相应的P波、QRS波群、T波的幅值和起止时间数据。本步骤中的心搏检测由两个过程构成,一是信号处理过程,从所述第一滤波处理后的心电图数据中提取QRS波群的特征频段;二是通过设置合理的阈值确定QRS波群的发生时间。在心电图中,一般会包含P波、QRS波群、T波成分以及噪声成分。一般QRS波群的频率范围在5到20Hz之间,可以通过一个在此范围内的带通滤波器提出QRS波群信号。然而P波、T波的频段以及噪声的频段和QRS波群频段有部分重叠,因此通过信号处理的方法并不能完全去除非QRS波群的信号。因此需要通过设置合理的阈值来从信号包络中提取QRS波群位置。具体的检测过程是一种基于峰值检测的过程。针对信号中每一个峰值顺序进行阈值判断,超过阈值时进入QRS波群判断流程,进行更多特征的检测,比如RR间期、形态等。
多参数监护仪往往是进行长时间记录,其过程中心搏信号的幅度和频率时时刻刻都在变化,并且在疾病状态下,这种特性会表现的更强。在进行阈值设定时,需要根据数据特征在时域的变化情况动态的进行阈值调整。为了提高检测的准确率和阳性率,QRS波群检测大多采用双幅度阈值结合时间阈值的方式进行,高阈值具有更高的阳性率,低阈值具有更高的敏感率,在RR间期超过一定时间阈值,使用低阈值进行检测,减少漏检情况。而低阈值由于阈值较低,容易受到T波、肌电噪声的影响,容易造成多检,因此优先使用高阈值进行检测。
对于不同导联的心搏数据都具有导联参数,用以表征该心搏数据为哪个导联的心搏数据。因此在得到心电图数据的同时也就可以根据其传输来源确定了其导联的信息,将此信息作为心搏数据的导联参数。
步骤123,根据心搏数据确定每个心搏的检测置信度;
具体的,置信度计算模块在心搏检测的过程中,根据QRS波群的幅度以及RR间期内噪声信号的幅度比例可以提供针对QRS波群检测置信度的估计值。
步骤124,根据干扰识别二分类模型对心搏数据进行干扰识别,得到心搏数据是否存在干扰噪音,以及用于判断干扰噪音的一个概率值;
因为多参数监护仪在长时间记录过程中易受多种影响出现干扰现象,导致获取的心搏数据无效或不准确,不能正确反映受测者的状况,同时也增加医生诊断难度及工作量;而且干扰数据也是导致智能分析工具无法有效工作的主要因素。因此,将外界信号干扰降到最低显得尤为重要。
本步骤基于以深度学习算法为核心的端到端二分类识别模型,具有精度高,泛化性能强的特点,可有效地解决电极片脱落、运动干扰和静电干扰等主要干扰来源产生的扰动问题,克服了传统算法因干扰数据变化多样无规律而导致的识别效果差的问题。
具体可以通过如下方法来实现:
步骤A,对心搏数据使用干扰识别二分类模型进行干扰识别;
步骤B,识别心搏数据中,心搏间期大于等于预设间期判定阈值的数据片段;
步骤C,对心搏间期大于等于预设间期判定阈值的数据片段进行信号异常判断,确定是否为异常信号;
其中,异常信号的识别主要包括是否为电极片脱落、低电压等情况。
步骤D,如果不是异常信号,则以预设时间宽度,根据设定时值确定数据片段中滑动取样的起始数据点和终止数据点,并由起始数据点开始对数据片段进行滑动取样,至终止数据点为止,得到多个取样数据段;
步骤E,对每个取样数据段进行干扰识别。
以一个具体的例子对上述步骤A-E进行说明。对每个导联的心搏数据以设定的第一数据量进行切割采样,然后分别输入到干扰识别二分类模型进行分类,获得干扰识别结果和对应结果的一个概率值;对心搏间期大于等于2秒的心搏数据,先判断是否是信号溢出,低电压,电极脱落;如果不是上述情况,就按照第一数据量,从左边心搏开始,向右连续以第一数据量不重叠滑动取样,进行识别。
输入可以是任一导联的第一数据量心搏数据,然后采用干扰识别二分类模型进行分类,直接输出是否为干扰的分类结果,获得结果快,精确度高,稳定性好,可为后续分析提供更有效优质的数据。
因为干扰数据往往是由外界扰动因素的作用而引起的,主要有电极片脱落、低电压、静电干扰和运动干扰等情况,不但不同扰动源产生的干扰数据不同,而且相同扰动源产生的干扰数据也是多种多样;同时考虑到干扰数据虽然多样性布较广,但与正常数据的差异很大,所以在收集干扰的训练数据时也是尽可能的保证多样性,同时采取移动窗口滑动采样,尽可能增加干扰数据的多样性,以使模型对干扰数据更加鲁棒,即使未来的干扰数据不同于以往任何的干扰,但相比于正常数据,其与干扰的相似度也会大于正常数据,从而使模型识别干扰数据的能力增强。
本步骤中采用的干扰识别二分类模型可以如图3所示,网络首先使用2层卷积层,卷积核大小是1x5,每层后加上一个最大值池化。卷积核数目从128开始,每经过一次最大池化层,卷积核数目翻倍。卷积层之后是两个全连接层和一个softmax分类器。由于该模型的分类数为2,所以softmax有两个输出单元,依次对应相应类别,采用交叉熵做为损失函数。
对于该模型的训练,我们采用了来源于30万病人近400万精确标注的数据片段。标注分为两类:正常心电图信号或者是有明显干扰的心电图信号片段。我们通过定制开发的工具进行片段标注,然后以自定义标准数据格式保存干扰片段信息。
在训练过程,使用两台GPU服务器进行几十次轮循训练。在一个具体的例子中,采样率是200Hz,数据长度是300个心电图电压值(毫伏)的一个片段D[300],输入数据是:InputData(i,j),其中,i是第i个导联,j是导联i第j个片段D。输入数据全部经过随机打散才开始训练,保证了训练过程收敛,同时,控制从同一个病人的心电图数据中收集太多的样本,提高模型的泛化能力,既真实场景下的准确率。训练收敛后,使用100万独立的测试数据进行测试,准确率可以到达99.3%。另有具体测试数据如下表1。
干扰 正常
敏感率(Sensitivity) 99.14% 99.32%
阳性预测率(Positive Predicitivity) 96.44% 99.84%
表1
步骤125,根据检测置信度确定心搏数据的有效性,并且,根据确定有效的心搏数据的导联参数和心搏数据,基于干扰识别的结果和时间规则合并生成心搏时间序列数据,并根据心搏时间序列数据生成心搏分析数据;
具体的,由于心电图信号的复杂性以及每个导联可能受到不同程度的干扰影响,依靠单个导联检测心搏会存在多检和漏检的情况,不同导联检测到心搏结果的时间表征数据没有对齐,所以需要对所有导联的心搏数据根据干扰识别结果和时间规则进行合并,生成一个完整的心搏时间序列数据,统一所有导联心搏数据的时间表征数据。其中,时间表征数据用于表示每个数据点在心电图数据信号时间轴上的时间信息。根据这个统一的心搏时间序列数据,在后续的分析计算时,可以使用预先设置好的阀值,对各导联心搏数据进行切割,从而生成具体分析需要的各导联的心搏分析数据。
上述每个导联的心搏数据在合并前,需要根据步骤123中获得的检测置信度确定心搏数据的有效性。
具体的,导联心搏合并模块执行的心搏数据合并过程如下:根据心电图基本规律参考数据的不应期获取不同导联心搏数据的时间表征数据组合,丢弃其中偏差较大的心搏数据,对上述时间表征数据组合投票产生合并心搏位置,将合并心搏位置加入合并心搏时间序列,移动到下一组待处理的心搏数据,循环执行直至完成所有心搏数据的合并。
其中,心电图活动不应期可以优选在200毫秒至280毫秒之间。获取的不同导联心搏数据的时间表征数据组合应满足以下条件:心搏数据的时间表征数据组合中每个导联最多包含一个心搏数据的时间表征数据。在对心搏数据的时间表征数据组合进行投票时,使用检出心搏数据的导联数占有效导联数的百分比来决定;若心搏数据的时间表征数据对应导联的位置为低电压段、干扰段以及电极脱落时认为该导联对此心搏数据为无效导联。在计算合并心搏具体位置时,可以采用心搏数据的时间表征数据平均值得到。在合并过程中,本方法设置了一个不应期来避免错误合并。
在本步骤中,通过合并操作输出一个统一的心搏时间序列数据。该步骤同时能够降低心搏的多检率和漏检率,有效的提高心搏检测的敏感度和阳性预测率。
步骤126,根据心搏分类模型对心搏分析数据进行幅值和时间表征数据的特征提取和分析,得到心搏分析数据的一次分类信息;
具体的,不同动态心电图设备在信号测量、采集或者输出的导联数据等方面存在的差异,因此可以根据具体情况,使用简单的单导联分类方法,或者是多导联分类方法。多导联分类方法又包括导联投票决策分类方法和导联同步关联分类方法两种。导联投票决策分类方法是基于各导联的心搏分析数据进行导联独立分类,再把结果投票融合确定分类结果的投票决策方法;导联同步关联分类方法则采用对各导联的心搏分析数据进行同步关联分析的方法。单导联分类方法就是对单导联设备的心搏分析数据,直接使用对应导联模型进行分类,没有投票决策过程。下面对以上所述几种分类方法分别进行说明。
单导联分类方法包括:
根据心搏时间序列数据,将单导联心搏数据进行切割生成单导联的心搏分析数据,并输入到训练得到的对应该导联的心搏分类模型进行幅值和时间表征数据的特征提取和分析,得到单导联的一次分类信息。
导联投票决策分类方法可以具体包括:
第一步、根据心搏时间序列数据,对各导联心搏数据进行切割,从而生成各导联的心搏分析数据;
第二步、根据训练得到的各导联对应的心搏分类模型对各导联的心搏分析数据进行幅值和时间表征数据的特征提取和分析,得到各导联的分类信息;
第三步、根据各导联的分类信息和导联权重值参考系数进行分类投票决策计算,得到所述一次分类信息。具体的,导联权重值参考系数是基于心电数据贝叶斯统计分析得到各导联对不同心搏分类的投票权重系数。
导联同步关联分类方法可以具体包括:
根据心搏时间序列数据,对各导联心搏数据进行切割,从而生成各导联的心搏分析数据;然后根据训练得到的多导联同步关联分类模型对各导联的心搏分析数据进行同步幅值和时间表征数据的特征提取和分析,得到心搏分析数据的一次分类信息。
心搏数据的同步关联分类方法输入是动态心电图设备所有导联数据,按照心搏分析数据统一的心搏位点,截取各导联上相同位置和一定长度的数据点,同步输送给经过训练的人工智能深度学习模型进行计算分析,输出是每个心搏位置点综合考虑了所有导联心电图信号特征,以及心搏在时间上前后关联的心律特征的准确心搏分类。
本方法充分考虑了心电图不同导联数据实际上就是测量了心脏电信号在不同的心电轴向量方向传递的信息流,把心电图信号在时间和空间上传递的多维度数字特征进行综合分析,极大地改进了传统方法仅仅依靠单个导联独立分析,然后把结果汇总进行一些统计学的投票方式而比较容易得出的分类错误的缺陷,极大地提高了心搏分类的准确率。
本步骤中采用的心搏分类模型可以如图4所示,具体可以为基于人工智能深度学习的卷积神经网络AlexNet,VGG16,Inception等模型启发的端对端多标签分类模型。具体的讲,该模型的网络是一个7层的卷积网络,每个卷积之后紧跟一个激活函数。第一层是两个不同尺度的卷积层,之后是六个卷积层。七层卷积的卷积核分别是96,256,256,384,384,384,256。除第一层卷积核有两个尺度分别是5和11外,其他层卷积核尺度为5。第三、五、六、七层卷积层后是池化层。最后跟着两个全连接层。
本步骤中的心搏分类模型,我们采用了训练集包含30万病人的1700万数据样本进行训练。这些样本是根据动态心电图分析诊断的要求对数据进行准确的标注产生的,标注主要是针对常见心律失常,传导阻滞以及ST段和T波改变,可满足不同应用场景的模型训练。具体以预设标准数据格式保存标注的信息。在训练数据的预处理上,为增加模型的泛化能力,对于样本量较少的分类做了小幅的滑动来扩增数据,具体的说,就是以每个心搏为基础,按照一定步长(比如10-50个数据点)移动2次,这样就可以增加2倍的数据,提高了对这些数据量比较少的分类样本的识别准确率。经过实际结果验证,泛化能力也得到了改善。
在一个实际训练过程使用了两台GPU服务器进行几十次轮循训练,训练收敛后,使用500万独立的测试数据进行测试,准确率可以到达91.92%。
其中,训练数据的截取的长度,可以是1秒到10秒。比如采样率是200Hz,以2.5s为采样长度,取得的数据长度是500个心电图电压值(毫伏)的一个片段D[500],输入数据是:InputData(i,j),其中,i是第i个导联,j是导联i第j个片段D。输入数据全部经过随机打散才开始训练,保证了训练过程收敛,同时,控制从同一个病人的心电图数据中收集太多的样本,提高模型的泛化能力,既真实场景下的准确率。训练时候,同步输入所有导联对应的片段数据D,按照图像分析的多通道分析方法,对每个时间位置的多个空间维度(不同心电轴向量)的导联数据进行同步学习,从而得到一个比常规算法更准确的分类结果。
步骤127,对一次分类信息结果中的特定心搏的心搏分析数据输入到ST段和T波改变模型进行识别,确定ST段和T波评价信息;
ST段和T波评价信息具体为心搏分析数据对应的ST段和T波发生改变的导联位置信息。因为临床诊断要求对于ST段和T波的改变定位到具体的导联。
其中,一次分类信息的特定心搏数据是指包含窦性心搏(N)和其它可能包含ST改变的心搏类型的心搏分析数据。
ST段和T波改变导联定位模块将一次分类信息的特定心搏数据,按照每个导联依次输入到一个为识别ST段和T波改变的人工智能深度学习训练模型,进行计算分析,输出的结果说明导联片段的特征是否符合ST段和T波改变的结论,这样就可以确定ST段和T波改变发生的在具体那些导联的信息,即ST段和T波评价信息。具体方法可以是:把一次分类信息中结果是窦性心搏的各导联心搏分析数据,输入给ST段和T波改变模型,对窦性心搏分析数据进行逐一识别判断,以确定窦性心搏分析数据是否存在ST段和T波改变特征以及发生的具体导联位置信息,确定ST段和T波评价信息。
本步骤中采用的ST段和T波改变模型可以如图5所示,具体可以为基于人工智能深度学习的卷积神经网络AlexNet和VGG16等模型启发的端对端分类模型。具体的讲,该模型是一个7层的网络,模型包含了7个卷积,5个池化和2个全连接。卷积使用的卷积核均为1x5,每层卷积的滤波器个数各不相同。第1层卷积滤波器个数为96;第2层卷积和第3层卷积连用,滤波器个数为256;第4层卷积和第5层卷积连用,滤波器个数为384;第6层卷积滤波器个数为384;第7层卷积滤波器个数为256;第1、3、5、6、7层卷积层后是池化。随后是两个全连接,最后还采用Softmax分类器将结果分为两类。为了增加模型的非线性,提取数据更高维度的特征,故采用两个卷积连用的模式。
因为带有ST段和T波改变的心搏在所有心搏中的占比较低,为了兼顾训练数据的多样性及各个类别数据量的均衡性,选取无ST段和T波改变以及有ST段和T波改变的训练数据比例约为2:1,保证了模型在分类过程中良好的泛化能力且不出现对训练数据占比较多一类的倾向性。由于心搏的形态多种多样,不同个体表现的形态不尽相同,因此,为了模型更好估计各分类的分布,能有效提取特征,训练样本从不同年龄,体重,性别和居住地区的个体收集;另外,因为单个个体在同一时间段内的心电图数据往往是高度相似的,所以为了避免过度学习,在获取单个个体的数据时,从所有数据中随机选取不同时间段的少量样本;最后,由于患者的心搏形态存在个体间差异大,而个体内相似度高的特点,因而在划分训练、测试集时,把不同的患者分到不同的数据集,避免同一个体的数据同时出现在训练集与测试集中,由此,所得模型测试结果最接近真实应用场景,保证了模型的可靠性和普适性。
步骤128,根据心搏时间序列数据,对心搏分析数据进行P波和T波特征检测,确定每个心搏中P波和T波的详细特征信息;
具体的,详细特征信息包括幅值、方向、形态和起止时间的数据;在对心搏信号的分析中,P波、T波以及QRS波中的各项特征也是心电图分析中的重要依据。
在P波和T波特征检测模块中,通过计算QRS波群中切分点位置,以及P波和T波的切分点位置,来提取P波、T波以及QRS波群中的各项特征。可以分别通过QRS波群切分点检测、单导联PT检测算法和多导联PT检测算法来实现。
QRS波群切分点检测:根据QRS波群检测算法提供的QRS波群段功率最大点以及起止点,寻找单个导联中QRS波群的R点,R’点,S点以及S’点。在存在多导联数据时,计算各个切分点的中位数作为最后的切分点位置。
单导联P波、T波检测算法:P波和T波相对QRS波群幅度低、信号平缓,容易淹没在低频噪声中,是检测中的难点。本方法依据QRS波群检测的结果,在消除QRS波群对低频频段的影响后,使用低通滤波器对信号进行第三滤波,使PT波相对幅度增高。之后通过峰值检测的方法在两个QRS波群之间寻找T波。因为T波是心室复极产生的波群,因此T波和QRS波群之间有明确的锁时关系。以检测到的QRS波群为基准,在每个QRS波群到下一个QRS波群间期取中点(比如限制在第一个QRS波群后400ms到600ms之间的范围)作为T波检测结束点,在此区间内选取最大的峰作为T波。再在剩余的峰值内选择幅度最大的峰为P波。同时也根据P波和T波的峰值与位置数据,确定P波和T波的方向和形态特征。优选的,低通滤波的截止频率设置为10-30Hz之间。
多导联P波、T波检测算法:在多导联的情况中,由于心搏中各个波的产生时间相同,空间分布不同,而噪声的时间空间分布不同,可以通过溯源算法来进行P、T波的检测。首先对信号进行QRS波群消除处理并使用低通滤波器对信号进行第三滤波以去除干扰。之后通过独立成分分析算法计算原始波形中的各个独立成分。在分离出的各个独立成分中,依据其峰值的分布特征以及QRS波群位置,选取相应的成分作为P波和T波信号,同时确定P波和T波的方向和形态特征。
步骤129,对心搏分析数据在一次分类信息下根据心电图基本规律参考数据、P波和T波的详细特征信息以及ST段和T波评价信息进行二次分类处理,得到心搏分类信息;以及对心搏分类信息进行分析匹配,生成心电图事件数据。
具体的,心电图基本规律参考数据是遵循权威心电图教科书中对心肌细胞电生理活动和心电图临床诊断的基本规则描述生成的,比如两个心搏之间最小的时间间隔,P波与R波的最小间隔等等,用于将心搏分类后的一次分类信息再进行细分;主要根据是心搏间RR间期以及不同心搏信号在各导联上的医学显著性;心搏审核模块依据心电图基本规律参考数据结合一定连续多个心搏分析数据的分类识别,以及P波和T波的详细特征信息将室性心搏分类拆分更细的心搏分类,包括:室性早搏(V)、室性逸搏(VE)、加速性室性早搏(VT),将室上性类心搏细分为室上性早搏(S)、房性逸搏(SE)、交界性逸搏(JE)和房性加速性早搏(AT)等等。
此外,通过二次分类处理,还可以纠正一次分类中发生的不符合心电图基本规律参考数据的错误分类识别。将细分后的心搏分类按照心电图基本规律参考数据进行模式匹配,找到不符合心电图基本规律参考数据的分类识别,根据RR间期及前后分类标识纠正为合理的分类。
具体的,经过二次分类处理,可以输出多种心搏分类,比如:正常窦性心搏(N)、完全性右束支阻滞(N_CRB)、完全性左束支阻滞(N_CLB)、室内阻滞(N_VB)、一度房室传导阻滞(N_B1)、预激(N_PS)、室性早搏(V)、室性逸搏(VE)、加速性室性早搏(VT)、室上性早搏(S)、房性逸搏(SE)、交界性逸搏(JE)、加速性房性早搏(AT)、房扑房颤(AF)、伪差(A)等分类结果。
通过本步骤,还可以完成基础心率参数的计算。其中基础计算的心率参数包括:RR间期、心率、QT时间、QTc时间等参数。
随后,根据心搏二次分类结果,按照心电图基本规律参考数据进行模式匹配,可以得到心电图事件数据。心电事件数据也包括有监护仪ID信息,用以说明该数据来源于哪台监护仪,从而能够在实际应用中快速对应到相应的病房、床位以及患者。心电图事件数据可以对应以下这些典型的心电图事件,包括但不限于:
室上性早搏
室上性早搏成对
室上性早搏二联律
室上性早搏三联律
房性逸搏
房性逸搏心律
交界性逸搏
交界性逸搏心律
非阵发性室上性心动过速
最快室上性心动过速
最长室上性心动过速
室上性心动过速
短阵室上性心动过速
心房扑动-心房颤动
室性早搏
室性早搏成对
室性早搏二联律
室性早搏三联律
室性逸搏
室性逸搏心律
加速性室性自主心律
最快室性心动过速
最长室性心动过速
室性心动过速
短阵室性心动过速
二度I型窦房传导阻滞
二度II型窦房传导阻滞
一度房室传导阻滞
二度I型房室传导阻滞
二度II型房室传导阻滞
二度II型(2:1)房室传导阻滞
高度房室传导阻滞
完全性左束支阻滞
完全性右束支阻滞
室内阻滞
预激综合症
ST段和T波改变
最长RR间期
步骤130,监护仪根据心电图事件数据确定对应的心电图事件信息,并确定心电图事件信息是否为所述心电异常事件信息;
具体的,监护仪根据心电图事件数据,可以确定对应不同心电图事件的心电图事件信息,比如可以是对应上述心电图事件的事件信息,也可以是基于上述心电图事件进一步汇总的事件信息,例如将各种传导阻滞事件归类为传导阻滞事件信息下的异常事件。
在多参数监护仪中存储有预设的心电异常事件信息,预设的心电异常事件信息,即为需要产生报警的心电图事件的对应的事件信息,也就是需要产生报警的非正常的心电图事件的事件信息。这些信息经过预设设定,可以存储在多参数监护仪本地,也可以存储在多参数监护仪接入的系统或者网络的存储器中,可以被多参数监护仪获取得到。
当心电图事件数据确定对应的心电图事件信息为预设的心电异常事件信息时,执行步骤140。
如果心电图事件数据确定对应的心电图事件信息不是预设的心电异常事件信息,则说明没有需要产生报警的异常心电状况发生,继续持续进行步骤110的监测。
步骤140,输出第一报警信息;
具体的,当心电图事件数据确定对应的心电图事件信息为预设的心电异常事件信息时,生成并输出第一报警信息。
第一报警信息就是指心电异常事件的报警信息,其中包括心电异常事件信息和报警时间信息和监护仪ID信息。因此第一报警信息是根据心电异常事件信息和报警时间信息生成的。报警时间信息进一步的可以是心电异常事件发生的时间的信息,即从时间属性信息中获得的时间信息,也可以是对心电图数据进行处理后确定心电图事件信息为预设的心电异常事件信息的系统时间的信息。
为进行不同参数区分,心电异常事件信息具有对应的项目信息,即心电项目,能够表明该异常事件是心电事件。
本发明能够产生报警信息输出的报警类型包括但不限于:
1、窦性心率事件:
a)窦性心动过速
b)窦性心动过缓
2、室上性心动过速
a)房性心动过速
b)房扑
c)房颤
d)房室折返
3、室性心动过速
a)单纯性室性心动过速
b)多形性室性心动过速
c)双向性室性心动过速
d)扭转性室性心动过速
e)早搏性室性心动过速
f)室扑
g)室颤
4、ST-T段改变
a)R-on-t室性早搏
b)R-on-P室性早搏
c)交替出现宽大T波
5、传导阻滞
a)高二度传导阻滞
b)三度传导阻滞
以上即实现了心电图数据的数据分析处理到异常报警输出的过程。
其中,第一报警信息的输出可以在多参数监护仪的显示器上本地输出,或者由多参数监护仪本地打印输出,还可以通过有线或无线网络传送到接收端,比如工作站或服务端(具体可以如移动设备),以满足不同的使用需求。
步骤150,监护仪确定脉搏数据、血压数据、呼吸数据、血氧饱和度数据和体温数据中的一个或多个是否存在超出相应的设定阈值的异常数据;
在实际数据处理的过程中,步骤150与步骤120-140可以并行执行,或者任意先后执行,二者之间并无严格的先后顺序。
具体的,对于脉搏数据、血压数据、呼吸数据、血氧饱和度数据和体温数据,通过选取监测基准数据确定相应的参数阈值。
当发生上述体征监护数据中的一项或多项超出设定参数阈值时,执行步骤160;否则继续执行步骤110,继续进行体征检测。
步骤160,监护仪根据异常数据生成其他异常事件信息,并输出第二报警信息;
具体的,当脉搏数据、血压数据、呼吸数据、血氧饱和度数据和体温数据有超出相应设定参数范围的数据时,根据具体的超出项生成其他异常事件信息。其中,其他异常事件信息具有对应的项目信息,用于指示是哪个项目的数据出现了异常。比如脉搏、血压、呼吸、血氧或体温等。
第二报警信息就是指除心电异常外的上述其它异常事件的报警信息,其中包括其他异常事件信息和报警时间信息。因此第二报警信息是根据其他异常事件信息和报警时间信息生成的。报警时间信息进一步的可以是其它异常事件发生的时间的信息,即从时间属性信息中获得的时间信息,也可以是对除心电图数据外的其它体征数据进行处理后确定这些监测数据中存在其它异常事件的系统时间的信息。
同样的,第二报警信息的输出可以在多参数监护仪的显示器上本地输出,或者由多参数监护仪本地打印输出,还可以通过网络传送到接收端,比如工作站或服务端(具体可以如移动设备),以满足不同的使用需求。
步骤170,监护仪将第一报警信息和/或第二报警信息发送至工作站,使工作站根据第一报警信息和/或所述第二报警信息产生相应的报警输出信号。
上述步骤中已经提到,在产生第一报警信息或者第二报警信息后,监护仪除了将相应的报警信息在本地输出,还发送到工作站。因此能够实现工作站与监护仪本地的同步报警输出,使得工作站端的或者工作站连接的其他用户设备,如医生携带的报警信息接收终端等设备能够同步接收到报警信息,从而自动实现报警信息的同步分发,从而达到快速响应的效果。
此外,本发明的多参数监护数据分析方法,还能够对异常事件发生前后的数据进行记录,以便于能够方便的进行异常分析。
为此,本发明的多参数监护仪能够根据体征监护数据的时间属性信息对体征监护数据进行汇总,生成体征监护数据的时间序列数据,并进行存储。
在判断到发生有与预设的心电异常事件信息相应的异常事件时,根据异常事件信息所对应的时间属性信息获取异常事件发生时间的前后预设时段内的心电图数据,生成异常事件记录数据,同时生成异常事件记录数据与第一报警信息的关联信息,存储并发送给工作站。该预设时间段的长短可以根据需要设定,在本实施例中优选为36秒。
在输出第一报警信息后,多参数监护仪的用户界面上事件列表栏中会显示有第一报警信息的记录,当用户通过触摸屏或鼠标等可操作设备点击该记录时,多参数监护仪接收到第一报警信息的查阅指令;此时,根据被点击的记录对应到第一报警信息,并根据异常事件记录数据与第一报警信息的关联信息查询获取到第一报警信息关联的异常事件记录数据。
在本方案中,还可以对异常事件记录数据进行分析处理,生成并输出异常事件报告数据。通过报告数据输出异常事件以及对异常事件的详细描述,具体可以包括但不限于各异常参数、发生时间、基于异常参数的分析结果等等,并可以将数据以图形化方式进行播放,比如心电图数据的图形化回放等。
同样的,对于第二报警信息产生时,也可以以同样方法,记录第二报警信息产生前后的各参数,用以方便的进行分析判断,此处不再赘述。
进一步的,还可以根据心电图数据、脉搏数据、血压数据、呼吸数据、血氧饱和度数据和体温数据等各参数进行综合考量,根据第一报警信息和第二报警信息生成报警事件数据,然后根据报警时间信息,对报警事件数据进行输出显示;报警事件数据包括体征监护数据的项目信息以及所对应的心电异常事件信息和/或其他异常事件信息。
图6为本发明实施例提供的一种多参数监护系统的结构示意图,该多参数监护系统包括:至少一台监护仪1和工作站2;
监护仪1包括:存储器11和处理器12;存储器11可通过总线13与处理器12连接。存储器11可以是非易失存储器,例如硬盘驱动器和闪存,存储器11中存储有软件程序和设备驱动程序。软件程序能够执行本发明实施例提供的上述方法的各种功能;设备驱动程序可以是网络和接口驱动程序。处理器12用于执行软件程序,该软件程序被执行时,能够实现本发明实施例提供的方法。
需要说明的是,本发明实施例还提供了一种计算机可读存储介质。该计算机可读存储介质上存储有计算机程序,该计算机程序被处理器执行时,能够实现本发明实施例提供的方法。
本发明实施例还提供了一种包含指令的计算机程序产品。当该计算机程序产品在计算机上运行时,使得处理器执行上述方法。
本发明上述实施例提供的多参数监护数据分析方法和多参数监护系统,能够对多参数监护仪监测的心电、血压、血氧、脉搏、呼吸、体温等体征数据进行自动、快速、完整的分析,对异常的心电状态、其他各项体征的异常参数,以及二者结合给出预警,并上传至工作站。能够减少干扰带来的误报现象。报警准确度高,可检测的异常种类特别是心电异常的种类多,并能够根据指令对心电数据进行动态的回放输出。本发明的多参数监护数据分析方法及多参数监护系统适用范围广,具有良好的应用前景。
在上面的实施例中,多参数监护数据分析的主要数据处理过程是在多参数监护仪中实现的。在下面的实施例中,多参数监护数据分析的主要数据处理过程由工作站执行。
相应的,本发明在实施例二中提出了另一种多参数监护数据分析方法,其方法步骤流程如图7所示,该方法主要包括如下步骤:
步骤210,监护仪对被测对象进行体征监护数据采集,得到被测对象的体征监护数据并获取被测对象信息,将体征监护数据和被测对象信息发送给工作站;
具体的,被测对象是指由多参数监护仪进行床旁监护的生命体,其中,最常规的被测对象是指人。被测对象信息具体可以是被测者的姓名、患者ID、床位号等信息,其中必须具有能够用以唯一标识用户身份的信息。
监护仪具有与被测对象相接触的电极、探头、袖带等体征信号采集装置,通过体征信号采集装置采集被测对象的体征信号,并通过数字化处理得到体征监护数据。体征监护数据可以具体包括:心电图数据、脉搏数据、血压数据、呼吸数据、血氧饱和度数据和体温数据等。体征监护数据具有时间属性信息,每个数据点都有对应的数据采集时间,这个时间即是时间属性信息。在进行数据采集的同时,这个数据采集时间也被记录下来,并作为体征监护数据的时间属性信息进行存储。体征监护数据还具有监护仪ID信息,在进行体征监护数据采集的时候,在采集得到的体征监护数据中同时记录有用以采集该数据的监护仪的信息,即监护仪ID信息。
监护仪实时的将监测得到的体征监测数据,通过上述实施例中提及的有线或无线方式发送给工作站。
步骤220,工作站根据被测对象信息确定监测基准数据;
具体的,监测基准数据包括被测对象信息对应的体征数据阈值及心电异常事件信息。
工作站根据被测对象信息,获取与被测对象相符的监测基准数据。
比如被测对象信息是患者ID,根据患者ID确定被测对象是新生儿,则获取新生儿的监测基准数据。
监测基准数据可以通过预先设定的方法存储在工作站或者工作站连接的网络数据存储设备中。
确定检测基准数据的过程也可以与下面的步骤230同步执行,或者在步骤230之后执行。
步骤230,工作站对心电图数据进行波群特征识别,得到心电图数据的特征信号,根据特征信号对心电图数据进行心搏分类,结合心电图基本规律参考数据得到心搏分类信息,并生成心电图事件数据;
具体的,工作站执行的心电图数据的处理过程,与前述实施例一中监护仪执行的心电图数据的处理过程是相同的,只是执行主体不同,具体流程可以参考前一实施例的步骤120,以及说明书附图2,此处不再赘述。最终得到的心电事件数据包括监护仪ID信息。
步骤240,工作站根据心电图事件数据确定对应的心电图事件信息,并确定心电图事件信息是否为预设的心电异常事件信息;
具体的,工作站根据心电图事件数据,可以确定对应不同心电图事件的心电图事件信息,比如可以是对应上述心电图事件的事件信息,也可以是基于上述心电图事件进一步汇总的事件信息,例如将各种传导阻滞事件归类为传导阻滞事件信息下的异常事件。
当心电图事件数据确定对应的心电图事件信息为预设的心电异常事件信息时,执行步骤250。如果心电图事件数据确定对应的心电图事件信息不是预设的心电异常事件信息,则说明没有需要产生报警的异常心电状况发生,继续持续进行步骤210的监测。
步骤250,生成第一报警信息;
具体的,当心电图事件数据确定对应的心电图事件信息为预设的心电异常事件信息时,生成并输出第一报警信息。
第一报警信息就是指心电异常事件的报警信息,其中包括心电异常事件信息和报警时间信息和监护仪ID信息。因此第一报警信息是根据心电异常事件信息和报警时间信息生成的。报警时间信息进一步的可以是心电异常事件发生的时间的信息,即从时间属性信息中获得的时间信息,也可以是对心电图数据进行处理后确定心电图事件信息为预设的心电异常事件信息的系统时间的信息。
为进行不同参数区分,心电异常事件信息具有对应的项目信息,即心电项目,能够表明该异常事件是心电事件。
本发明能够产生报警信息输出的报警类型参见前述实施例中步骤140中的具体举例。
步骤260,工作站确定脉搏数据、血压数据、呼吸数据、血氧饱和度数据和体温数据中的一个或多个是否存在超出相应的设定阈值的异常数据,并根据异常数据生成其他异常事件信息;
在实际数据处理的过程中,步骤260与步骤220以及230可以并行执行,或者任意先后执行,二者之间并无严格的先后顺序。
具体的,对于脉搏数据、血压数据、呼吸数据、血氧饱和度数据和体温数据,通过选取监测基准数据确定相应的参数阈值。
当发生上述体征监护数据中的一项或多项超出设定参数阈值时,执行步骤270;否则继续执行步骤210,继续进行体征检测。
步骤270,工作站根据异常数据生成其他异常事件信息,并输出第二报警信息;
具体的,当脉搏数据、血压数据、呼吸数据、血氧饱和度数据和体温数据有超出相应设定参数范围的数据时,根据具体的超出项生成其他异常事件信息。其中,其他异常事件信息具有对应的项目信息,用于指示是哪个项目的数据出现了异常。比如脉搏、血压、呼吸、血氧或体温等。
第二报警信息就是指除心电异常外的上述其它异常事件的报警信息,其中包括其他异常事件信息和报警时间信息。因此第二报警信息是根据其他异常事件信息和报警时间信息生成的。报警时间信息进一步的可以是其它异常事件发生的时间的信息,即从时间属性信息中获得的时间信息,也可以是对除心电图数据外的其它体征数据进行处理后确定这些监测数据中存在其它异常事件的系统时间的信息。第二报警信息中包括其他异常事件信息、报警时间信息和监护仪ID信息。
步骤280,工作站输出第一报警信息和/或第二报警信息,和/或根据监护仪ID信息将第一报警信息和/或第二报警信息发送至监护仪,使监护仪根据第一报警信息和/或第二报警信息产生相应的报警输出信号。
具体的,在产生第一报警信息或者第二报警信息后,工作站除了将相应的报警信息在工作站一侧进行输出之外,还发送到根据监护仪ID信息将报警信息发送到相应的监护仪,除报警信息外还可能包括报警发生前后的数据,具体会在后面进行说明。由此能够实现工作站与监护仪的同步报警输出,使得工作站、监护仪能够同步接收到报警信息,使得在监护仪附近的医护人员能够即刻接收到报警,极大提高了响应速度。此外,工作站连接的其他用户设备,如医生携带的报警信息接收终端等设备也能够同步接收到工作站分发的报警信息,从而自动实现报警信息的同步分发,从而达到快速响应的效果。
此外,本发明的多参数监护数据分析方法,还能够对异常事件发生前后的数据进行记录,以便于能够方便的进行异常分析。
为此,工作站根据体征监护数据的时间属性信息对体征监护数据进行汇总,生成体征监护数据的时间序列数据,并进行存储。
在判断到发生有与预设的心电异常事件信息相应的异常事件时,工作站根据时间属性信息获取心电图数据对应时间的前后预设时段内的心电图数据,生成异常事件记录数据;同时,工作站生成异常事件记录数据与第一报警信息的关联信息,并进行存储。对于第二报警信息,也可以以同样的方式生成关联信息。
在输出第一报警信息或第二报警信息后,工作站接收对第一报警信息或第二报警信息的查阅指令,获取相应的异常事件记录数据并进行输出。
具体的,该查阅指令可以是在工作站端发起的,也可以是在监护仪一侧发起的。例如,在输出第一报警信息后,多参数监护仪的用户界面上事件列表栏中会显示有第一报警信息的记录,当用户通过触摸屏或鼠标等可操作设备点击该记录时,多参数监护仪即生成第一报警信息的查阅指令,并将该指令发送到工作站;工作站根据第一报警信息的查阅指令确定第一报警信息,并根据异常事件记录数据与第一报警信息的关联信息查询获取到第一报警信息关联的异常事件记录数据。
在本方案中,还可以对异常事件记录数据进行分析处理,生成并输出异常事件报告数据。通过报告数据输出异常事件以及对异常事件的详细描述,具体可以包括但不限于各异常参数、发生时间、基于异常参数的分析结果等等,并可以将数据以图形化方式进行播放,比如心电图数据的图形化回放等。
同样的,对于第二报警信息产生时,也可以以同样方法,记录第二报警信息产生前后的各参数,用以方便的进行分析判断,此处不再赘述。
进一步的,还可以根据心电图数据、脉搏数据、血压数据、呼吸数据、血氧饱和度数据和体温数据等各参数进行综合考量,根据第一报警信息和第二报警信息生成报警事件数据,然后根据报警时间信息,对报警事件数据进行输出显示;报警事件数据包括体征监护数据的项目信息以及所对应的心电异常事件信息和/或其他异常事件信息。
图8为本发明实施例提供的一种多参数监护系统的结构示意图,该多参数监护系统包括:至少一台监护仪2和工作站1;
工作站1包括:存储器11和处理器12;存储器11可通过总线13与处理器12连接。存储器11可以是非易失存储器,例如硬盘驱动器和闪存,存储器11中存储有软件程序和设备驱动程序。软件程序能够执行本发明实施例提供的上述方法的各种功能;设备驱动程序可以是网络和接口驱动程序。处理器12用于执行软件程序,该软件程序被执行时,能够实现本发明实施例提供的方法。
需要说明的是,本发明实施例还提供了一种计算机可读存储介质。该计算机可读存储介质上存储有计算机程序,该计算机程序被处理器执行时,能够实现本发明实施例提供的方法。
本发明实施例还提供了一种包含指令的计算机程序产品。当该计算机程序产品在计算机上运行时,使得处理器执行上述方法。
本发明上述实施例提供的多参数监护数据分析方法和多参数监护系统,其工作站能够对多参数监护仪监测并上传的心电、血压、血氧、脉搏、呼吸、体温等体征数据进行自动、快速、完整的分析,对异常的心电状态、其他各项体征的异常参数,以及二者结合给出预警,并下发给监护仪进行同步报警输出。该方法能够减少干扰带来的误报现象。报警准确度高,可检测的异常种类特别是心电异常的种类多,并能够根据指令对心电数据进行动态的回放输出。本发明的多参数监护数据分析方法及多参数监护系统适用范围广,具有良好的应用前景。
专业人员应该还可以进一步意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,能够以电子硬件、计算机软件或者二者的结合来实现,为了清楚地说明硬件和软件的可互换性,在上述说明中已经按照功能一般性地描述了各示例的组成及步骤。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本发明的范围。
结合本文中所公开的实施例描述的方法或算法的步骤可以用硬件、处理器执行的软件模块,或者二者的结合来实施。软件模块可以置于随机存储器(RAM)、内存、只读存储器(ROM)、电可编程ROM、电可擦除可编程ROM、寄存器、硬盘、可移动磁盘、CD-ROM、或技术领域内所公知的任意其它形式的存储介质中。
以上所述的具体实施方式,对本发明的目的、技术方案和有益效果进行了进一步详细说明,所应理解的是,以上所述仅为本发明的具体实施方式而已,并不用于限定本发明的保护范围,凡在本发明的精神和原则之内,所做的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。

Claims (17)

1.一种多参数监护数据分析方法,其特征在于,所述方法包括:
监护仪接收用户输入的或者工作站下发的监测基准数据;所述监测基准数据包括被测对象信息,以及所述被测对象信息对应的体征数据阈值及心电异常事件信息;
所述监护仪对被测对象进行体征监护数据采集,得到所述被测对象的体征监护数据;所述体征监护数据具有时间属性信息和监护仪ID信息,所述体征监护数据包括:心电图数据、脉搏数据、血压数据、呼吸数据、血氧饱和度数据和体温数据;
所述监护仪对所述心电图数据进行波群特征识别,得到所述心电图数据的特征信号,根据所述特征信号对所述心电图数据进行心搏分类,结合心电图基本规律参考数据得到心搏分类信息,并生成心电图事件数据;所述心电事件数据包括所述监护仪ID信息;
所述监护仪根据所述心电图事件数据确定对应的心电图事件信息,并确定所述心电图事件信息是否为所述心电异常事件信息;当为所述心电异常事件信息时,输出第一报警信息;所述第一报警信息包括所述心电异常事件信息、报警时间信息和所述监护仪ID信息;以及
所述监护仪确定所述脉搏数据、血压数据、呼吸数据、血氧饱和度数据和体温数据中的一个或多个是否存在超出相应的设定阈值的异常数据,并根据所述异常数据生成其他异常事件信息;当超出所述设定阈值时,输出第二报警信息;所述第二报警信息包括所述其他异常事件信息、报警时间信息和所述监护仪ID信息;
所述监护仪将所述第一报警信息和/或所述第二报警信息发送至工作站,使所述工作站根据所述第一报警信息和/或所述第二报警信息产生相应的报警输出信号。
2.根据权利要求1所述的多参数监护数据分析方法,其特征在于,所述方法还包括:
所述监护仪根据所述体征监护数据的时间属性信息对所述体征监护数据进行汇总,生成所述体征监护数据的时间序列数据,并进行存储。
3.根据权利要求1所述的多参数监护数据分析方法,其特征在于,所述方法还包括:
当为预设的心电异常事件信息时,根据所述时间属性信息获取所述心电图数据对应时间的前后预设时段内的心电图数据,生成异常事件记录数据;
所述监护仪生成所述异常事件记录数据与所述第一报警信息的关联信息,并发送给所述工作站。
4.根据权利要求3所述的多参数监护数据分析方法,其特征在于,所述方法还包括:
所述监护仪或所述工作站接收对所述第一报警信息或第二报警信息的查阅指令,获取相应的异常事件记录数据并进行输出,和/或对所述异常事件记录数据进行分析处理,生成并输出异常事件报告数据。
5.根据权利要求1所述的多参数监护数据分析方法,其特征在于,所述对所述心电图数据进行波群特征识别,得到所述心电图数据的特征信号,根据所述特征信号对所述心电图数据进行心搏分类,结合心电图基本规律参考数据得到心搏分类信息,并生成心电图事件数据具体包括:
将所述心电图数据的数据格式经过重采样转换为预设标准数据格式,并对转换后的预设标准数据格式的心电图数据进行第一滤波处理;
对所述第一滤波处理后的心电图数据进行心搏检测处理,识别所述心电图数据包括的多个心搏数据,每个所述心搏数据对应一个心搏周期,包括相应的P波、QRS波群、T波的幅值和起止时间数据;
根据所述心搏数据确定每个心搏的检测置信度;
根据干扰识别二分类模型对所述心搏数据进行干扰识别,得到心搏数据是否存在干扰噪音,以及用于判断干扰噪音的一个概率值;
根据所述检测置信度确定心搏数据的有效性,并且,根据确定有效的心搏数据的导联参数和心搏数据,基于所述干扰识别的结果和时间规则合并生成心搏时间序列数据;根据所述心搏时间序列数据生成心搏分析数据;
根据心搏分类模型对所述心搏分析数据进行幅值和时间表征数据的特征提取和分析,得到所述心搏分析数据的一次分类信息;
对所述一次分类信息结果中的特定心搏的心搏分析数据输入到ST段和T波改变模型进行识别,确定ST段和T波评价信息;
根据所述心搏时间序列数据,对所述心搏分析数据进行P波和T波特征检测,确定每个心搏中P波和T波的详细特征信息,详细特征信息包括幅值、方向、形态和起止时间的数据;
对所述心搏分析数据在所述一次分类信息下根据所述心电图基本规律参考数据、所述P波和T波的详细特征信息以及所述ST段和T波评价信息进行二次分类处理,得到心搏分类信息;
对所述心搏分类信息进行分析匹配,生成所述心电图事件数据。
6.一种多参数监护数据分析方法,其特征在于,所述方法包括:
所述监护仪对被测对象进行体征监护数据采集,得到所述被测对象的体征监护数据并获取被测对象信息,将所述体征监护数据和被测对象信息发送给所述工作站;所述体征监护数据具有时间属性信息和监护仪ID信息,所述体征监护数据包括:心电图数据、脉搏数据、血压数据、呼吸数据、血氧饱和度数据和体温数据;
所述工作站对所述心电图数据进行波群特征识别,得到所述心电图数据的特征信号,根据所述特征信号对所述心电图数据进行心搏分类,结合心电图基本规律参考数据得到心搏分类信息,并生成心电图事件数据;所述心电事件数据包括所述监护仪ID信息;
所述工作站根据所述被测对象信息确定监测基准数据;所述监测基准数据包括所述被测对象信息对应的体征数据阈值及心电异常事件信息;
所述工作站根据所述心电图事件数据确定对应的心电图事件信息,并确定所述心电图事件信息是否为预设的心电异常事件信息;当为预设的心电异常事件信息时,生成第一报警信息;所述第一报警信息包括所述心电异常事件信息、报警时间信息和所述监护仪ID信息;以及
所述工作站确定所述脉搏数据、血压数据、呼吸数据、血氧饱和度数据和体温数据中的一个或多个是否存在超出相应的设定阈值的异常数据,并根据所述异常数据生成其他异常事件信息;当超出所述设定阈值时,生成第二报警信息;所述第二报警信息包括所述其他异常事件信息、报警时间信息和所述监护仪ID信息;
所述工作站输出所述第一报警信息和/或所述第二报警信息,并根据所述监护仪ID信息将所述第一报警信息和/或所述第二报警信息发送至所述监护仪,使所述监护仪根据所述第一报警信息和/或所述第二报警信息产生相应的报警输出信号。
7.根据权利要求6所述的多参数监护数据分析方法,其特征在于,所述方法还包括:
所述工作站根据所述体征监护数据的时间属性信息对所述体征监护数据进行汇总,生成所述体征监护数据的时间序列数据,并进行存储。
8.根据权利要求6所述的多参数监护数据分析方法,其特征在于,所述方法还包括:
当为预设的心电异常事件信息时,所述工作站根据所述时间属性信息获取所述心电图数据对应时间的前后预设时段内的心电图数据,生成异常事件记录数据;
所述工作站生成所述异常事件记录数据与所述第一报警信息的关联信息。
9.根据权利要求8所述的多参数监护数据分析方法,其特征在于,所述方法还包括:
所述工作站接收对所述第一报警信息或第二报警信息的查阅指令,获取相应的异常事件记录数据并进行输出,和/或对所述异常事件记录数据进行分析处理,生成并输出异常事件报告数据。
10.根据权利要求9所述的多参数监护数据分析方法,其特征在于,所述方法还包括:
所述监护仪接收对所述第一报警信息或第二报警信息的查阅指令;
将所述查阅指令发送给所述工作站;
所述工作站获取所述异常事件记录数据,和/或对所述异常事件记录数据进行分析处理,生成异常事件报告数据;
将所述异常事件记录数据和/或异常事件报告数据发送给所述监护仪。
11.根据权利要求6所述的多参数监护数据分析方法,其特征在于,所述对所述心电图数据进行波群特征识别,得到所述心电图数据的特征信号,根据所述特征信号对所述心电图数据进行心搏分类,结合心电图基本规律参考数据得到心搏分类信息,并生成心电图事件数据具体包括:
将所述心电图数据的数据格式经过重采样转换为预设标准数据格式,并对转换后的预设标准数据格式的心电图数据进行第一滤波处理;
对所述第一滤波处理后的心电图数据进行心搏检测处理,识别所述心电图数据包括的多个心搏数据,每个所述心搏数据对应一个心搏周期,包括相应的P波、QRS波群、T波的幅值和起止时间数据;
根据所述心搏数据确定每个心搏的检测置信度;
根据干扰识别二分类模型对所述心搏数据进行干扰识别,得到心搏数据是否存在干扰噪音,以及用于判断干扰噪音的一个概率值;
根据所述检测置信度确定心搏数据的有效性,并且,根据确定有效的心搏数据的导联参数和心搏数据,基于所述干扰识别的结果和时间规则合并生成心搏时间序列数据;根据所述心搏时间序列数据生成心搏分析数据;
根据心搏分类模型对所述心搏分析数据进行幅值和时间表征数据的特征提取和分析,得到所述心搏分析数据的一次分类信息;
对所述一次分类信息结果中的特定心搏的心搏分析数据输入到ST段和T波改变模型进行识别,确定ST段和T波评价信息;
根据所述心搏时间序列数据,对所述心搏分析数据进行P波和T波特征检测,确定每个心搏中P波和T波的详细特征信息,详细特征信息包括幅值、方向、形态和起止时间的数据;
对所述心搏分析数据在所述一次分类信息下根据所述心电图基本规律参考数据、所述P波和T波的详细特征信息以及所述ST段和T波评价信息进行二次分类处理,得到心搏分类信息;
对所述心搏分类信息进行分析匹配,生成所述心电图事件数据。
12.一种多参数监护系统,其特征在于,所述多参数监护系统包括权利要求1-5任一所述的监护仪和工作站;
所述监护仪包括:存储器和处理器;所述存储器用于存储程序,所述处理器用于执行如权利要求1至5任一项所述的方法。
13.一种包含指令的计算机程序产品,当其在计算机上运行时,使得计算机执行如权利要求1至5任一项所述的方法。
14.一种计算机可读存储介质,包括指令,当所述指令在计算机上运行时,使所述计算机执行根据权利要求1至5任一项所述的方法。
15.一种多参数监护系统,其特征在于,所述多参数监护系统包括权利要求6-11任一所述的工作站和一个或多个监护仪;
所述工作站包括:存储器和处理器;所述存储器用于存储程序,所述处理器用于执行如权利要求6至11任一项所述的方法。
16.一种包含指令的计算机程序产品,当其在计算机上运行时,使得计算机执行如权利要求6至11任一项所述的方法。
17.一种计算机可读存储介质,包括指令,当所述指令在计算机上运行时,使所述计算机执行根据权利要求6至11任一项所述的方法。
CN201810157364.9A 2018-02-24 2018-02-24 多参数监护数据分析方法和多参数监护系统 Pending CN108309263A (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201810157364.9A CN108309263A (zh) 2018-02-24 2018-02-24 多参数监护数据分析方法和多参数监护系统
PCT/CN2018/083462 WO2019161608A1 (zh) 2018-02-24 2018-04-18 多参数监护数据分析方法和多参数监护系统

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201810157364.9A CN108309263A (zh) 2018-02-24 2018-02-24 多参数监护数据分析方法和多参数监护系统

Publications (1)

Publication Number Publication Date
CN108309263A true CN108309263A (zh) 2018-07-24

Family

ID=62901279

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201810157364.9A Pending CN108309263A (zh) 2018-02-24 2018-02-24 多参数监护数据分析方法和多参数监护系统

Country Status (2)

Country Link
CN (1) CN108309263A (zh)
WO (1) WO2019161608A1 (zh)

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109394187A (zh) * 2018-11-08 2019-03-01 重庆医科大学 基于单体侧信号检测的可穿戴式心血管健康监测系统
CN110141213A (zh) * 2019-04-16 2019-08-20 深圳中兴网信科技有限公司 心电监护方法、装置及计算机可读存储介质
CN110491500A (zh) * 2019-08-07 2019-11-22 王满 一种基于心脏功能动态监测与分析的身份识别系统及方法
WO2020052640A1 (zh) * 2018-09-14 2020-03-19 杭州脉流科技有限公司 基于深度学习算法的心电特征提取方法、装置、系统、设备和分类方法
CN111134652A (zh) * 2020-03-11 2020-05-12 四川大学华西医院 血液透析患者动静脉内瘘多功能监测护腕
CN111671394A (zh) * 2020-05-12 2020-09-18 中国医学科学院北京协和医院 一种重症监护报警方法及装置
CN111863236A (zh) * 2019-04-24 2020-10-30 通用电气精准医疗有限责任公司 医疗机器合成数据和对应事件生成
CN112932500A (zh) * 2021-01-29 2021-06-11 联想(北京)有限公司 心电异常处理方法、装置及系统
CN112951415A (zh) * 2021-04-01 2021-06-11 哈尔滨理工大学 一种基于深度学习的时间序列异常检测系统
CN113143226A (zh) * 2021-04-26 2021-07-23 安徽非禾科技有限公司 多生理参数融合方法及系统
CN113437371A (zh) * 2021-05-19 2021-09-24 湖南大学 一种新能源汽车锂离子电池热失控预警系统及预警方法
WO2021227472A1 (zh) * 2020-05-12 2021-11-18 深圳市科瑞康实业有限公司 一种报警切换方法
CN113712561A (zh) * 2020-05-12 2021-11-30 深圳市科瑞康实业有限公司 一种监护数据预警系统和方法
CN117038050A (zh) * 2023-10-10 2023-11-10 深圳华声医疗技术股份有限公司 生理参数异常处理方法、系统及医疗设备

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3981321A4 (en) * 2019-07-29 2022-08-03 Cardio Intelligence Inc. ELECTROCARDIOGRAM DISPLAY DEVICE, ELECTROCARDIOGRAM DISPLAY METHOD AND PROGRAM

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102068261A (zh) * 2011-01-21 2011-05-25 上海弘周电子科技有限公司 安全监护仪

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8170609B2 (en) * 2007-06-20 2012-05-01 Qualcomm Incorporated Personal virtual assistant providing advice to a user regarding physiological information received about the user
US8712509B2 (en) * 2008-07-25 2014-04-29 Medtronic, Inc. Virtual physician acute myocardial infarction detection system and method
US20100274098A1 (en) * 2008-10-23 2010-10-28 Edwards Lifesciences Corporation Patient Monitoring System
CN101822535A (zh) * 2010-03-11 2010-09-08 无锡凌讯科技有限公司 Rfid远程无线家庭医疗监护仪
CN107714023B (zh) * 2017-11-27 2020-09-01 上海优加利健康管理有限公司 基于人工智能自学习的静态心电图分析方法和装置

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102068261A (zh) * 2011-01-21 2011-05-25 上海弘周电子科技有限公司 安全监护仪

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020052640A1 (zh) * 2018-09-14 2020-03-19 杭州脉流科技有限公司 基于深度学习算法的心电特征提取方法、装置、系统、设备和分类方法
CN109394187A (zh) * 2018-11-08 2019-03-01 重庆医科大学 基于单体侧信号检测的可穿戴式心血管健康监测系统
CN110141213A (zh) * 2019-04-16 2019-08-20 深圳中兴网信科技有限公司 心电监护方法、装置及计算机可读存储介质
CN111863236A (zh) * 2019-04-24 2020-10-30 通用电气精准医疗有限责任公司 医疗机器合成数据和对应事件生成
CN110491500A (zh) * 2019-08-07 2019-11-22 王满 一种基于心脏功能动态监测与分析的身份识别系统及方法
CN111134652A (zh) * 2020-03-11 2020-05-12 四川大学华西医院 血液透析患者动静脉内瘘多功能监测护腕
CN111671394A (zh) * 2020-05-12 2020-09-18 中国医学科学院北京协和医院 一种重症监护报警方法及装置
WO2021227472A1 (zh) * 2020-05-12 2021-11-18 深圳市科瑞康实业有限公司 一种报警切换方法
CN113712561A (zh) * 2020-05-12 2021-11-30 深圳市科瑞康实业有限公司 一种监护数据预警系统和方法
CN112932500A (zh) * 2021-01-29 2021-06-11 联想(北京)有限公司 心电异常处理方法、装置及系统
CN112951415A (zh) * 2021-04-01 2021-06-11 哈尔滨理工大学 一种基于深度学习的时间序列异常检测系统
CN113143226A (zh) * 2021-04-26 2021-07-23 安徽非禾科技有限公司 多生理参数融合方法及系统
CN113437371A (zh) * 2021-05-19 2021-09-24 湖南大学 一种新能源汽车锂离子电池热失控预警系统及预警方法
CN117038050A (zh) * 2023-10-10 2023-11-10 深圳华声医疗技术股份有限公司 生理参数异常处理方法、系统及医疗设备
CN117038050B (zh) * 2023-10-10 2024-01-26 深圳华声医疗技术股份有限公司 生理参数异常处理方法、系统及医疗设备

Also Published As

Publication number Publication date
WO2019161608A1 (zh) 2019-08-29

Similar Documents

Publication Publication Date Title
CN108309263A (zh) 多参数监护数据分析方法和多参数监护系统
CN108309262A (zh) 多参数监护数据分析方法和多参数监护仪
CN108577830A (zh) 一种面向用户的体征信息动态监护方法和动态监护系统
CN108478209B (zh) 心电信息动态监护方法和动态监护系统
Pimentel et al. Toward a robust estimation of respiratory rate from pulse oximeters
Chowdhury et al. Real-time robust heart rate estimation from wrist-type PPG signals using multiple reference adaptive noise cancellation
JP7019611B2 (ja) 被検者の呼吸情報を決定するための方法及び装置
US20120016251A1 (en) System for Respiration Data Processing and Characterization
CN106901705A (zh) 一种无感知人体多生理参数采集装置及采集方法和应用
CN109411041A (zh) 心电信息处理方法和心电工作站系统
CN109411042A (zh) 心电信息处理方法和心电工作站
Yang et al. Estimation and validation of arterial blood pressure using photoplethysmogram morphology features in conjunction with pulse arrival time in large open databases
US20220167856A1 (en) Lung function monitoring from heart signals
Milagro et al. Nocturnal heart rate variability spectrum characterization in preschool children with asthmatic symptoms
Kanawade et al. Photoplethysmography based arrhythmia detection and classification
Shah Vital sign monitoring and data fusion for paediatric triage
Liu et al. Cuffless blood pressure measurement using smartwatches: a large-scale validation study
US20210007621A1 (en) Method to analyze cardiac rhythms using beat-to-beat display plots
Qin et al. Advances in cuffless continuous blood pressure monitoring technology based on PPG signals
US10327648B2 (en) Blood vessel mechanical signal analysis
Chou et al. Comparison between heart rate variability and pulse rate variability for bradycardia and tachycardia subjects
Bassiouni et al. Combination of ECG and PPG signals for smart healthcare systems: Techniques, applications, and challenges
Lu et al. Uncertainties in the Analysis of Heart Rate Variability: A Systematic Review
Zaretskiy et al. Robust heart rate estimation using combined ECG and PPG signal processing
KR102521294B1 (ko) 연속 혈압 측정을 이용한 생체활력징후 모니터링 시스템

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication
RJ01 Rejection of invention patent application after publication

Application publication date: 20180724