CN108304673B - 一种增压器蜗壳的仿生设计方法 - Google Patents

一种增压器蜗壳的仿生设计方法 Download PDF

Info

Publication number
CN108304673B
CN108304673B CN201810161616.5A CN201810161616A CN108304673B CN 108304673 B CN108304673 B CN 108304673B CN 201810161616 A CN201810161616 A CN 201810161616A CN 108304673 B CN108304673 B CN 108304673B
Authority
CN
China
Prior art keywords
spiral
pressure booster
section
spiral case
curved surface
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201810161616.5A
Other languages
English (en)
Other versions
CN108304673A (zh
Inventor
吴娜
李�灿
王希波
张克松
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shandong Jiaotong University
Original Assignee
Shandong Jiaotong University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shandong Jiaotong University filed Critical Shandong Jiaotong University
Priority to CN201810161616.5A priority Critical patent/CN108304673B/zh
Publication of CN108304673A publication Critical patent/CN108304673A/zh
Application granted granted Critical
Publication of CN108304673B publication Critical patent/CN108304673B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F30/00Computer-aided design [CAD]
    • G06F30/10Geometric CAD
    • G06F30/17Mechanical parametric or variational design
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F2119/00Details relating to the type or aim of the analysis or the optimisation
    • G06F2119/06Power analysis or power optimisation

Abstract

一种增压器蜗壳的仿生设计方法,其利用螺旋贝壳轮廓曲线良好的流体力学特性进行增压器蜗壳通道截面线设计,包括以下步骤:(1)通过逆向工程技术实现螺旋贝壳内腔表面模型数字化,经软件处理实现螺旋贝壳内表面曲面的量化与重构;(2)将获得的蜗壳通道截面曲线依据面积由小到大的次序展开排列,作为增压器蜗壳通道截面线设计;(3)利用截面轮廓线放样生成蜗壳曲面,通道出口处曲面与蜗壳通道曲面相切过渡,并根据工程需要做加厚处理。本发明能够更好的实现增压器蜗壳的流态优化,提高各转速下的压气效率及线性变化,改善增压器性能,提高压气机整体效率。为目前增压器蜗壳设计提供了一种新的思路和方法。

Description

一种增压器蜗壳的仿生设计方法
技术领域
本发明涉及一种蜗壳设计方法,具体为一种增压器蜗壳的仿生设计方法。
背景技术
研究发现,增压器蜗壳性能直接影响增压器的增压效率和增压器运行平稳状况,其中蜗壳的通道截面形状设计直接影响压气机效率。蜗壳通道截面的设计形状直接影响蜗壳内腔的曲率变化、蜗壳内腔流体与壁面的摩擦力及压力梯度分布,改变蜗壳腔内流场分布,影响蜗壳腔内的流体运动规律、压力分布及能量损失,进而影响压气机的整机效率和压力损失。目前还没有成熟的蜗壳通道截面的设计方法,蜗壳结构的优化设计还处在不断发展完善中。
传统增压器蜗壳的设计采用公式计算并修正的方法进行,常用计算方法为周向平均速度法和等环量法。这两种传统设计方法完全依据理论计算得出。尽管设计结果也会根据实验数据进行微调整,但完全理论依据计算的蜗壳设计方法单一,且阻碍了蜗壳设计技术的快速发展。采用仿生技术进行压气机蜗壳设计可实现蜗壳设计技术的创新和发展。
仿生设计通过对生物结构、生物功能和生命过程的认识为解决工程和机械设计中的难题提供巧妙的设计思路和灵感。螺旋贝壳是软体动物的保护外套,在亿万年的进化过程中,已进化出适应海洋生存,减小流动摩擦阻力的宏观流线形结构和形体。这为增压器蜗壳设计提供了思路和方法。
发明内容
针对上述问题,本发明提供了一种增压器蜗壳的仿生设计方法,该方法设计蜗壳通道截面为一系列螺旋贝壳内腔的横截面轮廓线,从蜗壳通道入口到通道出口通道截面逐渐增大,通道截面轮廓线曲率变化均匀,组成的流线形通道内表面具有外沿流通截面大,便于离心流体流动,内沿流通截面小,具有防止气流产生回流谐振的优点,同时通道改善流体流态,减阻降粘特性好,大大提升蜗壳扩压性能和扩压效率。
本发明解决其技术问题所采用的技术方案包括如下步骤:
(1)通过逆向工程技术将螺旋贝壳内腔表面模型数字化,进行螺旋贝壳内表面的量化与重构;(2)沿螺旋方向由螺壳大端入口取其270~330度以内的螺旋贝壳曲面模型,过螺壳正投影圆心均等角度依次截取16个截面,角度间隔18~22度;(3)获取第一条螺壳内腔截面轮廓线点云;(4)提取所述第一条螺壳内腔截面轮廓线上半部分的点云数据,通过数据镜像,获得所述点云数据作为增压器仿生螺壳通道最大截面几何形状;按照曲线-点云处理-椭圆拟合顺序对所述上半部分的点云数据进行曲线拟合,镜像后得到仿生增压器螺壳通道截面基准轮廓线;(5)重复步骤(3)~步骤(4),获得其他15条螺壳内腔截面轮廓线;(6)将所有螺壳内腔截面轮廓线按照由小到大的次序展开排列,作为增压器蜗壳通道截面线,沿360度排列,每个截面线分隔间距为22.5度;(7)将16个截面轮廓线依次排列,通过软件曲线放样命令生成曲面,实现蜗壳的曲面设计,蜗壳通道出口处曲面与蜗壳通道曲面相切过渡;(8)将放样后的曲面依据实际增压器蜗壳厚度进行加厚处理。
所述第一条螺壳内腔截面轮廓线的上半部分曲线,为总体轮廓中最优的1/3~1/2轮廓线。
本发明的技术效果是:本发明涉及的增压器蜗壳采用仿生设计理念,将具有良好流体力学特性的螺旋贝壳横截面外轮廓曲线用于增压器蜗壳通道截面线设计,能够更好的实现增压器蜗壳的流态优化,提高各转速下的压气效率及线性变化,改善增压器性能,提高压气机整体效率。本发明对目前增压器蜗壳设计提供了一种新的思路和方法。
附图说明
图1为本发明一实施例螺壳正投影圆心均等角度16个截面选取示意图;
图2为图1实施例中增压器仿生蜗壳通道最大截面几何形状获取方式示意图;
图3为图1实施例中获取的增压器仿生蜗壳通道最大截面几何形状图;
图4为图1实施例中蜗壳通道截面曲线次序展开排列示意图;
图5为图1实施例设计完成的蜗壳示意图。
具体实施方式
为了使本发明的内容更容易被清楚地理解,下面根据本发明的具体实施例并结合附图,对本发明作进一步详细的说明。下面通过参考附图描述的实施例是示例性的,仅用于解释本发明专利,而不能解释为对本发明专利的限制。
发明解决其技术的整体思路是:
一种通道截面为螺旋贝壳内腔截面轮廓线的仿生蜗壳设计,包括蜗壳通道截面为一系列螺旋贝壳内腔的横截面轮廓线组成,从蜗壳通道入口到通道出口通道截面逐渐增大,通道截面轮廓线曲率变化均匀,组成的流线形通道内表面具有外沿流通截面大,便于离心流体流动,内沿流通截面小,防止回流谐振,同时通道改善流体流态,减阻降粘特性好,大大提升蜗壳扩压性能和效率。
所述蜗壳通道内表面轮廓线形状确定如下:
(1)通过逆向工程技术实现螺旋贝壳内腔表面模型数字化,经软件处理实现螺旋贝壳内表面曲面的量化与重构;如图1所示,按其螺旋方向,由螺壳大端入口取其270~330度内的螺旋贝壳曲面模型,过螺壳正投影圆心均等角度依次截取16个截面,角度间隔18~22度;如图2、图3所示,利用获取的第一条螺壳内腔截面轮廓线的上半部分曲线,曲线是长轴为17.54,短轴为14.18椭圆的一部分,曲线方程采用椭圆参数方程表示为:
x=8.77cosθ,y=7.09sinθ,θ∈[0.2π,0.56π]
通过曲线镜像获得增压器仿生蜗壳通道最大截面几何形状;依次处理获得15条部分螺壳内腔截面轮廓部分曲线,其椭圆参数方程表示为:
x1=8.77cosθ,y1=7.09sinθ;x2=8.36cosθ,y2=6.76s inθ
x3=7.95cosθ,y3=6.43sinθ;x4=7.54cosθ,y4=6.09sinθ
x5=7.13cosθ,y5=5.76sinθ;x6=6.71cosθ,y6=5.43sinθ
x7=6.30cosθ,y7=5.10sinθ;x8=5.89cosθ,y8=4.76sinθ
x9=5.48cosθ,y9=4.43sinθ;x10=5.07cosθ,y10=4.10sinθ
x11=4.66cosθ,y11=3.77sinθ;x12=4.25cosθ,y12=3.77sinθ
x13=3.84cosθ,y13=3.10sinθ;x14=3.43cosθ,y14=2.77sinθ
x15=3.01cosθ,y15=2.44sinθ;x16=2.60cosθ,y16=2.10sinθ
将各曲线的上半部分轮廓曲线镜像处理,获取15条蜗壳通道截面轮廓线。
(2)将获得的蜗壳通道截面曲线依据面积由小到大的次序展开排列,作为增压器蜗壳通道截面线设计,沿360度,每个截面线分隔间距为22.5度,具体形式如图4所示。
(3)如图5所示,将16个截面轮廓线依次排列,通过软件曲线放样命令生成曲面,实现蜗壳的曲面设计,蜗壳通道出口处曲面与蜗壳通道曲面相切过渡,将放样后的曲面依据实际增压器蜗壳厚度进行加厚处理。
以上依据图式所示的实施例详细说明了本发明的步骤、方法及完成效果,以上所述仅为本发明的较佳实施例,但本发明专利不以图面所示限定实施范围,凡是依照本发明专利的构想所作的改变,或修改为等同变化的等效实施例,仍未超出说明书与图示所涵盖的精神时,均应在本发明的保护范围内。

Claims (2)

1.一种增压器蜗壳的仿生设计方法,其特征在于,包括以下步骤:
(1)通过逆向工程技术将螺旋贝壳内腔表面模型数字化,进行螺旋贝壳内表面的量化与重构;
(2)沿螺旋方向由螺壳大端入口取其270~330度以内的螺旋贝壳曲面模型,过螺壳正投影圆心均等角度依次截取16个截面,角度间隔18~22度;
(3)获取第一条螺壳内腔截面轮廓线点云;
(4)提取所述第一条螺壳内腔截面轮廓线上半部分的点云数据,通过数据镜像,获得所述点云数据作为增压器仿生螺壳通道最大截面几何形状;按照曲线-点云处理-椭圆拟合顺序对所述上半部分的点云数据进行曲线拟合,镜像后得到仿生增压器螺壳通道截面基准轮廓线;
(5)重复步骤(3)~步骤(4),获得其他15条螺壳内腔截面轮廓线;
(6)将所有螺壳内腔截面轮廓线按照由小到大的次序展开排列,作为增压器蜗壳通道截面线,沿360度排列,每个截面线分隔间距为22.5度;
(7)将16个截面轮廓线依次排列,通过软件曲线放样命令生成曲面,实现蜗壳的曲面设计,蜗壳通道出口处曲面与蜗壳通道曲面相切过渡;
(8)将放样后的曲面依据实际增压器蜗壳厚度进行加厚处理;
其中,通过步骤(3)和步骤(4)得到的16条螺壳内腔截面轮廓线的拟合方程分别为:
x1=8.77cosθ,y1=7.09sinθ;x2=8.36cosθ,y2=6.76sinθ;
x3=7.95cosθ,y3=6.43sinθ;x4=7.54cosθ,y4=6.09sinθ;
x5=7.13cosθ,y5=5.76sinθ;x6=6.71cosθ,y6=5.43sinθ;
x7=6.30cosθ,y7=5.10sinθ;x8=5.89cosθ,y8=4.76sinθ;
x9=5.48cosθ,y9=4.43sinθ;x10=5.07cosθ,y10=4.10sinθ;
x11=4.66cosθ,y11=3.77sinθ;x12=4.25cosθ,y12=3.77sinθ;
x13=3.84cosθ,y13=3.10sinθ;x14=3.43cosθ,y14=2.77sinθ;
x15=3.01cosθ,y15=2.44sinθ;x16=2.60cosθ,y16=2.10sinθ;
其中,θ∈[0.2π,0.56π]。
2.根据权利要求1所述的一种增压器蜗壳的仿生设计方法,其特征在于,所述第一条螺壳内腔截面轮廓线的上半部分曲线,为总体轮廓中最优的1/3~1/2轮廓线。
CN201810161616.5A 2018-02-27 2018-02-27 一种增压器蜗壳的仿生设计方法 Active CN108304673B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201810161616.5A CN108304673B (zh) 2018-02-27 2018-02-27 一种增压器蜗壳的仿生设计方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201810161616.5A CN108304673B (zh) 2018-02-27 2018-02-27 一种增压器蜗壳的仿生设计方法

Publications (2)

Publication Number Publication Date
CN108304673A CN108304673A (zh) 2018-07-20
CN108304673B true CN108304673B (zh) 2019-03-29

Family

ID=62848977

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201810161616.5A Active CN108304673B (zh) 2018-02-27 2018-02-27 一种增压器蜗壳的仿生设计方法

Country Status (1)

Country Link
CN (1) CN108304673B (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111120405B (zh) * 2019-12-12 2021-05-25 中国科学院工程热物理研究所 一种轴向偏置的非对称蜗壳及其设计方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1193377A (zh) * 1995-07-10 1998-09-16 杰丹·D·哈曼 叶轮
CN103899362A (zh) * 2012-12-26 2014-07-02 霍尼韦尔国际公司 涡轮机组件
CN105091327A (zh) * 2015-09-08 2015-11-25 江苏美佳马达有限公司 一种鹦鹉螺暖风机
CN105156627A (zh) * 2015-08-28 2015-12-16 吉林大学 仿生双涡轮液力变矩器
CN106368983A (zh) * 2016-09-23 2017-02-01 东华大学 一种高效低噪声鹦鹉螺仿生风机

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1193377A (zh) * 1995-07-10 1998-09-16 杰丹·D·哈曼 叶轮
CN103899362A (zh) * 2012-12-26 2014-07-02 霍尼韦尔国际公司 涡轮机组件
CN105156627A (zh) * 2015-08-28 2015-12-16 吉林大学 仿生双涡轮液力变矩器
CN105091327A (zh) * 2015-09-08 2015-11-25 江苏美佳马达有限公司 一种鹦鹉螺暖风机
CN106368983A (zh) * 2016-09-23 2017-02-01 东华大学 一种高效低噪声鹦鹉螺仿生风机

Also Published As

Publication number Publication date
CN108304673A (zh) 2018-07-20

Similar Documents

Publication Publication Date Title
Hunter et al. Casing wall boundary-layer development through an isolated compressor rotor
CN106640757B (zh) 一种多翼离心风机及其分组设计方法
CN103206402B (zh) 一种可植入式两级轴流血泵转子结构
CN110059414A (zh) 一种直接控制通道的二维叶片造型方法
CN105971931B (zh) 一种离心式叶轮分流叶片的设计方法
CN104153950B (zh) 一种带有叶尖扰流结构的兆瓦级风力发电机叶片及其成型方法
CN212376968U (zh) 一种具有波浪形仿生结构的核主泵导叶结构
CN108304673B (zh) 一种增压器蜗壳的仿生设计方法
CN109578085A (zh) 一种通过导叶倾斜减弱涡轮动叶非定常作用力的方法
CN110566285B (zh) 一种紧凑型向心涡轮导向器
CN106949095B (zh) 低压轴流式通风机叶轮叶片的优化方法
Li et al. The influence of blade angle on the performance of plastic centrifugal pump
CN101418813A (zh) 压气机壁面涡优化设计方法
CN110287647B (zh) 一种跨声速压气机平面叶栅激波控制的设计方法
CN208252159U (zh) 一种工业汽轮机高效转鼓级动叶片
CN107013490B (zh) 一种低压轴流式通风机叶轮叶片的优化方法
CN112160935B (zh) 一种用于降噪的离心泵仿生扭曲叶片凹坑布置方法及叶片
CN110513326A (zh) 一种主动控制压力脉动的离心泵叶轮
CN106567861B (zh) 一种轴流泵导叶水力设计方法及装置
CN113883093B (zh) 一种低反力度压气机叶片设计方法、动叶及压气机
CN113153812B (zh) 一种c型启动前弯式多翼离心风机叶轮及制备方法
CN104443335A (zh) 一种泵喷水推进器用整流部件
CN203285723U (zh) 一种可减少溶血的血泵转子结构
CN109635342B (zh) 一种基于Fluent的风机尾流自动获取方法
CN202900528U (zh) 一种新型流体加速装置

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
TA01 Transfer of patent application right

Effective date of registration: 20181031

Address after: 250023 Jiao Jiao Road, Tianqiao District, Ji'nan, Shandong Province, No. 5

Applicant after: Shandong Jiaotong College

Applicant after: Wang Demin

Address before: 250023 Jiao Jiao Road, Tianqiao District, Ji'nan, Shandong Province, No. 5

Applicant before: Shandong Jiaotong College

TA01 Transfer of patent application right
GR01 Patent grant
GR01 Patent grant